Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
FASEB J ; 38(1): e23377, 2024 01.
Article in English | MEDLINE | ID: mdl-38133902

ABSTRACT

The roles of anti-Müllerian hormone (AMH) continue to expand, from its discovery as a critical factor in sex determination, through its identification as a regulator of ovarian folliculogenesis, its use in fertility clinics as a measure of ovarian reserve, and its emerging role in hypothalamic-pituitary function. In light of these actions, AMH is considered an attractive therapeutic target to address diverse reproductive needs, including fertility preservation. Here, we set out to characterize the molecular mechanisms that govern AMH synthesis and activity. First, we enhanced the processing of the AMH precursor to >90% by introducing more efficient proprotein convertase cleavage sites (RKKR or ISSRKKRSVSS [SCUT]). Importantly, enhanced processing corresponded with a dramatic increase in secreted AMH activity. Next, based on species differences across the AMH type II receptor-binding interface, we generated a series of human AMH variants and assessed bioactivity. AMHSCUT potency (EC50 4 ng/mL) was increased 5- or 10-fold by incorporating Gln484 Met/Leu535 Thr (EC50 0.8 ng/mL) or Gln484 Met/Gly533 Ser (EC50 0.4 ng/mL) mutations, respectively. Furthermore, the Gln484 Met/Leu535 Thr double mutant displayed enhanced efficacy, relative to AMHSCUT . Finally, we identified residues within the wrist pre-helix of AMH (Trp494 , Gln496 , Ser497 , and Asp498 ) that likely mediate type I receptor binding. Mutagenesis of these residues generated gain- (Trp494 Phe or Gln496 Leu) or loss- (Ser497 Ala) of function AMH variants. Surprisingly, combining activating type I and type II receptor mutations only led to modest additive increases in AMH potency/efficacy. Our study is the first to characterize AMH residues involved in type I receptor binding and suggests a step-wise receptor-complex assembly mechanism, in which enhancement in the affinity of the ligand for either receptor can increase AMH activity beyond the natural level.


Subject(s)
Anti-Mullerian Hormone , Peptide Hormones , Female , Humans , Anti-Mullerian Hormone/genetics , Ovary , Amino Acid Sequence , Peptide Fragments
2.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: mdl-34155118

ABSTRACT

Anti-Müllerian hormone (AMH), or Müllerian-inhibiting substance, is a protein hormone that promotes Müllerian duct regression during male fetal sexual differentiation and regulation of folliculogenesis in women. AMH is a member of the transforming growth factor beta (TGF-ß) family, which has evolved to signal through its own dedicated type II receptor, AMH receptor type II (AMHR2). Structures of other TGF-ß family members have revealed how ligands infer specificity for their cognate receptors; however, it is unknown how AMH binds AMHR2 at the molecular level. Therefore, in this study, we solved the X-ray crystal structure of AMH bound to the extracellular domain of AMHR2 to a resolution of 2.6Å. The structure reveals that while AMH binds AMHR2 in a similar location to Activin and BMP ligand binding to their type II receptors, differences in both AMH and AMHR2 account for a highly specific interaction. Furthermore, using an AMH responsive cell-based luciferase assay, we show that a conformation in finger 1 of AMHR2 and a salt bridge formed by K534 on AMH and D81/E84 of AMHR2 are key to the AMH/AMHR2 interaction. Overall, our study highlights how AMH engages AMHR2 using a modified paradigm of receptor binding facilitated by modifications to the three-finger toxin fold of AMHR2. Furthermore, understanding these elements contributing to the specificity of binding will help in the design of agonists or antagonists or the selection of antibody therapies.


Subject(s)
Anti-Mullerian Hormone/chemistry , Anti-Mullerian Hormone/metabolism , Receptors, Peptide/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Activins/chemistry , Amino Acid Sequence , Bone Morphogenetic Proteins/chemistry , Crystallography, X-Ray , Models, Molecular , Receptors, Peptide/chemistry , Receptors, Transforming Growth Factor beta/chemistry , Structural Homology, Protein
3.
Aust Crit Care ; 36(5): 702-707, 2023 09.
Article in English | MEDLINE | ID: mdl-36517331

ABSTRACT

BACKGROUND: Activin A is a potent negative regulator of muscle mass elevated in critical illness. It is unclear whether muscle strength and physical function in critically ill humans are associated with elevated activin A levels. OBJECTIVES: The objective of this study was to investigate the relationship between serum activin A levels, muscle strength, and physical function at discharge from the intensive care unit (ICU) and hospital. METHODS: Thirty-six participants were recruited from two tertiary ICUs in Melbourne, Australia. Participants were included if they were mechanically ventilated for >48 h and expected to have a total ICU stay of >5 days. The primary outcome measure was the Six-Minute Walk Test distance at hospital discharge. Secondary outcome measures included handgrip strength, Medical Research Council Sum Score, Physical Function ICU Test Scored, Six-Minute Walk Test, and Timed Up and Go Test assessed throughout the hospital admission. Total serum activin A levels were measured daily in the ICU. RESULTS: High peak activin A was associated with worse Six-Minute Walk Test distance at hospital discharge (linear regression coefficient, 95% confidence interval, p-value: -91.3, -154.2 to -28.4, p = 0.007, respectively). Peak activin A concentration was not associated with the secondary outcome measures. CONCLUSIONS: Higher peak activin A may be associated with the functional decline of critically ill patients. Further research is indicated to examine its potential as a therapeutic target and a prospective predictor for muscle wasting in critical illness. STUDY REGISTRATION: ACTRN12615000047594.


Subject(s)
Critical Illness , Hand Strength , Humans , Muscle Weakness , Postural Balance , Time and Motion Studies , Intensive Care Units
4.
Am J Transplant ; 22(3): 717-730, 2022 03.
Article in English | MEDLINE | ID: mdl-34668635

ABSTRACT

Prevention of allograft rejection often requires lifelong immune suppression, risking broad impairment of host immunity. Nonselective inhibition of host T cell function increases recipient risk of opportunistic infections and secondary malignancies. Here we demonstrate that AJI-100, a dual inhibitor of JAK2 and Aurora kinase A, ameliorates skin graft rejection by human T cells and provides durable allo-inactivation. AJI-100 significantly reduces the frequency of skin-homing CLA+ donor T cells, limiting allograft invasion and tissue destruction by T effectors. AJI-100 also suppresses pathogenic Th1 and Th17 cells in the spleen yet spares beneficial regulatory T cells. We show dual JAK2/Aurora kinase A blockade enhances human type 2 innate lymphoid cell (ILC2) responses, which are capable of tissue repair. ILC2 differentiation mediated by GATA3 requires STAT5 phosphorylation (pSTAT5) but is opposed by STAT3. Further, we demonstrate that Aurora kinase A activation correlates with low pSTAT5 in ILC2s. Importantly, AJI-100 maintains pSTAT5 levels in ILC2s by blocking Aurora kinase A and reduces interference by STAT3. Therefore, combined JAK2/Aurora kinase A inhibition is an innovative strategy to merge immune suppression with tissue repair after transplantation.


Subject(s)
Aurora Kinase A , Immunity, Innate , Animals , Aurora Kinase A/metabolism , Graft Rejection/etiology , Graft Rejection/prevention & control , Humans , Janus Kinase 2 , Mice , Mice, Inbred C57BL , Th17 Cells , Transplantation, Homologous
5.
J Biol Chem ; 295(23): 7981-7991, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32350111

ABSTRACT

Growth differentiation factor-9 (GDF9) and bone morphogenetic protein-15 (BMP15) are co-expressed exclusively in oocytes throughout most of folliculogenesis and play central roles in controlling ovarian physiology. Although both growth factors exist as homodimers, recent evidence indicates that GDF9 and BMP15 can also heterodimerize to form the potent growth factor cumulin. Within the cumulin complex, BMP15 "activates" latent GDF9, enabling potent signaling in granulosa cells via type I receptors (i.e. activin receptor-like kinase-4/5 (ALK4/5)) and SMAD2/3 transcription factors. In the cumulin heterodimer, two distinct type I receptor interfaces are formed compared with homodimeric GDF9 and BMP15. Previous studies have highlighted the potential of cumulin to improve treatment of female infertility, but, as a noncovalent heterodimer, cumulin is difficult to produce and purify without contaminating GDF9 and BMP15 homodimers. In this study we addressed this challenge by focusing on the cumulin interface formed by the helix of the GDF9 chain and the fingers of the BMP15 chain. We demonstrate that unique BMP15 finger residues at this site (Arg301, Gly304, His307, and Met369) enable potent activation of the SMAD2/3 pathway. Incorporating these BMP15 residues into latent GDF9 generated a highly potent growth factor, called hereafter Super-GDF9. Super-GDF9 was >1000-fold more potent than WT human GDF9 and 4-fold more potent than cumulin in SMAD2/3-responsive transcriptional assays in granulosa cells. Our demonstration that Super-GDF9 can effectively promote mouse cumulus cell expansion and improve oocyte quality in vitro represents a potential solution to the current challenges of producing and purifying intact cumulin.


Subject(s)
Growth Differentiation Factor 9/metabolism , Oocytes/metabolism , Animals , Bone Morphogenetic Protein 15/genetics , Bone Morphogenetic Protein 15/metabolism , Cell Line, Tumor , Female , Genetic Variation/genetics , Growth Differentiation Factor 9/genetics , Humans , Mice , Models, Molecular , Signal Transduction , Smad2 Protein/metabolism , Smad3 Protein/metabolism
6.
Proc Natl Acad Sci U S A ; 115(5): E866-E875, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29348202

ABSTRACT

Growth/differentiation factor 8 (GDF8), or myostatin, negatively regulates muscle mass. GDF8 is held in a latent state through interactions with its N-terminal prodomain, much like TGF-ß. Using a combination of small-angle X-ray scattering and mutagenesis, we characterized the interactions of GDF8 with its prodomain. Our results show that the prodomain:GDF8 complex can exist in a fully latent state and an activated or "triggered" state where the prodomain remains in complex with the mature domain. However, these states are not reversible, indicating the latent GDF8 is "spring-loaded." Structural analysis shows that the prodomain:GDF8 complex adopts an "open" configuration, distinct from the latency state of TGF-ß and more similar to the open state of Activin A and BMP9 (nonlatent complexes). We determined that GDF8 maintains similar features for latency, including the alpha-1 helix and fastener elements, and identified a series of mutations in the prodomain of GDF8 that alleviate latency, including I56E, which does not require activation by the protease Tolloid. In vivo, active GDF8 variants were potent negative regulators of muscle mass, compared with WT GDF8. Collectively, these results help characterize the latency and activation mechanisms of GDF8.


Subject(s)
Myostatin/chemistry , Activins/chemistry , Animals , Atrophy/pathology , Cell Differentiation , Dependovirus , Growth Differentiation Factor 2 , Growth Differentiation Factors/chemistry , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Ligands , Male , Mice , Mice, Inbred C57BL , Mutagenesis , Mutation , Myostatin/genetics , Protein Domains , Scattering, Small Angle , Signal Transduction , Transforming Growth Factor beta/metabolism
7.
Proc Natl Acad Sci U S A ; 115(7): 1582-1587, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29382747

ABSTRACT

Janus kinase 2 (JAK2) signal transduction is a critical mediator of the immune response. JAK2 is implicated in the onset of graft-versus-host disease (GVHD), which is a significant cause of transplant-related mortality after allogeneic hematopoietic cell transplantation (allo-HCT). Transfer of JAK2-/- donor T cells to allogeneic recipients leads to attenuated GVHD yet maintains graft-versus-leukemia. Th1 differentiation among JAK2-/- T cells is significantly decreased compared with wild-type controls. Conversely, iTreg and Th2 polarization is significantly increased among JAK2-/- T cells. Pacritinib is a multikinase inhibitor with potent activity against JAK2. Pacritinib significantly reduces GVHD and xenogeneic skin graft rejection in distinct rodent models and maintains donor antitumor immunity. Moreover, pacritinib spares iTregs and polarizes Th2 responses as observed among JAK2-/- T cells. Collectively, these data clearly identify JAK2 as a therapeutic target to control donor alloreactivity and promote iTreg responses after allo-HCT or solid organ transplantation. As such, a phase I/II acute GVHD prevention trial combining pacritinib with standard immune suppression after allo-HCT is actively being investigated (https://clinicaltrials.gov/ct2/show/NCT02891603).


Subject(s)
Cell Differentiation , Graft vs Host Disease/immunology , Graft vs Leukemia Effect/immunology , Janus Kinase 2/physiology , Primary Myelofibrosis/immunology , T-Lymphocytes/immunology , Th2 Cells/immunology , Animals , Female , Graft vs Host Disease/genetics , Graft vs Host Disease/prevention & control , Graft vs Leukemia Effect/genetics , Lymphocyte Activation , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Primary Myelofibrosis/genetics , Primary Myelofibrosis/prevention & control , Skin Transplantation , Xenograft Model Antitumor Assays
8.
Proc Natl Acad Sci U S A ; 114(26): E5266-E5275, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28607086

ABSTRACT

The transforming growth factor-ß (TGF-ß) network of ligands and intracellular signaling proteins is a subject of intense interest within the field of skeletal muscle biology. To define the relative contribution of endogenous TGF-ß proteins to the negative regulation of muscle mass via their activation of the Smad2/3 signaling axis, we used local injection of adeno-associated viral vectors (AAVs) encoding ligand-specific antagonists into the tibialis anterior (TA) muscles of C57BL/6 mice. Eight weeks after AAV injection, inhibition of activin A and activin B signaling produced moderate (∼20%), but significant, increases in TA mass, indicating that endogenous activins repress muscle growth. Inhibiting myostatin induced a more profound increase in muscle mass (∼45%), demonstrating a more prominent role for this ligand as a negative regulator of adult muscle mass. Remarkably, codelivery of activin and myostatin inhibitors induced a synergistic response, resulting in muscle mass increasing by as much as 150%. Transcription and protein analysis indicated that this substantial hypertrophy was associated with both the complete inhibition of the Smad2/3 pathway and activation of the parallel bone morphogenetic protein (BMP)/Smad1/5 axis (recently identified as a positive regulator of muscle mass). Analyses indicated that hypertrophy was primarily driven by an increase in protein synthesis, but a reduction in ubiquitin-dependent protein degradation pathways was also observed. In models of muscular dystrophy and cancer cachexia, combined inhibition of activins and myostatin increased mass or prevented muscle wasting, respectively, highlighting the potential therapeutic advantages of specifically targeting multiple Smad2/3-activating ligands in skeletal muscle.


Subject(s)
Dependovirus , Genetic Vectors , Muscle Proteins , Muscle, Skeletal/growth & development , Muscular Diseases , Signal Transduction , Transforming Growth Factor beta , Activins/antagonists & inhibitors , Activins/genetics , Activins/metabolism , Animals , Gene Targeting , Male , Mice , Muscle Proteins/antagonists & inhibitors , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Muscular Diseases/metabolism , Muscular Diseases/pathology , Organ Size/genetics , Smad Proteins/genetics , Smad Proteins/metabolism , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
9.
BMC Biol ; 15(1): 19, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28257634

ABSTRACT

BACKGROUND: Growth/differentiation factor 8 (GDF8) and GDF11 are two highly similar members of the transforming growth factor ß (TGFß) family. While GDF8 has been recognized as a negative regulator of muscle growth and differentiation, there are conflicting studies on the function of GDF11 and whether GDF11 has beneficial effects on age-related dysfunction. To address whether GDF8 and GDF11 are functionally identical, we compared their signaling and structural properties. RESULTS: Here we show that, despite their high similarity, GDF11 is a more potent activator of SMAD2/3 and signals more effectively through the type I activin-like receptor kinase receptors ALK4/5/7 than GDF8. Resolution of the GDF11:FS288 complex, apo-GDF8, and apo-GDF11 crystal structures reveals unique properties of both ligands, specifically in the type I receptor binding site. Lastly, substitution of GDF11 residues into GDF8 confers enhanced activity to GDF8. CONCLUSIONS: These studies identify distinctive structural features of GDF11 that enhance its potency, relative to GDF8; however, the biological consequences of these differences remain to be determined.


Subject(s)
Bone Morphogenetic Proteins/chemistry , Growth Differentiation Factors/chemistry , Myostatin/chemistry , Myostatin/metabolism , Amino Acid Sequence , Animals , Bone Morphogenetic Proteins/antagonists & inhibitors , Bone Morphogenetic Proteins/metabolism , Cells, Cultured , Crystallography, X-Ray , Follistatin/metabolism , Genes, Reporter , Growth Differentiation Factors/antagonists & inhibitors , Growth Differentiation Factors/metabolism , Humans , Injections, Intravenous , Ligands , Luciferases/metabolism , Mice , Models, Molecular , Myoblasts/metabolism , Myocardium/metabolism , Myostatin/antagonists & inhibitors , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/metabolism , Sequence Alignment , Signal Transduction , Smad Proteins/metabolism , Structural Homology, Protein , Structure-Activity Relationship
10.
Haematologica ; 102(5): 948-957, 2017 05.
Article in English | MEDLINE | ID: mdl-28104702

ABSTRACT

Graft-versus-host disease (GvHD) remains a major cause of transplant-related mortality. Interleukin-2 (IL-2) plus sirolimus (SIR) synergistically reduces acute GvHD in rodents and promotes regulatory T cells. This phase II trial tested the hypothesis that IL-2 would facilitate STAT5 phosphorylation in donor T cells, expand regulatory T cells, and ameliorate GvHD. Between 16th April 2014 and 19th December 2015, 20 patients received IL-2 (200,000 IU/m2 thrice weekly, days 0 to +90) with SIR (5-14 ng/mL) and tacrolimus (TAC) (3-7 ng/mL) after HLA-matched related or unrelated allogeneic hematopoietic cell transplantation (HCT). The study was designed to capture an increase in regulatory T cells from 16.0% to more than 23.2% at day +30. IL-2/SIR/TAC significantly increased regulatory T cells at day +30 compared to our published data with SIR/TAC (23.8% vs. 16.0%, P=0.0016; 0.052 k/uL vs. 0.037 k/uL, P=0.0163), achieving the primary study end point. However, adding IL-2 to SIR/TAC led to a fall in regulatory T cells by day +90 and did not reduce acute or chronic GvHD. Patients who discontinued IL-2 before day +100 showed a suggested trend toward less grade II-IV acute GvHD (16.7% vs. 50%, P=0.1475). We surmise that the reported accumulation of IL-2 receptors in circulation over time may neutralize IL-2, lead to progressive loss of regulatory T cells, and offset its clinical efficacy. The amount of phospho-STAT3+ CD4+ T cells correlated with donor T-cell activation and acute GvHD incidence despite early T-cell STAT5 phosphorylation by IL-2. Optimizing IL-2 dosing and overcoming cytokine sequestration by soluble IL-2 receptor may sustain lasting regulatory T cells after transplantation. However, an approach to target STAT3 is needed to enhance GvHD prevention. (clinicaltrials.gov identifier: 01927120).


Subject(s)
Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation/methods , Interleukin-2/therapeutic use , T-Lymphocytes, Regulatory/drug effects , Adult , Aged , Antibiotics, Antineoplastic/therapeutic use , Drug Administration Schedule , Female , Graft vs Host Disease/diagnosis , Graft vs Host Disease/prevention & control , Humans , Male , Middle Aged , Neoplasm Recurrence, Local , Sirolimus/therapeutic use , Survival Analysis , T-Lymphocytes, Regulatory/metabolism , Transplantation, Homologous , Treatment Outcome , Young Adult
11.
Mol Ther ; 23(3): 434-44, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25399825

ABSTRACT

Soluble activin type II receptors (ActRIIA/ActRIIB), via binding to diverse TGF-ß proteins, can increase muscle and bone mass, correct anemia or protect against diet-induced obesity. While exciting, these multiple actions of soluble ActRIIA/IIB limit their therapeutic potential and highlight the need for new reagents that target specific ActRIIA/IIB ligands. Here, we modified the activin A and activin B prodomains, regions required for mature growth factor synthesis, to generate specific activin antagonists. Initially, the prodomains were fused to the Fc region of mouse IgG2A antibody and, subsequently, "fastener" residues (Lys(45), Tyr(96), His(97), and Ala(98); activin A numbering) that confer latency to other TGF-ß proteins were incorporated. For the activin A prodomain, these modifications generated a reagent that potently (IC(50) 5 nmol/l) and specifically inhibited activin A signaling in vitro, and activin A-induced muscle wasting in vivo. Interestingly, the modified activin B prodomain inhibited both activin A and B signaling in vitro (IC(50) ~2 nmol/l) and in vivo, suggesting it could serve as a general activin antagonist. Importantly, unlike soluble ActRIIA/IIB, the modified prodomains did not inhibit myostatin or GDF-11 activity. To underscore the therapeutic utility of specifically antagonising activin signaling, we demonstrate that the modified activin prodomains promote significant increases in muscle mass.


Subject(s)
Activins/metabolism , Genetic Engineering/methods , Muscle, Skeletal/metabolism , Recombinant Fusion Proteins/metabolism , Signal Transduction , Activins/antagonists & inhibitors , Activins/genetics , Animals , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Dependovirus/genetics , Gene Expression Regulation , Genetic Vectors/genetics , Growth Differentiation Factors/genetics , Growth Differentiation Factors/metabolism , HEK293 Cells , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/pathology , Myostatin/genetics , Myostatin/metabolism , Plasmids/chemistry , Plasmids/metabolism , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Transfection , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
12.
Adv Exp Med Biol ; 900: 97-131, 2016.
Article in English | MEDLINE | ID: mdl-27003398

ABSTRACT

Skeletal muscle possesses remarkable ability to change its size and force-producing capacity in response to physiological stimuli. Impairment of the cellular processes that govern these attributes also affects muscle mass and function in pathological conditions. Myostatin, a member of the TGF-ß family, has been identified as a key regulator of muscle development, and adaptation in adulthood. In muscle, myostatin binds to its type I (ALK4/5) and type II (ActRIIA/B) receptors to initiate Smad2/3 signalling and the regulation of target genes that co-ordinate the balance between protein synthesis and degradation. Interestingly, evidence is emerging that other TGF-ß proteins act in concert with myostatin to regulate the growth and remodelling of skeletal muscle. Consequently, dysregulation of TGF-ß proteins and their associated signalling components is increasingly being implicated in muscle wasting associated with chronic illness, ageing, and inactivity. The growing understanding of TGF-ß biology in muscle, and its potential to advance the development of therapeutics for muscle-related conditions is reviewed here.


Subject(s)
Adaptation, Physiological , Muscle Development , Signal Transduction/physiology , Transforming Growth Factor beta/physiology , Animals , Cachexia/etiology , Homeostasis , Humans , Marfan Syndrome/etiology , Muscular Dystrophies/etiology , Regeneration , Sarcopenia/etiology
13.
Anal Biochem ; 475: 14-21, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25554488

ABSTRACT

Embryo implantation requires a healthy embryo and a receptive uterus. In women, the inner lining of the uterus, the endometrium, remains in a hostile state and becomes receptive for embryo implantation for only a short period during each menstrual cycle. Determining endometrial receptivity is vital in in vitro fertilization (IVF) treatment because the timing of embryo transfer needs to be synchronized with endometrial receptivity. We have previously demonstrated that proprotein convertase 5/6A (PC6) is highly expressed in the receptive endometrium and that PC6 is critical for receptivity establishment in women. Furthermore, endometrial PC6 is secreted into the uterine fluid, and levels correlate with receptivity status. Detection of PC6 in uterine fluids, therefore, would provide a nonsurgical assessment of endometrial receptivity. However, to date no assays are available for human PC6. In this study, we produced three PC6 monoclonal antibodies (mAbs) and developed a sandwich enzyme-linked immunosorbent assay (ELISA) for PC6 detection in human uterine fluids. The PC6 mAbs were confirmed to be highly specific to PC6, and the ELISA detected PC6 in human uterine fluids with a significantly higher level during the receptive phase. This newly established PC6 ELISA provides an important tool in the development of noninvasive strategies to detect endometrial receptivity in women.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/chemistry , Endometrium/enzymology , Proprotein Convertase 5/metabolism , Animals , Embryo Implantation/physiology , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Mice
14.
FASEB J ; 28(4): 1711-23, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24378873

ABSTRACT

In models of cancer cachexia, inhibiting type IIB activin receptors (ActRIIBs) reverse muscle wasting and prolongs survival, even with continued tumor growth. ActRIIB mediates signaling of numerous TGF-ß proteins; of these, we demonstrate that activins are the most potent negative regulators of muscle mass. To determine whether activin signaling in the absence of tumor-derived factors induces cachexia, we used recombinant serotype 6 adeno-associated virus (rAAV6) vectors to increase circulating activin A levels in C57BL/6 mice. While mice injected with control vector gained ~10% of their starting body mass (3.8±0.4 g) over 10 wk, mice injected with increasing doses of rAAV6:activin A exhibited weight loss in a dose-dependent manner, to a maximum of -12.4% (-4.2±1.1 g). These reductions in body mass in rAAV6:activin-injected mice correlated inversely with elevated serum activin A levels (7- to 24-fold). Mechanistically, we show that activin A reduces muscle mass and function by stimulating the ActRIIB pathway, leading to deleterious consequences, including increased transcription of atrophy-related ubiquitin ligases, decreased Akt/mTOR-mediated protein synthesis, and a profibrotic response. Critically, we demonstrate that the muscle wasting and fibrosis that ensues in response to excessive activin levels is fully reversible. These findings highlight the therapeutic potential of targeting activins in cachexia.


Subject(s)
Activins/genetics , Cachexia/genetics , Gene Expression , Muscular Atrophy/genetics , Activin Receptors, Type II/genetics , Activin Receptors, Type II/metabolism , Activins/blood , Activins/metabolism , Animals , Blotting, Western , Cachexia/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Dependovirus/genetics , Genetic Vectors/genetics , Humans , MCF-7 Cells , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Myostatin/deficiency , Myostatin/genetics , Reverse Transcriptase Polymerase Chain Reaction , SKP Cullin F-Box Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , Signal Transduction/genetics
15.
Hum Mutat ; 35(3): 294-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24302632

ABSTRACT

To identify novel genetic bases of early-onset epithelial ovarian tumors, we used the trio exome sequencing strategy in a patient without familial history of cancer who presented metastatic serous ovarian adenocarcinomas at 21 years of age. We identified a single de novo mutation (c.1157A>G/p.Asn386Ser) within the INHBA gene encoding the ßA-subunit of inhibins/activins, which play a key role in ovarian development. In vitro, this mutation alters the ratio of secreted activins and inhibins. In a second patient with early-onset serous borderline papillary cystadenoma, we identified an unreported germline mutation (c.179G>T/p.Arg60Leu) of the INHA gene encoding the α-subunit, the partner of the ßA-subunit. This mutation also alters the secreted activin/inhibin ratio, by disrupting both inhibin A and inhibin B biosynthesis. In a cohort of 62 cases, we detected an additional unreported germline mutation of the INHBA gene (c.839G>A/p.Gly280Glu). Our results strongly suggest that inhibin mutations contribute to the genetic determinism of epithelial ovarian tumors.


Subject(s)
Germ-Line Mutation , Inhibin-beta Subunits/genetics , Neoplasms, Glandular and Epithelial/genetics , Ovarian Neoplasms/genetics , Activins/biosynthesis , Carcinoma, Ovarian Epithelial , Cell Differentiation , Cohort Studies , Epithelial Cells/metabolism , Exome , Female , Granulosa Cells/metabolism , Humans , Inhibins/biosynthesis , Sequence Analysis, DNA , Young Adult
16.
Bioorg Med Chem ; 21(21): 6496-500, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24055074

ABSTRACT

We have investigated the binding characteristics of a potent member of the bis-ortho-substituted five-membered nitrogen heterocycle class of ALK-5 kinase inhibitors with lysates of cultured HEK-293 cells to identify protein binding partners of potential biological significance. An affinity chromatographic resin containing an immobilized ALK-5 kinase inhibitor, 2-phenyl-4-[3-(pyridin-2-yl)-1H-pyrazol-4-yl]pyridine, was used to capture specific proteins from the cell lysate. The soluble inhibitor was then used to specifically elute the proteins which selectively bound to the pharmacophore ligand structure. Application of 2-D SDS-PAGE analysis with positive and negative controls demonstrated the inhibitor bound several different proteins via selective molecular recognition processes. The structural features of the specifically eluted proteins were identified by peptide mass fingerprinting (PMF) methods and included proteins with structural, metabolic and chaperone functions. Furthermore, these PMF results identified the therapeutic target in various cancer treatment studies, HSP-70, as a potential high-affinity binding partner. These observations warrant examination of bis-ortho-substituted five-membered nitrogen heterocycles as dual ALK-5/HSP-70 inhibitors for anti-cancer drug development.


Subject(s)
Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , HEK293 Cells , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP70 Heat-Shock Proteins/metabolism , Humans , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism
17.
J Endocrinol ; 258(1)2023 07 01.
Article in English | MEDLINE | ID: mdl-37194642

ABSTRACT

Although originally characterised as proteins involved in the control of reproductive function, activins, and to a lesser degree inhibins, are also important regulators of homeostasis in extragonadal tissues. Accordingly, disrupted inhibin/activin expression can have detrimental effects not only on fertility and fecundity but also on the regulation of muscle, fat and bone mass. Indeed, only recently, two complementary mouse models of inhibin designed to lack bioactivity/responsiveness revealed that inhibin A/B deficiency during pregnancy restricts embryo and fetal survival. Conversely, hyper-elevated levels of activin A/B, as are frequently observed in patients with advanced cancers, can not only promote gonadal tumour growth but also cancer cachexia. As such, it is not surprising that inhibin/activin genetic variations or altered circulating levels have been linked to reproductive disorders and cancer. Whilst some of the detrimental health effects associated with disrupted inhibin/activin levels can be attributed to accompanied changes in circulating follicle-stimulating hormone (FSH) levels, there is now abundant evidence that activins, in particular, have fundamental FSH-independent tissue homeostatic roles. Increased understanding of inhibin/activin activity, garnered over several decades, has enabled the development of targeted therapies with applications for both reproductive and extra-gonadal tissues. Inhibin- or activin-targeted technologies have been shown not just to enhance fertility and fecundity but also to reduce disease severity in models of cancer cachexia. Excitingly, these technologies are likely to benefit human medicine and be highly valuable to animal breeding and veterinary programmes.


Subject(s)
Activins , Neoplasms , Pregnancy , Mice , Female , Animals , Humans , Cachexia/etiology , Follicle Stimulating Hormone/metabolism , Inhibins/genetics , Inhibins/metabolism , Neoplasms/complications
18.
Endocrinology ; 164(3)2023 01 09.
Article in English | MEDLINE | ID: mdl-36718082

ABSTRACT

Inhibins are transforming growth factor-ß family heterodimers that suppress follicle-stimulating hormone (FSH) secretion by antagonizing activin class ligands. Inhibins share a common ß chain with activin ligands. Follistatin is another activin antagonist, known to bind the common ß chain of both activins and inhibins. In this study, we characterized the antagonist-antagonist complex of inhibin A and follistatin to determine if their interaction impacted activin A antagonism. We isolated the inhibin A:follistatin 288 complex, showing that it forms in a 1:1 stoichiometric ratio, different from previously reported homodimeric ligand:follistatin complexes, which bind in a 1:2 ratio. Small angle X-ray scattering coupled with modeling provided a low-resolution structure of inhibin A in complex with follistatin 288. Inhibin binds follistatin via the shared activin ß chain, leaving the α chain free and flexible. The inhibin A:follistatin 288 complex was also shown to bind heparin with lower affinity than follistatin 288 alone or in complex with activin A. Characterizing the inhibin A:follistatin 288 complex in an activin-responsive luciferase assay and by surface plasmon resonance indicated that the inhibitor complex readily dissociated upon binding type II receptor activin receptor type IIb, allowing both antagonists to inhibit activin signaling. Additionally, injection of the complex in ovariectomized female mice did not alter inhibin A suppression of FSH. Taken together, this study shows that while follistatin binds to inhibin A with a substochiometric ratio relative to the activin homodimer, the complex can dissociate readily, allowing both proteins to effectively antagonize activin signaling.


Subject(s)
Follistatin , Glycoproteins , Female , Mice , Animals , Glycoproteins/metabolism , Inhibins/metabolism , Activins/metabolism , Ligands , Follicle Stimulating Hormone/metabolism
19.
Clin Cancer Res ; 29(6): 1114-1124, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36622700

ABSTRACT

PURPOSE: Acute and chronic GVHD remain major causes of transplant-related morbidity and mortality (TRM) after allogeneic hematopoietic cell transplantation (alloHCT). We have shown CD83 chimeric antigen receptor (CAR) T cells prevent GVHD and kill myeloid leukemia cell lines. In this pilot study, we investigate CD83 expression on GVHD effector cells, correlate these discoveries with clinical outcomes, and evaluate critical therapeutic implications for transplant recipients. EXPERIMENTAL DESIGN: CD83 expression was evaluated among circulating CD4+ T cells, B-cell subsets, T follicular helper (Tfh) cells, and monocytes from patients with/without acute or chronic GVHD (n = 48 for each group), respectively. CD83 expression was correlated with survival, TRM, and relapse after alloHCT. Differential effects of GVHD therapies on CD83 expression was determined. RESULTS: CD83 overexpression on CD4+ T cells correlates with reduced survival and increased TRM. Increased CD83+ B cells and Tfh cells, but not monocytes, are associated with poor posttransplant survival. CD83 CAR T eliminate autoreactive CD83+ B cells isolated from patients with chronic GVHD, without B-cell aplasia as observed with CD19 CAR T. We demonstrate robust CD83 antigen density on human acute myeloid leukemia (AML), and confirm potent antileukemic activity of CD83 CAR T in vivo, without observed myeloablation. CONCLUSIONS: CD83 is a promising diagnostic marker of GVHD and warrants further investigation as a therapeutic target of both GVHD and AML relapse after alloHCT.


Subject(s)
Bronchiolitis Obliterans Syndrome , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Pilot Projects , Recurrence , Transplantation, Homologous
20.
Endocrinology ; 163(4)2022 04 01.
Article in English | MEDLINE | ID: mdl-35255139

ABSTRACT

Inhibins are members of the transforming growth factor-ß family, composed of a common α-subunit disulfide-linked to 1 of 2 ß-subunits (ßA in inhibin A or ßB in inhibin B). Gonadal-derived inhibin A and B act in an endocrine manner to suppress the synthesis of follicle-stimulating hormone (FSH) by pituitary gonadotrope cells. Roles for inhibins beyond the pituitary, however, have proven difficult to delineate because deletion of the inhibin α-subunit gene (Inha) results in unconstrained expression of activin A and activin B (homodimers of inhibin ß-subunits), which contribute to gonadal tumorigenesis and lethal cachectic wasting. Here, we generated mice with a single point mutation (Arg233Ala) in Inha that prevents proteolytic processing and the formation of bioactive inhibin. In vitro, this mutation blocked inhibin maturation and bioactivity, without perturbing activin production. Serum FSH levels were elevated 2- to 3-fold in InhaR233A/R233A mice due to the loss of negative feedback from inhibins, but no pathological increase in circulating activins was observed. While inactivation of inhibin A and B had no discernible effect on male reproduction, female InhaR233A/R233A mice had increased FSH-dependent follicle development and enhanced natural ovulation rates. Nevertheless, inhibin inactivation resulted in significant embryo-fetal resorptions and severe subfertility and was associated with disrupted maternal ovarian function. Intriguingly, heterozygous Inha+/R233A females had significantly enhanced fecundity, relative to wild-type littermates. These studies have revealed novel effects of inhibins in the establishment and maintenance of pregnancy and demonstrated that partial inactivation of inhibin A/B is an attractive approach for enhancing female fertility.


Subject(s)
Gonadotrophs , Inhibins , Activins/metabolism , Animals , Female , Follicle Stimulating Hormone/metabolism , Gonadotrophs/metabolism , Inhibins/genetics , Inhibins/metabolism , Male , Mice , Ovary/metabolism , Pituitary Gland/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL