ABSTRACT
Purpose: Tofacitinib is a pan-Janus kinase (JAK) inhibitor that suppresses cytokine signaling and in turn, the cells that participate in inflammatory immunopathogenic processes. We examined the capacity of tofacitinib to inhibit the induction of experimental autoimmune uveitis (EAU) and related immune responses. Methods: EAU was induced in B10.A mice with immunization with bovine interphotoreceptor retinoid-binding protein (IRBP), emulsified in complete Freund's adjuvant (CFA), and a simultaneous injection of pertussis toxin. Tofacitinib, 25 mg/kg, was administered daily, and the vehicle was used for control. EAU development was assessed by histological analysis of the mouse eyes, and related immune responses were assessed by (i) the levels of interferon (IFN)-γ and interleukin (IL)-17, secreted by spleen cells cultured with IRBP; (ii) flow cytometric analysis of intracellular expression by spleen, or eye-infiltrating CD4 or CD8 cells of IFN-γ, IL-17, and their transcription factors, T-bet and RORγt. In addition, the inflammation-related cell markers CD44 and CD62L and Ki67, a proliferation marker, were tested. The proportions of T-regulatory cells expressing FoxP3 were determined by flow cytometric intracellular staining, while levels of antibody to IRBP were measured with enzyme-linked immunosorbent assay (ELISA). Results: Treatment with tofacitinib significantly suppressed the development of EAU and reduced the levels of secreted IFN-γ, but not of IL-17. Further, treatment with tofacitinib reduced in the spleen and eye-infiltrating cells the intracellular expression of IFN-γ and its transcription factor T-bet. In contrast, treatment with tofacitinib had essentially no effect on the intracellular expression of IL-17 and its transcription factor, RORγt. The selective effect of tofacitinib treatment was particularly evident in the CD8 population. Treatment with tofacitinib also increased the population of CD44, but reduced the populations of cells producing CD62L and Ki67. Treatment with tofacitinib had no effect on the proportion of FoxP3 producing regulatory cells and on the antibody production to IRBP. Conclusions: Treatment with tofacitinib inhibited the development of EAU, reduced the production of IFN-γ, but had essentially no effect on the production of IL-17.
Subject(s)
Eye/metabolism , Piperidines/pharmacology , Pyrimidines/pharmacology , Th1 Cells/drug effects , Th17 Cells/drug effects , Uveitis/drug therapy , Uveitis/immunology , Animals , CD4 Antigens/blood , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8 Antigens/blood , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Eye/drug effects , Eye/pathology , Eye Proteins/pharmacology , Forkhead Transcription Factors/blood , Hyaluronan Receptors/blood , Immunosuppression Therapy , Interferon-gamma/blood , Interleukin-17/blood , Ki-67 Antigen/blood , L-Selectin/blood , Mice , Piperidines/administration & dosage , Pyrimidines/administration & dosage , Retinol-Binding Proteins/pharmacology , Th1 Cells/immunology , Th17 Cells/immunologyABSTRACT
Experimental autoimmune uveitis (EAU), an animal model for severe intraocular inflammatory eye diseases, is mediated by both Th1 and Th17 cells. Here, we examined the capacity of TMP778, a selective inhibitor of RORγt, to inhibit the development of EAU, as well as the related immune responses. EAU was induced in B10.A mice by immunization with interphotoreceptor retinoid-binding protein (IRBP). Treatment with TMP778 significantly inhibited the development of EAU, determined by histological examination. In addition, the treatment suppressed the cellular immune response to IRBP, determined by reduced production of IL-17 and IFN-γ, as well as lower percentages of lymphocytes expressing these cytokines, as compared to vehicle-treated controls. The inhibition of IFN-γ expression by TMP778 is unexpected in view of this compound being a selective inhibitor of RORγt. The observation was further confirmed by the finding of reduced expression of the T-bet (Tbx21) gene, the transcription factor for IFN-γ, by cells of TMP778-treated mice. Thus, these data demonstrate the capacity of TMP778 to inhibit pathogenic autoimmunity in the eye and shed new light on its mode of action in vivo.
Subject(s)
Autoimmune Diseases/drug therapy , Heterocyclic Compounds, 4 or More Rings/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Th1 Cells/drug effects , Th17 Cells/drug effects , Uveitis/drug therapy , Animals , Autoimmune Diseases/metabolism , Cytokines/metabolism , Disease Models, Animal , Eye Proteins/metabolism , Female , Interferon-gamma/metabolism , Interleukin-17/metabolism , Mice , Retinol-Binding Proteins/metabolism , T-Box Domain Proteins/metabolism , Th1 Cells/metabolism , Th17 Cells/metabolism , Uveitis/metabolismABSTRACT
Th cells sensitized against autoantigens acquire pathogenicity following two sequential events, namely activation by their target Ag and a process named "licensing." In this study, we analyzed these processes in a transgenic mouse system in which TCR-transgenic Th cells specific to hen egg lysozyme (HEL) are adoptively transferred to recipients and induce inflammation in eyes expressing HEL. Our data show that the notion that the lung is the organ where "licensing" for pathogenicity takes place is based on biased data collected with cells injected i.v., a route in which most transferred cells enter via the lung. Thus, we found that when donor cells were activated in vitro and injected intraperitoneally, or were activated in vivo, they migrated simultaneously to the lung, spleen, and other tested organs. In all, tested organs donor cells undergo "licensing" for pathogenicity, consisting of vigorous increase in number and changes in expression levels of inflammation-related genes, monitored by both flow cytometry and microarray analysis. After reaching peak numbers, around day 3, the "licensed" donor cells migrate to the circulation and initiate inflammation in the HEL-expressing recipient eyes. Importantly, the kinetics of increase in number and of changes in gene expression by the donor cells were similar in lung, spleen, and other tested organs of the recipient mice. Furthermore, the total numbers of donor cells in the spleen at their peaks were 10- to 100-fold larger in the spleen than in the lung, contradicting the notion that the lung is the organ where "licensing" takes place.
Subject(s)
Autoimmune Diseases/immunology , Autoimmunity/immunology , Lymphocyte Activation/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adoptive Transfer , Animals , Autoantigens/immunology , Disease Models, Animal , Flow Cytometry , Lung/immunology , Mice , Mice, Transgenic , Muramidase/immunology , Spleen/immunologyABSTRACT
In this study we compared polarized mouse T-helper (Th) lymphocytes of four populations, sensitized against an ocular antigen, for their patterns of migration and induction of inflammatory processes in recipient mouse eyes expressing the target antigen. Th1, Th2, Th9 and Th17 cells transgenically expressing T-cell receptor (TCR) specific against hen egg lysozyme (HEL) were adoptively transferred to recipient mice expressing HEL in their eyes. Recipient eyes collected 4 or 7 days post injection were analyzed for histopathological changes. Th1 and Th17 cells induced moderate to severe intraocular inflammation in the recipient mouse eyes, but essentially did not migrate into the conjunctiva. In contrast, Th2 and Th9 cells invaded minimally the intraocular space of recipient eyes, but accumulated in the limbus and migrated into the conjunctiva of the recipient mice and initiated allergy-like inflammatory responses, as indicated by remarkable eosinophil involvement. These data thus shed new light on the differences between the migration patterns and ocular pathogenic processes mediated by Th1/Th17 and by Th2/Th9 populations.
Subject(s)
Cell Movement , Conjunctiva/pathology , Eosinophilia/pathology , Limbus Corneae/parasitology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Disease Models, Animal , Lens, Crystalline/metabolism , Mice , Muramidase , Th1 Cells/immunology , Th17 Cells/immunology , Th2 Cells/immunologyABSTRACT
We previously demonstrated increased villus height following genetic deletion, or knockout, of retinoblastoma protein (Rb) in the intestinal epithelium (Rb-IKO). Here we determined the functional consequences of augmented mucosal growth on intestinal fat absorption and following a 50% small bowel resection (SBR). Mice with constitutively disrupted Rb expression in the intestinal epithelium (Rb-IKO) along with their floxed (wild-type, WT) littermates were placed on a high-fat diet (HFD, 42% kcal fat) for 54 wk. Mice were weighed weekly, and fat absorption, indirect calorimetry, and MRI body composition were measured. Rb-IKO mice were also subjected to a 50% SBR, followed by HFD feeding for 33 wk. In separate experiments, we examined intestinal fat absorption in mice with conditional (tamoxifen-inducible) intestinal Rb (inducible Rb-IKO) deletion. Microarray revealed that the transcriptional expression of lipid absorption/transport genes was significantly reduced in constitutive Rb-IKO mice. These mice demonstrated greater mucosal surface area yet manifested paradoxically impaired intestinal long-chain triglyceride absorption and decreased cholesterol absorption. Despite attenuated lipid absorption, there were no differences in metabolic rate, body composition, and weight gain in Rb-IKO and WT mice at baseline and following SBR. We also confirmed fat malabsorption in inducible Rb-IKO mice. We concluded that, despite an expanded mucosal surface area, Rb-IKO mice demonstrate impaired lipid absorption without compensatory alterations in energy homeostasis or body composition. These findings underscore the importance of delineating structural/functional relationships in the gut and suggest a previously unknown role for Rb in the regulation of intestinal lipid absorption.
Subject(s)
Intestinal Absorption , Intestinal Mucosa/metabolism , Lipid Metabolism/genetics , Retinoblastoma Protein/genetics , Animals , Diet, High-Fat , Intestine, Small/surgery , Mice , Mice, Knockout , Triglycerides/metabolismABSTRACT
Regulatory T-cells (Tregs) are responsible for homeostasis of the immune system, as well as for inhibition of pathogenic autoimmune processes. Induced-(i)-Tregs, can be generated in vitro by activation of CD4 cells in the presence of TGF-ß. A commonly used activation mechanism is by antibodies against CD3 and CD28. The physiological-like activation of T-cells, however, is with the specific target antigen presented by antigen-presenting cells (APC). The two modes of activation have been considered to yield the same populations of iTregs. Here, we compared between iTreg populations generated by either one of the two methods and found differences between their capacities to inhibit T-lymphocyte proliferative response, their expression of cell surface antigens and particularly, in their transcript expression profiles of certain chemokines and chemokine receptors. Our data thus indicate that iTregs generated by activation with anti-CD3/CD28 antibodies cannot be considered identical to iTregs generated by antigen/APC.
Subject(s)
In Vitro Techniques/methods , Lymphocyte Activation/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antigen-Presenting Cells/immunology , CD28 Antigens/immunology , CD3 Complex/immunology , Cytokines/biosynthesis , Flow Cytometry , Mice , Mice, Transgenic , Polymerase Chain ReactionABSTRACT
Increased apoptosis in crypt enterocytes is a key feature of intestinal adaptation following massive small bowel resection (SBR). Expression of the proapoptotic factor Bax has been shown to be required for resection-induced apoptosis. It has also been demonstrated that p38-α MAPK (p38) is necessary for Bax activation and apoptosis in vitro. The present studies were designed to test the hypothesis that p38 is a key regulator of Bax activation during adaptation after SBR in vivo. Enterocyte expression of p38 was deleted by tamoxifen administration to activate villin-Cre in adult mice with a floxed Mapk14 (p38-α) gene. Proximal 50% SBR or sham operations were performed on wild-type (WT) and p38 intestinal knockout (p38-IKO) mice under isoflurane anesthesia. Mice were killed 3 or 7 days after operation, and adaptation was analyzed by measuring intestinal morphology, proliferation, and apoptosis. Bax activity was quantified by immunoprecipitation, followed by Western blotting. After SBR, p38-IKO mice had deeper crypts, longer villi, and accelerated proliferation compared with WT controls. Rates of crypt apoptosis were significantly lower in p38-IKO mice, both at baseline and after SBR. Levels of activated Bax were twofold higher in WT mice after SBR relative to sham. In contrast, activated Bax levels were reduced by 67% in mice after p38 MAPK deletion. Deleted p38 expression within the intestinal epithelium leads to enhanced adaptation and reduced levels of enterocyte apoptosis after massive intestinal resection. p38-regulated Bax activation appears to be an important mechanism underlying resection-induced apoptosis.
Subject(s)
Apoptosis/physiology , Enterocytes/cytology , Enterocytes/physiology , Intestines/physiopathology , Short Bowel Syndrome/physiopathology , bcl-2-Associated X Protein/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Cells, Cultured , Intestines/pathology , Intestines/surgery , Mice , Mice, Knockout , Short Bowel Syndrome/pathologyABSTRACT
Non-infectious uveitis, a common cause of blindness in man, is often mediated by autoimmunity, a process in which cytokines play major roles. The biosynthesis and secretion of pro-inflammatory cytokines are regulated in part by tristetraprolin (TTP), an endogenous anti-inflammatory protein that acts by binding directly to specific sequence motifs in the 3'-untranslated regions of target mRNAs, promoting their turnover, and inhibiting synthesis of their encoded proteins. We recently developed a TTP-overexpressing mouse (TTPΔARE) by deleting an AU-rich element (ARE) instability motif from the TTP mRNA, resulting in increased accumulation of TTP mRNA and protein throughout the animal. Here, we show that homozygous TTPΔARE mice are resistant to the induction of experimental autoimmune uveitis (EAU) induced by interphotoreceptor retinoid-binding protein (IRBP), an established model for human autoimmune (noninfectious) uveitis. Lymphocytes from TTPΔARE mice produced lower levels of the pro-inflammatory cytokines IFN-γ, IL-17, IL-6, and TNFα than wild type (WT) mice. TTPΔARE mice also produced lower titers of antibodies against the uveitogenic protein. In contrast, TTPΔARE mice produced higher levels of the anti-inflammatory cytokine IL-10, and had higher frequencies of regulatory T-cells, which, moreover, displayed a moderately higher per-cell regulatory ability. Heterozygous mice developed EAU and associated immunological responses at levels intermediate between homozygous TTPΔARE mice and WT controls. TTPΔARE mice were able, however, to develop EAU following adoptive transfer of activated WT T-cells specific to IRBP peptide 651-670, and naïve T-cells from TTPΔARE mice could be activated by antibodies to CD3/CD28. Importantly, TTPΔARE antigen presenting cells were significantly less efficient compared to WT in priming naïve T cells, suggesting that this feature plays a major role in the dampened immune responses of the TTPΔARE mice. Our observations demonstrate that elevated systemic levels of TTP can inhibit the pathogenic processes involved in EAU, and suggest the possible use of TTP-based treatments in humans with uveitis and other autoimmune conditions.
Subject(s)
Autoimmune Diseases/metabolism , Nervous System Autoimmune Disease, Experimental/metabolism , Tristetraprolin/metabolism , Uveitis/metabolism , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Female , Gene Knock-In Techniques , Male , Mice , Mice, Inbred C57BL , Nervous System Autoimmune Disease, Experimental/immunology , Nervous System Autoimmune Disease, Experimental/pathology , Tristetraprolin/immunology , Uveitis/immunology , Uveitis/pathologyABSTRACT
PURPOSE: Digoxin, a major medication for heart disease, was recently reported to have immunosuppressive capacity. Here, we determined the immunosuppressive capacity of digoxin on the development of experimental autoimmune uveitis (EAU) and on related immune responses. METHODS: The B10.A mice were immunized with interphotoreceptor retinoid-binding protein (IRBP) and were treated daily with digoxin or vehicle control. On postimmunization day 14, the mouse eyes were examined histologically, while spleen cells were tested for cytokine production in response to IRBP and purified protein derivative. The immunosuppressive activity of digoxin was also tested in vitro, by its capacity to inhibit development of Th1 or Th17 cells. To investigate the degenerative effect of digoxin on the retina, naïve (FVB/N × B10.BR)F1 mice were similarly treated with digoxin and tested histologically and by ERG. RESULTS: Treatment with digoxin inhibited the development of EAU, as well as the cellular response to IRBP. Unexpectedly, treatment with digoxin suppressed the production of interferon-γ to a larger extent than the production of interleukin 17. Importantly, digoxin treatment induced severe retinal degeneration, determined by histologic analysis with thinning across all layers of the retina. Digoxin treatment also induced dose-dependent vision loss monitored by ERG on naïve mice without induction of EAU. CONCLUSIONS: Treatment of mice with digoxin inhibited the development of EAU and cellular immune response to IRBP. However, the treatment induced severe damage to the retina. Thus, the use of digoxin in humans should be avoided due to its toxicity to the retina.
Subject(s)
Diabetes Mellitus, Type 1 , Digoxin/pharmacology , Immunity, Cellular/drug effects , Retinal Degeneration/prevention & control , Uveitis/drug therapy , Animals , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Female , Mice , Retinal Degeneration/etiology , Retinal Degeneration/immunology , Severity of Illness Index , Uveitis/complications , Uveitis/immunologyABSTRACT
PURPOSE: The inflammatory process plays a major role in the pathogenesis of AMD, and recent data indicate the involvement of inflammasomes. Inflammasomes are intracellular structures that trigger inflammation by producing mature interleukin-(IL)-1ß and IL-18. This study examined the capacity of 7-ketocholesterol (7KCh), an oxysterol that accumulates in the retinal pigmented epithelium (RPE) and choroid, to initiate inflammasome formation in RPE and bone marrow-derived cells. METHODS: Tested cells included fetal human RPE (fhRPE), human ARPE-19 cells, primary human brain microglia cells, and human THP-1 monocyte cells. 7-Ketocholesterol and other compounds were added to the cell cultures, and their stimulatory effects were determined by quantitative PCR and release of cytokines, measured by ELISA and Western blotting. RESULTS: 7-Ketocholesterol efficiently induced inflammasome formation by all primed cell populations, but secreted cytokine levels were higher in cultures of bone marrow-derived cells (microglia and THP-1 cells) than in RPE cultures. Interestingly, inflammasomes formed in cells of the two populations differed strikingly in their preferential production of the two cytokines. Thus, whereas bone marrow-derived cells produced levels of IL-1ß that were higher than those of IL-18, the opposite was found with RPE cells, which secreted higher levels of IL-18. Importantly, Western blot analysis showed that IL-18, but not IL-1ß, was expressed constitutively by RPE cells. CONCLUSIONS: 7-Ketocholesterol efficiently stimulates inflammasome formation and is conceivably involved in the pathogenesis of AMD. In contrast to bone marrow-derived cells, RPE cells produced higher levels of IL-18 than IL-1ß. Further, IL-18, a multifunctional cytokine, was expressed constitutively by RPE cells. These observations provide new information about stimuli and cells and their products assumed to be involved in the pathogenesis of AMD.
Subject(s)
Bone Marrow Cells/drug effects , Bone Marrow Cells/physiology , Inflammasomes/drug effects , Inflammasomes/physiology , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Ketocholesterols/pharmacology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/physiology , Blotting, Western , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , HumansABSTRACT
BACKGROUND: Mutations in LRRK2 are related to certain forms of Parkinson's disease and, possibly, to the pathogenesis of Crohn's disease. In both these diseases inflammatory processes participate in the pathogenic process. LRRK2 is expressed in lymphoid cells and, interestingly, Lrrk2 (-/-) mice were reported to develop more severe experimental colitis than their wild type (WT) controls. Here, we examined the possible involvement of LRRK2 in the pathogenesis of experimental autoimmune uveitis (EAU), an animal model for human uveitis, by testing Lrrk2 (-/-) mice for their capacity to develop this experimental eye disease and related immune responses. METHODS: Lrrk2 (-/-) mice and their WT controls (C57Bl/6) were immunized with interphotoreceptor retinoid-binding protein (IRBP) and compared for their development of EAU, delayed type hypersensitivity (DTH) by skin tests, production of cytokines in culture, and expression of interferon (IFN)-γ, interleukin (IL)-17 and FoxP3 by spleen cells, using flow cytometry. Peritoneal macrophages were examined for their production of cytokines/chemokines in culture following stimulation with LPS or the oligodeoxynucleotide CpG. The Lrrk2 (-/-) and WT mice were also compared for their response to bovine serum albumin (BSA). RESULTS: The Lrrk2 (-/-) mice developed lower levels of EAU, DTH responses and cytokine production by lymphocytes than did their WT controls. Intracellular expression of IFN-γ and IL-17, by spleen cells, and secretion of cytokines/chemokines by activated peritoneal macrophages of Lrrk2 (-/-) mice trended toward diminished levels, although variabilities were noted. The expression levels of FoxP3 by Lrrk2 (-/-) spleen cells, however, were similar to those seen in WT controls. Consistent with their low response to IRBP, Lrrk2 (-/-) mice responded to BSA less vigorously than their WT controls. CONCLUSIONS: Lrrk2 deficiency in mice diminished the development of EAU and the related adaptive immune responses to IRBP as compared to the WT controls.