Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Publication year range
1.
Chemistry ; 22(34): 11962-6, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27339465

ABSTRACT

Square-planar polypyridyl platinum(II) complexes possess a rich range of structural and spectroscopic properties that are ideal for designing artificial photosynthetic centers. Taking advantage of the directionality in the charge-transfer excitation from the metal to the polypyridyl ligand, we describe here diplatinum(II)-ferrocene dyads, open-butterfly-like dyad 1 and closed-butterfly-like dyad 2, which were designed to understand the conformation and orientation effects to prolong the lifetime of charge-separated state. In contrast to the open-butterfly-like dyad 1, the closed-butterfly-like dyad 2 shows three-times long lifetime of charge separated state upon photoexcitation, demonstrating that the orientation in the rigid structure of dyad 2 is a very important issue to achieve long-lived charge separated state.

2.
Chemistry ; 19(20): 6443-50, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23504986

ABSTRACT

Thanks to the superior redox potential of platinum(II) complex compared with that of Ru(bpy)3(2+) in the excited state, an efficient and selective visible-light-induced CDC reaction has been developed by using a catalytic amount (0.25 %) of 1. With the aid of FeSO4 (2 equiv), the corresponding amide could not be detected under visible-light irradiation (λ=450 nm), but the desired cross-coupling product was exclusively obtained under ambient air conditions. A spectroscopic study and product analysis revealed that the CDC reaction is initiated by photoinduced electron-transfer from N-phenyltetrahydroisoquinoline to the complex. An EPR (electron paramagnetic resonance) experiment provides direct evidence on the generation of superoxide radical anion (O2(-·)) rather than singlet oxygen ((1)O2) under irradiation of the reaction system, in contrast to that reported in the literature. Combined, the photoinduced electron-transfer and subsequent formation of superoxide radical anion (O2(-·)) results in a clean and facile transformation.

3.
Chemphyschem ; 14(1): 198-203, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23203973

ABSTRACT

2-Ureido-4(1H)-pyrimidinone-bridged ferrocene-fullerene assembly I is designed and synthesized for elaborating the photoinduced electron-transfer processes in self-complementary quadruply hydrogen-bonded modules. Unexpectedly, steady-state and time-resolved spectroscopy reveal an inefficient electron-transfer process from the ferrocene to the singlet or triplet excited state of the fullerene, although the electron-transfer reactions are thermodynamically feasible. Instead, an effective intra-assembly triplet-triplet energy-transfer process is found to be operative in assembly I with a rate constant of 9.2×10(5) s(-1) and an efficiency of 73% in CH(2)Cl(2) at room temperature.

4.
Sci Total Environ ; 901: 165980, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37543331

ABSTRACT

The design and production of materials with excellent mechanical properties and biodegradability face significant challenges. Poly (butylene terephthalate-co-caprolactone) copolyesters (PBTCL) is obtained by modifying the engineering plastic polybutylene terephthalate (PBT) with a simple one-pot process using readily biodegradable ε-caprolactone (ε-CL). The material has mechanical properties comparable to those of commercial biodegradable copolyester PBAT. Besides, this copolyester exhibited remarkable degradability in natural environments such as soil and ocean, for example, PBTCL1.91 lost >40 % of its weight after 6 months of immersion in the Bohai Sea. The effect and diversity of specific microorganisms acting on degradation in the ocean were analyzed by 16 s rDNA gene sequencing. Theoretical calculations such as Fukui function and DFT, and experimental studies on water-soluble intermediates and residual matrixes produced after degradation, confirmed that the insertion CL units not only act as active sites themselves susceptible to hydrolysis reactions, but also promote the reactivity of ester bonds between aromatic segments. This work provides insight for the development of novel materials with high performance and environmental degradability.

5.
J Hazard Mater ; 446: 130670, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36580787

ABSTRACT

The degradability improvement of poly(ethylene terephthalate) (PET), one of the most widely used but non-degradable disposable packaging material, is of great significance. However, the balance between degradability and mechanical properties remains a huge challenge. Herein, simple hydroxy acids, lactic acid (LA) and glycolic acid (GA) as easy hydrolysis sites were introduced into non-degradable PET via melt polycondensation. A series of high molecular weight poly(ethylene terephthalate-co-L­lactide) (PETL) and poly(ethylene terephthalate-co-glycolate) (PETG) copolyesters were synthesized with an excellent tensile strength greater than 50 MPa, much higher than that of most commercially available degradable polymers. The introduction of hydroxy acid endows PET with significantly improved composting and seawater degradation performance. Furtherly, the degradation rate of PETG with hydrophilic GA unit was faster than that of PETL, and the mineralization rate of PETG80 reaches 22.0%. The density of functional theory (DFT) calculation revealed that adding hydroxy acid to the PET molecular chain reduced the energy barrier of the hydrolysis reaction. The molecular polarity index (MPI) analysis furtherly confirmed that the higher affinity between the GA unit and water may be the primary reason for the faster degradation of PETG.

6.
J Hazard Mater ; 454: 131572, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37148790

ABSTRACT

Biodegradable plastics have emerged as a potential solution to the mounting plastic pollution crisis. However, current methods for evaluating the degradation of these plastics are limited in detecting structural changes rapidly and accurately, particularly for PBAT, which contains worrying benzene rings. Inspired by the fact that the aggregation of conjugated groups can endow polymers with intrinsic fluorescence, this work found that PBAT emits a bright blue-green fluoresces under UV irradiation. More importantly, we pioneered a degradation evaluation approach to track the degradation process of PBAT via fluorescence. A blue shift of fluorescence wavelength as the thickness and molecular weight of PBAT film decreased during degradation in an alkali solution was observed. Additionally, the fluorescence intensity of the degradation solution increased gradually as the degradation progressed, and was found to be exponentially correlated with the concentration of benzene ring-containing degradation products following filtration with the correlation coefficient is up to 0.999. This study proposes a promising new strategy for monitoring the degradation process with visualization and high sensitivity.

7.
Langmuir ; 27(14): 8665-71, 2011 Jul 19.
Article in English | MEDLINE | ID: mdl-21644575

ABSTRACT

An electroactive tetrathiafulvalene (TTF)-functionalized amphiphile 1 was designed and synthesized to investigate its self-assembling behavior in water. Dynamic light scattering (DLS), (1)H NMR, fluorescence spectrum, and cryogenic transmission electron microscopy (cryo-TEM) studies revealed that amphiphile 1 can form micelle-like aggregates via direct dissolution into water, and the micellar architectures could be disrupted either by addition of chemical oxidant Fe(ClO(4))(3) or by complexation with electron-deficient cyclobis(paraquat-p-phenylene) tetracation cyclophane (CBPQT(4+)) to release encapsulated hydrophobic dye Nile Red from the interior of micelles.

8.
Adv Sci (Weinh) ; 8(1): 2001121, 2020 Jan.
Article in English | MEDLINE | ID: mdl-33437568

ABSTRACT

Polymers shape human life but they also have been identified as pollutants in the oceans due to their long lifetime and low degradability. Recently, various researchers have studied the impact of (micro)plastics on marine life, biodiversity, and potential toxicity. Even if the consequences are still heavily discussed, prevention of unnecessary waste is desired. Especially, newly designed polymers that degrade in seawater are discussed as potential alternatives to commodity polymers in certain applications. Biodegradable polymers that degrade in vivo (used for biomedical applications) or during composting often exhibit too slow degradation rates in seawater. To date, no comprehensive summary for the degradation performance of polymers in seawater has been reported, nor are the studies for seawater-degradation following uniform standards. This review summarizes concepts, mechanisms, and other factors affecting the degradation process in seawater of several biodegradable polymers or polymer blends. As most of such materials cannot degrade or degrade too slowly, strategies and innovative routes for the preparation of seawater-degradable polymers with rapid degradation in natural environments are reviewed. It is believed that this selection will help to further understand and drive the development of seawater-degradable polymers.

9.
Chem Commun (Camb) ; 48(88): 10886-8, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23032803

ABSTRACT

An amphiphilic cationic platinum(II) terpyridyl complex 1 with a redox ferrocene unit has been demonstrated to form well-defined vesicular architectures that could be disrupted and regenerated reversibly by multi-stimuli in water. The hydrophobic and hydrophilic alternation of 1 was achieved via modulating its intramolecular ILCT state to MLCT state.


Subject(s)
Ferrous Compounds/chemistry , Organoplatinum Compounds/chemistry , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Metallocenes , Oxidation-Reduction , Spectrometry, Fluorescence , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL