Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
PLoS Pathog ; 20(5): e1011675, 2024 May.
Article in English | MEDLINE | ID: mdl-38696531

ABSTRACT

Persons living with HIV are known to be at increased risk of developing tuberculosis (TB) disease upon infection with Mycobacterium tuberculosis (Mtb). However, it has remained unclear how HIV co-infection affects subsequent Mtb transmission from these patients. Here, we customized a Bayesian phylodynamic framework to estimate the effects of HIV co-infection on the Mtb transmission dynamics from sequence data. We applied our model to four Mtb genomic datasets collected in sub-Saharan African countries with a generalized HIV epidemic. Our results confirm that HIV co-infection is a strong risk factor for developing active TB. Additionally, we demonstrate that HIV co-infection is associated with a reduced effective reproductive number for TB. Stratifying the population by CD4+ T-cell count yielded similar results, suggesting that, in this context, CD4+ T-cell count is not a better predictor of Mtb transmissibility than HIV infection status alone. Together, our genome-based analyses complement observational household contact studies, and more firmly establish the negative association between HIV co-infection and Mtb transmissibility.


Subject(s)
Coinfection , HIV Infections , Mycobacterium tuberculosis , Tuberculosis , Humans , Africa South of the Sahara/epidemiology , HIV Infections/complications , HIV Infections/transmission , HIV Infections/epidemiology , Coinfection/microbiology , Coinfection/epidemiology , Tuberculosis/epidemiology , Tuberculosis/transmission , Tuberculosis/microbiology , Male , CD4 Lymphocyte Count , Female , Bayes Theorem , Adult , Risk Factors
2.
Drug Chem Toxicol ; 47(2): 243-251, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38303124

ABSTRACT

Prolonged use of Highly Active Antiretroviral Therapy (HAART) has been linked to toxicity, particularly hepatotoxicity. There are few effective drugs for HAART patients that promote hepatic cell regeneration and prevent liver injury. Therefore, the purpose of this study was to investigate the hepato-protective activity of Methanol fruit extract of Punica granatum (MFEPG) in HAART-administered rats. Thirty rats weighing between 150-200 g were randomly divided into six groups and each group comprised of five rats. Distilled water was given to the rats in group one. Only HAART was given to the rats in group two. MFEPG at doses of 100 and 400 mg/kg was given to the rats in groups three and four. MFEPG dosages of 100 and 400 mg/kg along with HAART were given to the rats in groups five and six, respectively. All treatments were via oral gavage daily for 40 days. Under halothane anesthesia, all rats were sacrificed on day 41. Liver tissues were utilized for lipid peroxidation marker; Malondialdehyde (MDA), antioxidant enzymes; Superoxide dismutase (SOD) and Catalase (CAT) and histological evaluation, while blood samples were examined for biochemical parameters (AST, ALT, ALP, Total cholesterol, Total protein, and Albumin). The HAART-treated group exhibited a significantly higher amount of the lipid peroxidation end product; MDA, and significantly lower levels of antioxidant enzymes; SOD, and CAT. Liver enzymes and total cholesterol were significantly increased with a significant reduction in Total protein and Albumin levels in the HAART-treated group. Conversely, the liver function biomarkers were returned to normal levels in the HAART and MFEPG-treated groups. Histopathological studies revealed that when HAART-exposed rats were treated with MFEPG, both the biochemical and histological results significantly improved. Thus, the antioxidant activity of MFEPG provides protection against HAART-induced liver oxidative damage. More research is needed to determine the safety of using MFEPG in humans.


Subject(s)
Antioxidants , Pomegranate , Humans , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Rats, Wistar , Pomegranate/metabolism , Antiretroviral Therapy, Highly Active , Methanol , Fruit , Plant Extracts/therapeutic use , Liver , Superoxide Dismutase/metabolism , Lipid Peroxidation , Albumins/metabolism , Albumins/pharmacology , Cholesterol/metabolism , Cholesterol/pharmacology
3.
PLoS Genet ; 16(4): e1008728, 2020 04.
Article in English | MEDLINE | ID: mdl-32352966

ABSTRACT

Genetic studies of both the human host and Mycobacterium tuberculosis (MTB) demonstrate independent association with tuberculosis (TB) risk. However, neither explains a large portion of disease risk or severity. Based on studies in other infectious diseases and animal models of TB, we hypothesized that the genomes of the two interact to modulate risk of developing active TB or increasing the severity of disease, when present. We examined this hypothesis in our TB household contact study in Kampala, Uganda, in which there were 3 MTB lineages of which L4-Ugandan (L4.6) is the most recent. TB severity, measured using the Bandim TBscore, was modeled as a function of host SNP genotype, MTB lineage, and their interaction, within two independent cohorts of TB cases, N = 113 and 121. No association was found between lineage and severity, but association between multiple polymorphisms in IL12B and TBscore was replicated in two independent cohorts (most significant rs3212227, combined p = 0.0006), supporting previous associations of IL12B with TB susceptibility. We also observed significant interaction between a single nucleotide polymorphism (SNP) in SLC11A1 and the L4-Ugandan lineage in both cohorts (rs17235409, meta p = 0.0002). Interestingly, the presence of the L4-Uganda lineage in the presence of the ancestral human allele associated with more severe disease. These findings demonstrate that IL12B is associated with severity of TB in addition to susceptibility, and that the association between TB severity and human genetics can be due to an interaction between genes in the two species, consistent with host-pathogen coevolution in TB.


Subject(s)
Biological Coevolution , Mycobacterium tuberculosis/genetics , Polymorphism, Single Nucleotide , Tuberculosis/genetics , Adolescent , Adult , Aged , Cation Transport Proteins/genetics , Evolution, Molecular , Female , Genome, Bacterial , Host-Pathogen Interactions , Humans , Interleukin-12 Subunit p40/genetics , Male , Middle Aged , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/microbiology , Tuberculosis/pathology
4.
Am J Hum Genet ; 102(5): 731-743, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29706352

ABSTRACT

Large-scale, population-based genomic studies have provided a context for modern medical genetics. Among such studies, however, African populations have remained relatively underrepresented. The breadth of genetic diversity across the African continent argues for an exploration of local genomic context to facilitate burgeoning disease mapping studies in Africa. We sought to characterize genetic variation and to assess population substructure within a cohort of HIV-positive children from Botswana-a Southern African country that is regionally underrepresented in genomic databases. Using whole-exome sequencing data from 164 Batswana and comparisons with 150 similarly sequenced HIV-positive Ugandan children, we found that 13%-25% of variation observed among Batswana was not captured by public databases. Uncaptured variants were significantly enriched (p = 2.2 × 10-16) for coding variants with minor allele frequencies between 1% and 5% and included predicted-damaging non-synonymous variants. Among variants found in public databases, corresponding allele frequencies varied widely, with Botswana having significantly higher allele frequencies among rare (<1%) pathogenic and damaging variants. Batswana clustered with other Southern African populations, but distinctly from 1000 Genomes African populations, and had limited evidence for admixture with extra-continental ancestries. We also observed a surprising lack of genetic substructure in Botswana, despite multiple tribal ethnicities and language groups, alongside a higher degree of relatedness than purported founder populations from the 1000 Genomes project. Our observations reveal a complex, but distinct, ancestral history and genomic architecture among Batswana and suggest that disease mapping within similar Southern African populations will require a deeper repository of genetic variation and allelic dependencies than presently exists.


Subject(s)
Black People/genetics , Exome Sequencing , Genetic Variation , Botswana , Cohort Studies , Gene Pool , Genetics, Population , Genome, Human , Geography , Humans , Phylogeny , Principal Component Analysis
5.
Foodborne Pathog Dis ; 17(11): 666-671, 2020 11.
Article in English | MEDLINE | ID: mdl-32551973

ABSTRACT

Retail meats are one of the main routes for spreading antimicrobial-resistant bacteria (ARB) from livestock to humans through the food chain. In African countries, retail meats are often sold at roadside butcheries without chilling or refrigeration. Retail meats in those butcheries are suspected to be contaminated by ARB, but it was not clear. In this study, we tested for the presence of antimicrobial-resistant Escherichia coli from retail meats (n = 64) from roadside butcheries in Kampala, Uganda. The meat surfaces were swabbed and inoculated on PetriFilm SEC agar to isolate E. coli. We successfully isolated E. coli from 90.6% of these retail meat samples. We identified the phylogenetic type, antimicrobial susceptibility, and antimicrobial resistance genes prevalence between retail meat isolates (n = 89). Phylogenetic type B1 was identified from 70.8% of the retail meat isolates, suggesting that the isolates originated primarily from fecal contamination during meat processing. Tetracycline (TET)-resistant isolates with tetA and/or tetB gene(s) were the most frequently detected (28.1%), followed by ampicillin (AMP) resistance genes with blaTEM (15.7%,) and sulfamethoxazole-trimethoprim (SXT) resistance genes with sul2 (15.7%). No extended-spectrum beta-lactamase-producing isolates were detected. A conjugation assay showed that resistance to AMP, TET, and SXT could be simultaneously transferred to recipients. These findings suggest that antimicrobial-resistant E. coli can easily be transferred from farms to tables from retail meats obtained from roadside butcheries.


Subject(s)
Drug Resistance, Bacterial , Escherichia coli/isolation & purification , Red Meat/microbiology , Ampicillin , Anti-Bacterial Agents , Escherichia coli/genetics , Food Contamination , Food Microbiology , Phylogeny , Tetracycline , Trimethoprim, Sulfamethoxazole Drug Combination , Uganda
6.
BMC Infect Dis ; 15: 181, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25884439

ABSTRACT

BACKGROUND: The incidence of M. tuberculosis (MTB) and non tuberculous Mycobacterium species (NTMs) like M. avium and M. kansasii has increased due to Human Immunodeficiency Virus (HIV) epidemic. Therefore accurate, rapid and cost effective methods for the identification of these NTMs and MTB are greatly needed for appropriate TB management. Thus in this study we evaluated the performance of Lightcycler(®) Mycobacterium detection assay to detect MTB, M. avium and M. kansasii in sputum specimens. METHODS: A total of 241 baseline minimally processed sputum specimens from individual adult TB suspected patients were analyzed by Mycobacterium detection assay (Real-time-PCR) on a LightCycler 480(®) while using liquid culture as a reference standard. RESULTS: Real time PCR had a sensitivity of 100% (95% CI 96-100) and 100% (CI 19-100) for detection of MTB and M. avium respectively. Additionally the assay had a specificity of 99% (95% CI 96-99) and 95% (95% CI 91-97) for identification of MTB and M. avium respectively. The positive predictive value (PPV) for Real time PCR to identify MTB and M. avium among the specimens was 98% (95% CI 94-99) and 15% (95% CI 2-45) respectively. The kappa statistics for Real time PCR to identify MTB and M. avium was 0.9 (95% CI 0.9-1.0) and 0.3 (95% CI-0.03-0.5) respectively. The median time to detection for Real time PCR assay was 2 hours while overall median time to detection for MGIT-positive cultures was 8 days. The sample unit cost for Real time PCR was $ 12 compared to $ 20 for the reference liquid culture. CONCLUSION: The Light cycler(®) Mycobacterium detection assay rapidly and correctly identified MTB and M avium thus has the potential to be adopted in a clinical setting.


Subject(s)
HIV Infections , Mycobacterium/isolation & purification , Tuberculosis, Pulmonary/microbiology , Humans , Mycobacterium/genetics , Real-Time Polymerase Chain Reaction/standards , Sensitivity and Specificity , Uganda
7.
BMC Infect Dis ; 15: 396, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26423522

ABSTRACT

BACKGROUND: Accurate and high-throughput genotyping of Mycobacterium tuberculosis complex (MTBC) may be important for understanding the epidemiology and pathogenesis of tuberculosis (TB). In this study, we report the development of a LightCycler® real-time PCR single-nucleotide-polymorphism (LRPS) assay for the rapid determination of MTBC lineages/sublineages in minimally processed sputum samples from TB patients. METHOD: Genotyping analysis of 70 MTBC strains was performed using the Long Sequence Polymorphism-PCR (LSP-PCR) technique and the LRPS assay in parallel. For targeted sequencing, 9 MTBC isolates (three isolates per MTBC lineage) were analyzed for lineage-specific single nucleotide polymorphisms (SNPs) in the following three genes to verify LRPS results: Rv004c for MTB Uganda family, Rv2962 for MTB lineage 4, and Rv0129c for MTB lineage 3. The MTBC lineages present in 300 smear-positive sputum samples were then determined by the validated LRPS method without prior culturing. RESULTS: The LSP-PCR and LRPS assays produced consistent genotyping data for all 70 MTBC strains; however, the LSP-PCR assay was 10-fold less sensitive than the LRPS method and required higher DNA concentrations to successfully characterize the MTBC lineage of certain samples. Targeted sequencing of genes containing lineage-specific SNPs was 100 % concordant with the genotyping results and provided further validation of the LRPS assay. Of the 300 sputum samples analyzed, 58 % contained MTBC from the MTBC-Uganda family, 27 % from the MTBC lineage 4 (excluding MTBC Uganda family), 13 % from the MTBC lineage 3, and the remaining 2 % were of indeterminate lineage. CONCLUSION: The LRPS assay is a sensitive, high-throughput technique with potential application to routine genotyping of MTBC in sputum samples from TB patients.


Subject(s)
Mycobacterium tuberculosis/genetics , Polymorphism, Single Nucleotide , Base Sequence , DNA, Bacterial/analysis , Genotype , Humans , Molecular Sequence Data , Mycobacterium tuberculosis/isolation & purification , Real-Time Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA , Sputum/microbiology , Tuberculosis/microbiology , Tuberculosis/pathology , Uganda
8.
BMC Pediatr ; 15: 140, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26424324

ABSTRACT

BACKGROUND: To gain insight into the transmission of tuberculosis (TB) in peri-urban Kampala-Uganda, we performed a household contact study using children as a surrogate for recent transmission of Mycobacterium tuberculosis (MTB). Using this approach, we sought to understand M. tuberculosis complex (MTBC) lineage diversity, distribution and how these relate to TB transmission to exposed children. METHOD: MTBC isolates from children aged ≤ 15 years, collected from 2002 to 2010 in a household-contact study, were analyzed using a LightCycler RT-PCR SNP genotyping assay (LRPS). The resultant genotypic data was used to determine associations between MTBC lineage and the children's clinical and epidemiological characteristics. RESULTS AND DISCUSSION: Of the 761 children surveyed, 9% (69/761) had culture-positive TB an estimate in the range of global childhood TB; of these 71% (49/69) were infected with an MTBC strain of the "Uganda family", 17% (12/69) infected with MTBC lineage 4 strains other than MTBC Uganda family and 12% (8/69) infected with MTBC lineage 3, thereby disproportionately causing TB in the study area. Overall the data showed no correlation between the MTBC lineages studied and transmission (OR = 0.304; P-value = 0.251; CI: 95%; 0.039-2.326) using children a proxy for TB transmission. CONCLUSIONS: Our findings indicate that MTBC Uganda family strains are the main cause of TB in children in peri-urban Kampala. Furthermore, MTBC lineages did not differ in their transmissibility to children.


Subject(s)
Mycobacterium tuberculosis/genetics , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/transmission , Child, Preschool , Female , Genotype , Humans , Infant , Infant, Newborn , Male , Mycobacterium tuberculosis/classification , Risk Factors , Uganda/epidemiology , Urban Population
9.
BMC Infect Dis ; 14: 703, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25523472

ABSTRACT

BACKGROUND: The global increase in the burden of multidrug-resistant tuberculosis (MDR-TB) underscores an urgent need for data on factors involved in generation and spread of TB drug resistance. We performed molecular analyses on a representative sample of Mycobacterium tuberculosis (MTB) isolates. Basing on findings of the molecular epidemiological study in Kampala, we hypothesized that the predominant MTB strain lineage in Uganda is negatively associated with anti-TB drug resistance and we set out to test this hypothesis. METHODS: We extracted DNA from mycobacterial isolates collected from smear-positive TB patients in the national TB drug resistance survey and carried out IS6110-PCR. To identify MTB lineages/sub lineages RT-PCR SNP was performed using specific primers and hybridization probes and the 'melting curve' analysis was done to distinguish the Uganda II family from other MTB families. The primary outcome was the distribution of the Uganda II family and its associations with anti-TB drug resistance and HIV infection. RESULTS: Out of the 1537 patients enrolled, MTB isolates for 1001 patients were available for SNP analysis for identification of Uganda II family, of which 973 (97%) had conclusive RT-PCR results. Of these 422 (43.4%) were of the Uganda II family, mostly distributed in the south west zone (55.0%; OR = 4.6 for comparison with other zones; 95% CI 2.83-7.57; p < 0.001) but occurred in each of the other seven geographic zones at varying levels. Compared to the Uganda II family, other genotypes as a group were more likely to be resistant to any anti-TB drug (OR(adj) =2.9; 95% CI 1.63-5.06; p = 0.001) or MDR (OR(adj) 4.9; 95% CI, 1.15-20.60; p = 0.032), even after adjusting for geographic zone, patient category, sex, residence and HIV status. It was commonest in the 25-34 year age group 159/330 (48.2%). No association was observed between Uganda II family and HIV infection. CONCLUSION: The Uganda II family is a major cause of morbidity due to TB in all NTLP zones in Uganda. It is less likely to be resistant to anti-TB drugs than other MTB strain lineages.


Subject(s)
Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , HIV Infections/epidemiology , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/epidemiology , Adolescent , Adult , Antitubercular Agents/pharmacology , Coinfection , Female , Genotype , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Molecular Epidemiology , Mycobacterium tuberculosis/drug effects , Polymorphism, Single Nucleotide , Reverse Transcriptase Polymerase Chain Reaction , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Tuberculosis/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Uganda/epidemiology , Young Adult
10.
BMC Infect Dis ; 14: 352, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24970328

ABSTRACT

BACKGROUND: Despite sustained exposure to a person with pulmonary tuberculosis (TB), some M. tuberculosis (Mtb) exposed individuals maintain a negative tuberculin skin test (TST). Our objective was to characterize these persistently negative TST (PTST-) individuals and compare them to TST converters (TSTC) and individuals who are TST positive at study enrollment. METHODS: During a TB household contact study in Kampala, Uganda, PTST-, TSTC, and TST + individuals were identified. PTST- individuals maintained a negative TST over a 2 year observation period despite prolonged exposure to an infectious tuberculosis (TB) case. Epidemiological and clinical characteristics were compared, a risk score developed by another group to capture risk for Mtb infection was computed, and an ordinal regression was performed. RESULTS: When analyzed independently, epidemiological risk factors increased in prevalence from PTST- to TSTC to TST+. An ordinal regression model suggested age (p < 0.01), number of windows (p < 0.01) and people (p = 0.07) in the home, and sleeping in the same room (p < 0.01) were associated with PTST- and TSTC. As these factors do not exist in isolation, we examined a risk score, which reflects an accumulation of risk factors. This compound exposure score did not differ significantly between PTST-, TSTC, and TST+, except for the 5-15 age group (p = 0.009). CONCLUSIONS: Though many individual factors differed across all three groups, an exposure risk score reflecting a collection of risk factors did not differ for PTST-, TSTC and TST + young children and adults. This is the first study to rigorously characterize the epidemiologic risk profile of individuals with persistently negative TSTs despite close exposure to a person with TB. Additional studies are needed to characterize possible epidemiologic and host factors associated with this phenotype.


Subject(s)
Family Characteristics , Tuberculosis, Multidrug-Resistant/epidemiology , Adaptive Immunity , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Longitudinal Studies , Male , Prevalence , Risk Factors , Tuberculin Test , Tuberculosis, Multidrug-Resistant/immunology , Tuberculosis, Multidrug-Resistant/transmission , Uganda/epidemiology
11.
Appl Clin Genet ; 17: 33-46, 2024.
Article in English | MEDLINE | ID: mdl-38567200

ABSTRACT

Tuberculosis remains a global health concern, with substantial mortality rates worldwide. Genetic factors play a significant role in influencing susceptibility to tuberculosis. This review examines the current progress in studying polymorphisms within immune genes associated with tuberculosis susceptibility, focusing on African populations. The roles of various proteins, including Toll-like receptors, Dendritic Cell-Specific Intercellular Adhesion Molecule-3 Grabbing Non-Integrin, vitamin D nuclear receptor, soluble C-type lectins such as surfactant proteins A and D, C-type Lectin Domain Family 4 Member E, and mannose-binding lectin, phagocyte cytokines such as Interleukin-1, Interleukin-6, Interleukin-10, Interleukin-12, and Interleukin-18, and chemokines such as Interleukin-8, monocyte chemoattractant protein 1, Regulated upon activation, normal T-cell expressed and secreted are explored in the context of tuberculosis susceptibility. We also address the potential impact of genetic variants on protein functions, as well as how these findings align with the genetic polymorphisms not associated with tuberculosis. Functional studies in model systems provide insights into the intricate host-pathogen interactions and susceptibility mechanisms. Despite progress, gaps in knowledge remain, highlighting the need for further investigations. This review emphasizes the association of Single Nucleotide Polymorphisms with diverse aspects of tuberculosis pathogenesis, including disease detection and Mycobacterium tuberculosis infection.

12.
Front Vet Sci ; 11: 1328040, 2024.
Article in English | MEDLINE | ID: mdl-38605921

ABSTRACT

Introduction: African swine fever (ASF) is an important disease of pigs in sub-Saharan Africa and Uganda and is threatening the pig population and agricultural economy of other continents. ASF virus (ASFV) can be transmitted from wild suids to domestic pigs through soft ticks of the Ornithodoros species. The aim of this study was to understand the relationship between domestic pigs' O. moubata tick exposure and ASFV status. Methods: Pigs were sampled from six abattoirs in the Kampala metropolitan area of Uganda from May 2021 through June 2022. Blood, serum, and tissue samples were collected. Serum was tested for antibodies against the rtTSGP1 salivary antigens of O. moubata ticks using an indirect ELISA assay. Blood and tissue samples from pigs were tested to detect ASFV using qPCR. Probability of tick exposure was categorized based on sample-to-positive ratio cut-off points. Results: Out of 1,328 serum samples tested, there were 828 (62.3%) samples with a negligible probability; 369 (27.8%) with a medium probability; 90 (6.8%) with a high probability, and 41 (3.1%) with a very high probability of exposure to the O. moubata salivary antigen. There was a statistically significant association between the pigs' O. moubata exposure and ASFV status with a higher proportion of pigs having a very high probability of infection if they were ASFV positive by blood, tonsil, and lymph nodes. Discussion: These results suggested that tick exposure was associated with ASFV transmission in Uganda. There were ASFV qPCR positive pigs that had no O. moubata exposure as well, which highlights that pig-to-pig and indirect contact transmission still play a significant role. This work highlights the need for further work in Uganda to investigate these transmission factors related to the O. moubata tick and ASFV transmission.

13.
One Health ; 18: 100762, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38910948

ABSTRACT

Livestock associated antimicrobial resistance (AMR) can reduce productivity and cause economic losses, threatening the livelihoods of poor farming communities in low-income settings. We investigated the practices and risk factors for increased antibiotic use, and AMR in Escherichia coli including resistance to human critically important antibiotics like cefotaxime and colistin in semi-intensive and free-range poultry farms in Uganda. Samples and farm management data were collected from 402 poultry farms in two districts between October 2021 to March 2022. Samples were processed to isolate E. coli and to quantify cefotaxime (CTX) and colistin (COL) resistant coliforms. The identification of presumptive E. coli isolated on MacConkey agar without antibiotics, was confirmed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and subjected to antimicrobial susceptibility testing by disk diffusion using EUCAST guidelines. Our models indicated that antibiotic use was associated with production intensity, and type of feed used. Moreover, semi-intensive farmers had better knowledge on antibiotic use compared to farmers in the free-range system. In semi-intensive farms, 52% harbored COLR and 57% CTXR coliforms. In free-range farms, 54% had COLR and 67% CTXR coliforms. Resistance to tetracycline, ampicillin and enrofloxacin were more frequent in semi-intensive farms compared to the free-range farms. Multi-drug resistant E. coli were identified in both poultry production systems despite different management and antibiotic use practices. There was no significant relationship between antibiotic use and resistance for the six antibiotics tested.

14.
BMC Infect Dis ; 13: 484, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-24134504

ABSTRACT

BACKGROUND: Previous studies have shown that Mycobacterium tuberculosis (MTB) Uganda family, a sub-lineage of the MTB Lineage 4, is the main cause of tuberculosis (TB) in Uganda. Using a well characterized patient population, this study sought to determine whether there are clinical and patient characteristics associated with the success of the MTB Uganda family in Kampala. METHODS: A total of 1,746 MTB clinical isolates collected from 1992-2009 in a household contact study were genotyped. Genotyping was performed using Single Nucleotide Polymorphic (SNP) markers specific for the MTB Uganda family, other Lineage 4 strains, and Lineage 3, respectively. Out of 1,746 isolates, 1,213 were from patients with detailed clinical data. These data were used to seek associations between MTB lineage/sub-lineage and patient phenotypes. RESULTS: Three MTB lineages were found to dominate the MTB population in Kampala during the last two decades. Overall, MTB Uganda accounted for 63% (1,092/1,746) of all cases, followed by other Lineage 4 strains accounting for 22% (394/1,746), and Lineage 3 for 11% (187/1,746) of cases, respectively. Seventy-three (4 %) strains remained unclassified. Our longitudinal data showed that MTB Uganda family occurred at the highest frequency during the whole study period, followed by other Lineage 4 strains and Lineage 3. To explore whether the long-term success of MTB Uganda family was due to increased virulence, we used cavitary disease as a proxy, as this form of TB is the most transmissible. Multivariate analysis revealed that even though cavitary disease was associated with known risk factors such as smoking (adjusted odds ratio (aOR) 4.8, 95% confidence interval (CI) 3.33-6.84) and low income (aOR 2.1, 95% CI 1.47-3.01), no association was found between MTB lineage and cavitary TB. CONCLUSION: The MTB Uganda family has been dominating in Kampala for the last 18 years, but this long-term success is not due to increased virulence as defined by cavitary disease.


Subject(s)
Mycobacterium tuberculosis/classification , Tuberculosis/microbiology , Adult , Female , Humans , Male , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/pathogenicity , Phenotype , Polymorphism, Single Nucleotide , Prospective Studies , Tuberculosis/epidemiology , Uganda/epidemiology
15.
J Vet Med Sci ; 85(4): 450-458, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36792209

ABSTRACT

The Marabou stork (Leptoptilos crumenifer) is a typical scavenging bird and adapted to the Savannah environment, where they show a carnivorous feeding style. However, Marabou stork recently penetrated into the city areas and acclimatized to the urban environment, where they modified their feeding habits to an omnivorous type toward more carbohydrate. To reveal their adaptation to the variable feeding customs, this study compared the gut microbiomes and chemical compositions of feces of Marabou storks inhabiting two different locations in peri urban Kampala: one is a slaughter house floc that predicted their original carnivorous feeding, and the other is a landfill floc that adapted more to the omnivorous feeding. 16S rRNA gene sequencing analysis revealed more diverse gut microbiome, more enriched Lactobacilli, and less abundant Peptostreptococci in the landfill flock comparing to the slaughter house flock. Isolation work and predicted metagenome analysis confirmed more diverse Lactobacilli and more enriched functions for carbohydrate metabolism in the landfill flock. In addition, chemical composition of feces revealed higher ammonia in the former, which is consisting with higher Peptostreptococci and their practice of carnivorous feeding. These results highlighted their adaptation to the variable feeding environment, which presumably protects their health and ensure survival of species.


Subject(s)
Birds , Microbiota , Animals , Uganda , RNA, Ribosomal, 16S/genetics , Acclimatization , Feces
16.
Sci Rep ; 13(1): 5723, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029173

ABSTRACT

Hepatitis B virus (HBV) has ten genotypes (A-J) and over 40 sub-genotypes based on the divergence of ≥ 8% and 4 to < 8% in the complete genome respectively. These genotypes and sub-genotypes influence the disease prognosis, response to therapy and route of viral transmission. Besides, infection with mixed genotypes and recombinant genotypes has also been reported. This study aimed at mapping the de novo genotypes and correlate them with the immigration trends in order to inform future research on the underlying reasons for the relative distribution of HBV genotypes from a large sample size pooled from many primary studies. Data was extracted from 59 full research articles obtained from Scopus, PubMed, EMBASE, Willy library, African Journal Online (AJOL) and Google Scholar. Studies that investigated the genotypes, sub-genotypes, mixed genotypes and recombinant were included. The Z-test and regression were used for the analysis. The study protocol is registered with PROSPERO under the registration number CRD42022300220. Overall, genotype E had the highest pooled prevalence significantly higher than all the other genotypes (P < 0.001). By region, genotype A posted the highest pooled prevalence in eastern and southern Africa, E in west Africa and D in north Africa (P < 0.0001). Regarding the emerging genotypes B and C on the African continent, genotype B was significantly higher in south Africa than C (P < 0.001). In contrast, genotype C was significantly higher in east Africa than west Africa (P < 0.0001). The A1 and D/E were the most diverse sub-genotypes and genotype mixtures respectively. Finally, we observed a general progressive decrease in the prevalence of predominant genotypes but a progressive increase in the less dominant by region. Historical and recent continental and intercontinental migrations can provide a plausible explanation for the HBV genotype distribution pattern on the African continent.


Subject(s)
Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/genetics , Africa, Northern , Genotype , Emigration and Immigration , Prognosis , Hepatitis B/epidemiology , Hepatitis B/genetics
17.
Vet Med Sci ; 9(5): 2376-2385, 2023 09.
Article in English | MEDLINE | ID: mdl-37592441

ABSTRACT

BACKGROUND: Mastitis and associated antimicrobial resistance (AMR) are major challenges to the dairy industry worldwide. OBJECTIVE: This study aimed to expose the mastitis burden, causative bacteria and drivers for mastitis-causing multi-drug-resistant (MDR) Staphylococci infectivity in cows on dairy farms in Wakiso district, Uganda. METHODS: On 22 farms, practices were documented using questionnaires, and 175 cows were screened by the California mastitis test. Composite milk samples from the positive reactors were submitted to the laboratory for bacterial culture testing. Antimicrobial sensitivity testing by the Kirby Bauer disc diffusion method was done only on Staphylococci with a panel of 10 antimicrobials of clinical relevance. RESULTS: Mastitis was detected in 80.6% (n = 141) of the 175 sampled cows, of which sub-clinical mastitis (76.0%: n = 133) was predominant. The Chi-squared analysis hypothesized that cow age (p = 0.017), sub-county (p = 0.013), parity (p < 0.0001), sex of farm owner (p = 0.003), farm duration in dairy production (p = 0.048) and the use of milking salve (p = 0.006) were associated with mastitis. Coagulase-negative Staphylococci were the most prevalent (71.4%; n = 95), followed by Staphylococcus aureus (30.1%, n = 40). Staphylococci (76.3%; n = 135) were majorly resistant to penicillin and tetracycline. Only one isolate was phenotyped as a methicillin-resistant Staphylococcus specie (MRSS). The prevalences of MDR strains at cow and isolate level were 6.3% and 8.3%. The major MDR phenotype identified was penicillin-tetracycline-trimethoprim-sulphamethoxazole. The isolate detected as an MRSS exhibited the broadest MDR pattern. Cow parity was identified as a predictor of infectivity of mastitis-causing MDR Staphylococci in dairy herds. CONCLUSION: The high prevalence of mastitis and associated pathogen AMR found exposes possibilities of economic losses for the dairy sector warranting the need for farmer sensitization on the institution of proper mastitis prevention and control programs, with emphasis on milking hygiene practices and routine disease monitoring.


Subject(s)
Cattle Diseases , Mastitis , Methicillin-Resistant Staphylococcus aureus , Female , Pregnancy , Animals , Cattle , Farms , Uganda/epidemiology , Bacteria , Mastitis/veterinary , Anti-Bacterial Agents/pharmacology , Staphylococcus , Tetracycline , Penicillins
18.
Front Vet Sci ; 10: 1234228, 2023.
Article in English | MEDLINE | ID: mdl-37583468

ABSTRACT

Introduction: Uganda is a pork-producing country in East Africa. The African swine fever virus (ASFV) has had a devastating impact on the country's pig industry. The movements of pigs and pork are a major pathway of spreading ASFV. This study was done to describe the live pig supply chain within and through districts that are impacted by African swine fever (ASF) in Uganda. Methods: A pig farmer survey in districts known to have ASFV was done using a semi-structured questionnaire available in English and two local languages. In total, 99 farmers were interviewed across five districts. Farmers were conveniently and purposively selected by local government veterinary officials. An online key informant survey was also used to validate farmer responses. Results: Most farmers interviewed in all districts reported to source and sell most of their pigs from within their district the farm was in, although there was variation by district and pig type. In relation to pig type, 89.7% of farmers sourced sows, 80.0% sourced boars, and 96.4% sourced weaned pigs from the district where the farm was located. As for sales, 91.3% of farmers sold sows, 92.7% sold boars, 91.9% sold weaned pigs, and 92.2% sold market pigs in the district where the farm was located. There was also variation to whom pigs were sold and sourced by pig type. Conclusion: This information is useful when planning the scale and focus of disease control programs based on animal movement. This study revealed that pig disease control programs can be targeted to smaller regions. Furthermore, there is a need for farmers and pig traders to be educated on and adhere to veterinary regulations of animal movement and good biosecurity practices to reduce disease spread when purchasing and selling pigs from known ASFV infected areas.

19.
Front Vet Sci ; 10: 1245754, 2023.
Article in English | MEDLINE | ID: mdl-37662985

ABSTRACT

Introduction: In Uganda, pig production is an important source of livelihood for many people and contributes to food security. African swine fever (ASF) is a major constraint to pig production in Uganda, threatening the food supply and sustainable livelihoods. Prevention of ASF primarily relies on good biosecurity practices along the pig value chain. Previous studies showed that biosecurity along the pig value chain and on farms in Uganda is poor. However, the biosecurity practices of pig farmers in ASF affected areas of Uganda and their opinions on on-farm ASF morbidity and mortality were previously not comprehensively characterized. The objectives of this study were to document pig farmers' experiences with ASF in their farms and to describe the pig biosecurity practices in districts of Uganda that were highly affected by ASF. Methods: A total of 99 farmers were interviewed in five districts. Data were collected by way of triangulation through farmer interviews, field observations during the farmer interviews, and a survey of key informants. However, farmer interviews were considered the primary source of data for this study. Farmers' biosecurity practices were scored using a biosecurity scoring algorithm. Results: Forty-one out of 96 (42.7%) farmers reported having pigs with ASF in the past 12 months. The level of pig farming experience (p = 0.0083) and herd size (p < 0.0001) were significantly associated with the reported occurrence of ASF. Overall, the biosecurity scores for the respondents were considered poor with 99% (98/99) scoring <70% and just one farmer obtaining a fair score of 72.2%. District (p = 0.0481), type of husbandry system (p = 0.014), and type of pig breed raised (p = 0.004) were significantly associated with farmer's biosecurity score. Conclusion: Continued farmer education on ASF and the importance of good biosecurity practices is necessary. More in-depth scientific inquiry into the factors influencing the biosecurity practices among pig farmers in Uganda is necessary.

20.
Pathogens ; 12(7)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37513759

ABSTRACT

Blood samples were collected from pigs at six abattoirs in the Kampala, Uganda metropolitan area from May 2021 through June 2022, and tested for African swine fever virus. Thirty-one samples with cycle threshold values < 26 from pigs with different geographic origins, clinical and pathologic signs, and Ornithodoros moubata exposure underwent whole genome sequencing. The p72 gene was used to genotype the isolates, and all were found to be genotype IX; whole genome sequences to previous genotype IX isolates confirmed their similarity. Six of the isolates had enough coverage to evaluate single nucleotide polymorphisms (SNPs). Five of the isolates differed from historic regional isolates, but had similar SNPs to one another, and the sixth isolate also differed from historic regional isolates, but also differed from the other five isolates, even though they are all genotype IX. Whole genome sequencing data provide additional detail on viral evolution that can be useful for molecular epidemiology, and understanding the impact of changes in genes to disease phenotypes, and may be needed for vaccine targeting should a commercial vaccine become available. More sequencing of African swine fever virus isolates is needed in Uganda to understand how and when the virus is changing.

SELECTION OF CITATIONS
SEARCH DETAIL