Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Circulation ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291390

ABSTRACT

BACKGROUND: Excitation-contraction (E-C) coupling processes become disrupted in heart failure (HF), resulting in abnormal Ca2+ homeostasis, maladaptive structural and transcriptional remodeling, and cardiac dysfunction. Junctophilin-2 (JP2) is an essential component of the E-C coupling apparatus but becomes site-specifically cleaved by calpain, leading to disruption of E-C coupling, plasmalemmal transverse tubule degeneration, abnormal Ca2+ homeostasis, and HF. However, it is not clear whether preventing site-specific calpain cleavage of JP2 is sufficient to protect the heart against stress-induced pathological cardiac remodeling in vivo. METHODS: Calpain-resistant JP2 knock-in mice (JP2CR) were generated by deleting the primary JP2 calpain cleavage site. Stress-dependent JP2 cleavage was assessed through in vitro cleavage assays and in isolated cardiomyocytes treated with 1 µmol/L isoproterenol by immunofluorescence. Cardiac outcomes were assessed in wild-type and JP2CR mice 5 weeks after transverse aortic constriction compared with sham surgery using echocardiography, histology, and RNA-sequencing methods. E-C coupling efficiency was measured by in situ confocal microscopy. E-C coupling proteins were evaluated by calpain assays and Western blotting. The effectiveness of adeno-associated virus gene therapy with JP2CR, JP2, or green fluorescent protein to slow HF progression was evaluated in mice with established cardiac dysfunction. RESULTS: JP2 proteolysis by calpain and in response to transverse aortic constriction and isoproterenol was blocked in JP2CR cardiomyocytes. JP2CR hearts are more resistant to pressure-overload stress, having significantly improved Ca2+ homeostasis and transverse tubule organization with significantly attenuated cardiac dysfunction, hypertrophy, lung edema, fibrosis, and gene expression changes relative to wild-type mice. JP2CR preserves the integrity of calpain-sensitive E-C coupling-related proteins, including ryanodine receptor 2, CaV1.2, and sarcoplasmic reticulum calcium ATPase 2a, by attenuating transverse aortic constriction-induced increases in calpain activity. Furthermore, JP2CR gene therapy after the onset of cardiac dysfunction was found to be effective at slowing the progression of HF and superior to wild-type JP2. CONCLUSIONS: The data presented here demonstrate that preserving JP2-dependent E-C coupling by prohibiting the site-specific calpain cleavage of JP2 offers multifaceted beneficial effects, conferring cardiac protection against stress-induced proteolysis, hypertrophy, and HF. Our data also indicate that specifically targeting the primary calpain cleavage site of JP2 by gene therapy approaches holds great therapeutic potential as a novel precision medicine for treating HF.

2.
Circulation ; 149(17): 1375-1390, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38214189

ABSTRACT

BACKGROUND: Cardiac transverse tubules (T-tubules) are anchored to sarcomeric Z-discs by costameres to establish a regular spaced pattern. One of the major components of costameres is the dystrophin-glycoprotein complex (DGC). Nevertheless, how the assembly of the DGC coordinates with the formation and maintenance of T-tubules under physiological and pathological conditions remains unclear. METHODS: Given the known role of Ptpn23 (protein tyrosine phosphatase, nonreceptor type 23) in regulating membrane deformation, its expression in patients with dilated cardiomyopathy was determined. Taking advantage of Cre/Loxp, CRISPR/Cas9, and adeno-associated virus 9 (AAV9)-mediated in vivo gene editing, we generated cardiomyocyte-specific Ptpn23 and Actn2 (α-actinin-2, a major component of Z-discs) knockout mice. We also perturbed the DGC by using dystrophin global knockout mice (DmdE4*). MM 4-64 and Di-8-ANEPPS staining, Cav3 immunofluorescence, and transmission electron microscopy were performed to determine T-tubule structure in isolated cells and intact hearts. In addition, the assembly of the DGC with Ptpn23 and dystrophin loss of function was determined by glycerol-gradient fractionation and SDS-PAGE analysis. RESULTS: The expression level of Ptpn23 was reduced in failing hearts from dilated cardiomyopathy patients and mice. Genetic deletion of Ptpn23 resulted in disorganized T-tubules with enlarged diameters and progressive dilated cardiomyopathy without affecting sarcomere organization. AAV9-mediated mosaic somatic mutagenesis further indicated a cell-autonomous role of Ptpn23 in regulating T-tubule formation. Genetic and biochemical analyses showed that Ptpn23 was essential for the integrity of costameres, which anchor the T-tubule membrane to Z-discs, through interactions with α-actinin and dystrophin. Deletion of α-actinin altered the subcellular localization of Ptpn23 and DGCs. In addition, genetic inactivation of dystrophin caused similar T-tubule defects to Ptpn23 loss-of-function without affecting Ptpn23 localization at Z-discs. Last, inducible Ptpn23 knockout at 1 month of age showed Ptpn23 is also required for the maintenance of T-tubules in adult cardiomyocytes. CONCLUSIONS: Ptpn23 is essential for cardiac T-tubule formation and maintenance along Z-discs. During postnatal heart development, Ptpn23 interacts with sarcomeric α-actinin and coordinates the assembly of the DGC at costameres to sculpt T-tubule spatial patterning and morphology.

3.
Circulation ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39253856

ABSTRACT

BACKGROUND: The docking protein IRS2 (insulin receptor substrate protein-2) is an important mediator of insulin signaling and may also regulate other signaling pathways. Murine hearts with cardiomyocyte-restricted deletion of IRS2 (cIRS2-KO) are more susceptible to pressure overload-induced cardiac dysfunction, implying a critical protective role of IRS2 in cardiac adaptation to stress through mechanisms that are not fully understood. There is limited evidence regarding the function of IRS2 beyond metabolic homeostasis regulation, particularly in the context of cardiac disease. METHODS: A retrospective analysis of an electronic medical record database was conducted to identify patients with IRS2 variants and assess their risk of cardiac arrhythmias. Arrhythmia susceptibility was examined in cIRS2-KO mice. The underlying mechanisms were investigated using confocal calcium imaging of ex vivo whole hearts and isolated cardiomyocytes to assess calcium handling, Western blotting to analyze the involved signaling pathways, and pharmacological and genetic interventions to rescue arrhythmias in cIRS2-KO mice. RESULTS: The retrospective analysis identified patients with IRS2 variants of uncertain significance with a potential association to an increased risk of cardiac arrhythmias compared with matched controls. cIRS2-KO hearts were found to be prone to catecholamine-sensitive ventricular tachycardia and reperfusion ventricular tachycardia. Confocal calcium imaging of ex vivo whole hearts and single isolated cardiomyocytes from cIRS2-KO hearts revealed decreased Ca²+ transient amplitudes, increased spontaneous Ca²+ sparks, and reduced sarcoplasmic reticulum Ca²+ content during sympathetic stress, indicating sarcoplasmic reticulum dysfunction. We identified that overactivation of the AKT1/NOS3 (nitric oxide synthase 3)/CaMKII (Ca2+/calmodulin-dependent protein kinase II)/RyR2 (type 2 ryanodine receptor) signaling pathway led to calcium mishandling and catecholamine-sensitive ventricular tachycardia in cIRS2-KO hearts. Pharmacological AKT inhibition or genetic stabilization of RyR2 rescued catecholamine-sensitive ventricular tachycardia in cIRS2-KO mice. CONCLUSIONS: Cardiac IRS2 inhibits sympathetic stress-induced AKT/NOS3/CaMKII/RyR2 overactivation and calcium-dependent arrhythmogenesis. This novel IRS2 signaling axis, essential for maintaining cardiac calcium homeostasis under stress, presents a promising target for developing new antiarrhythmic therapies.

4.
Circulation ; 147(23): 1758-1776, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37128899

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is a highly prevalent condition that can cause or exacerbate heart failure, is an important risk factor for stroke, and is associated with pronounced morbidity and death. Genes uniquely expressed in the atria are known to be essential for maintaining atrial structure and function. Atrial tissue remodeling contributes to arrhythmia recurrence and maintenance. However, the mechanism underlying atrial remodeling remains poorly understood. This study was designed to investigate whether other uncharacterized atrial specific genes play important roles in atrial physiology and arrhythmogenesis. METHODS: RNA-sequencing analysis was used to identify atrial myocyte specific and angiotensin II-responsive genes. Genetically modified, cardiomyocyte-specific mouse models (knockout and overexpression) were generated. In vivo and in vitro electrophysiological, histology, and biochemical analyses were performed to determine the consequences of CIB2 (calcium and integrin binding family member 2 protein) gain and loss of function in the atrium. RESULTS: Using RNA-sequencing analysis, we identified CIB2 as an atrial-enriched protein that is significantly downregulated in the left atria of patients with AF and mouse models of AF from angiotensin II infusion or pressure overload. Using cardiomyocyte-specific Cib2 knockout (Cib2-/-) and atrial myocyte-specific Cib2-overexpressing mouse models, we found that loss of Cib2 enhances AF occurrence, prolongs AF duration, and correlates with a significant increase in atrial fibrosis under stress. Conversely, Cib2 overexpression mitigates AF occurrence and atrial fibrosis triggered by angiotensin II stress. Mechanistically, we revealed that CIB2 competes with and inhibits CIB1-mediated calcineurin activation, thereby negating stress-induced structural remodeling and AF. CONCLUSIONS: Our data suggest that CIB2 represents a novel endogenous and atrial-enriched regulator that protects against atrial remodeling and AF under stress conditions. Therefore, CIB2 may represent a new potential target for treating AF.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Animals , Mice , Angiotensin II/pharmacology , Angiotensin II/metabolism , Heart Atria , Fibrosis , RNA/metabolism
5.
Mol Med ; 30(1): 65, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773376

ABSTRACT

OBJECTIVE: Catalpol (CAT) has various pharmacological activities and plays a protective role in cerebral ischemia. It has been reported that CAT played a protective role in cerebral ischemia by upregulaing NRF1 expression. Bioinformatics analysis reveals that NRF1 can be used as a transcription factor to bind to the histone acetyltransferase KAT2A. However, the role of KAT2A in cerebral ischemia remains to be studied. Therefore, we aimed to investigate the role of CAT in cerebral ischemia and its related mechanism. METHODS: In vitro, a cell model of oxygen and glucose deprivation/reperfusion (OGD/R) was constructed, followed by evaluation of neuronal injury and the expression of METTL3, Beclin-1, NRF1, and KAT2A. In vivo, a MCAO rat model was prepared by means of focal cerebral ischemia, followed by assessment of neurological deficit and brain injury in MCAO rats. Neuronal autophagy was evaluated by observation of autophagosomes in neurons or brain tissues by TEM and detection of the expression of LC3 and p62. RESULTS: In vivo, CAT reduced the neurological function deficit and infarct volume, inhibited neuronal apoptosis in the cerebral cortex, and significantly improved neuronal injury and excessive autophagy in MCAO rats. In vitro, CAT restored OGD/R-inhibited cell viability, inhibited cell apoptosis, LDH release, and neuronal autophagy. Mechanistically, CAT upregulated NRF1, NRF1 activated METTL3 via KAT2A transcription, and METTL3 inhibited Beclin-1 via m6A modification. CONCLUSION: CAT activated the NRF1/KAT2A/METTL3 axis and downregulated Beclin-1 expression, thus relieving neuronal injury and excessive autophagy after cerebral ischemia.


Subject(s)
Autophagy , Beclin-1 , Brain Ischemia , Iridoid Glucosides , Neurons , Animals , Autophagy/drug effects , Beclin-1/metabolism , Beclin-1/genetics , Rats , Neurons/metabolism , Neurons/drug effects , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Male , Iridoid Glucosides/pharmacology , Iridoid Glucosides/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Disease Models, Animal , Apoptosis/drug effects , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Adenosine/analogs & derivatives
6.
Circ Res ; 130(9): 1306-1317, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35317607

ABSTRACT

BACKGROUND: Transcriptional remodeling is known to contribute to heart failure (HF). Targeting stress-dependent gene expression mechanisms may represent a clinically relevant gene therapy option. We recently uncovered a salutary mechanism in the heart whereby JP2 (junctophilin-2), an essential component of the excitation-contraction coupling apparatus, is site-specifically cleaved and releases an N-terminal fragment (JP2NT [N-terminal fragment of JP2]) that translocates into the nucleus and functions as a transcriptional repressor of HF-related genes. This study aims to determine whether JP2NT can be leveraged by gene therapy techniques for attenuating HF progression in a preclinical pressure overload model. METHODS: We intraventricularly injected adeno-associated virus (AAV) (2/9) vectors expressing eGFP (enhanced green fluorescent protein), JP2NT, or DNA-binding deficient JP2NT (JP2NTΔbNLS/ARR) into neonatal mice and induced cardiac stress by transaortic constriction (TAC) 9 weeks later. We also treated mice with established moderate HF from TAC stress with either AAV-JP2NT or AAV-eGFP. RNA-sequencing analysis was used to reveal changes in hypertrophic and HF-related gene transcription by JP2NT gene therapy after TAC. Echocardiography, confocal imaging, and histology were performed to evaluate heart function and pathological myocardial remodeling following stress. RESULTS: Mice preinjected with AAV-JP2NT exhibited ameliorated cardiac remodeling following TAC. The JP2NT DNA-binding domain is required for cardioprotection as its deletion within the AAV-JP2NT vector prevented improvement in TAC-induced cardiac dysfunction. Functional and histological data suggest that JP2NT gene therapy after the onset of cardiac dysfunction is effective at slowing the progression of HF. RNA-sequencing analysis further revealed a broad reversal of hypertrophic and HF-related gene transcription by JP2NT overexpression after TAC. CONCLUSIONS: Our prevention- and intervention-based approaches here demonstrated that AAV-mediated delivery of JP2NT into the myocardium can attenuate stress-induced transcriptional remodeling and the development of HF when administered either before or after cardiac stress initiation. Our data indicate that JP2NT gene therapy holds great potential as a novel therapeutic for treating hypertrophy and HF.


Subject(s)
Heart Failure , Animals , DNA , Dependovirus , Disease Models, Animal , Genetic Therapy , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/therapy , Membrane Proteins , Mice , Mice, Inbred C57BL , RNA , Ventricular Remodeling
7.
Int J Med Sci ; 21(8): 1414-1427, 2024.
Article in English | MEDLINE | ID: mdl-38903916

ABSTRACT

Glutamine (Gln), known as the most abundant free amino acid, is widely spread in human body. In this study, we demonstrated the protective effects of glutamine against mouse abdominal aortic aneurysm (AAA) induced by both angiotensin II (AngII) and calcium phosphate (Ca3(PO4)2) in vivo, which was characterized with lower incidence of mouse AAA. Moreover, histomorphological staining visually presented more intact elastic fiber and less collagen deposition in abdominal aortas of mice treated by glutamine. Further, we found glutamine inhibited the excessive production of reactive oxide species (ROS), activity of matrix metalloproteinase (MMP), M1 macrophage activation, and apoptosis of vascular smooth muscle cells (VSMCs) in suprarenal abdominal aortas of mice, what's more, the high expressions of MMP-2 protein, MMP-9 protein, pro-apoptotic proteins, and IL-6 as well as TNF-α in protein and mRNA levels in cells treated by AngII were down-regulated by glutamine. Collectively, these results revealed that glutamine protected against mouse AAA through inhibiting apoptosis of VSMCs, M1 macrophage activation, oxidative stress, and extracellular matrix degradation.


Subject(s)
Angiotensin II , Aortic Aneurysm, Abdominal , Apoptosis , Glutamine , Macrophage Activation , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Oxidative Stress , Animals , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/prevention & control , Aortic Aneurysm, Abdominal/metabolism , Apoptosis/drug effects , Mice , Glutamine/pharmacology , Angiotensin II/pharmacology , Macrophage Activation/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/cytology , Humans , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Disease Models, Animal , Male , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Aorta, Abdominal/pathology , Aorta, Abdominal/drug effects , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Calcium Phosphates
8.
Eur Heart J ; 44(18): 1622-1632, 2023 05 07.
Article in English | MEDLINE | ID: mdl-36893798

ABSTRACT

AIMS: The available literature on morbidity risk of cardiovascular diseases associated with ambient ozone pollution is still limited. This study examined the potential acute effects of exposure to ambient ozone pollution on hospital admissions of cardiovascular events in China. METHODS AND RESULTS: A two-stage multi-city time-series study approach was used to explore the associations of exposure to ambient ozone with daily hospital admissions (n = 6 444 441) for cardiovascular events in 70 Chinese cities of prefecture-level or above during 2015-17. A 10 µg/m3 increment in 2-day average daily 8 h maximum ozone concentrations was associated with admission risk increases of 0.46% [95% confidence interval (CI): 0.28%, 0.64%] in coronary heart disease, 0.45% (95% CI: 0.13%, 0.77%) in angina pectoris, 0.75% (95% CI: 0.38%, 1.13%) in acute myocardial infarction (AMI), 0.70% (95% CI: 0.41%, 1.00%) in acute coronary syndrome, 0.50% (95% CI: 0.24%, 0.77%) in heart failure, 0.40% (95% CI: 0.23%, 0.58%) in stroke and 0.41% (95% CI: 0.22%, 0.60%) in ischemic stroke, respectively. The excess admission risks for these cardiovascular events associated with high ozone pollution days (with 2-day average 8-h maximum concentrations ≥100 µg/m3 vs. < 70 µg/m3) ranged from 3.38% (95% CI: 1.73%, 5.06%) for stroke to 6.52% (95% CI: 2.92%, 10.24%) for AMI. CONCLUSION: Ambient ozone was associated with increased hospital admission risk for cardiovascular events. Greater admission risks for cardiovascular events were observed under high ozone pollution days. These results provide evidence for the harmful cardiovascular effects of ambient ozone and call for special attention on the control of high ozone pollution.


Subject(s)
Air Pollutants , Air Pollution , Myocardial Infarction , Ozone , Stroke , Humans , Ozone/adverse effects , Ozone/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/analysis , Myocardial Infarction/epidemiology , Stroke/epidemiology , Hospitals
9.
Zhongguo Zhong Yao Za Zhi ; 49(1): 208-215, 2024 Jan.
Article in Zh | MEDLINE | ID: mdl-38403353

ABSTRACT

This study aimed to investigate the regulatory effects of Zuogui Jiangtang Jieyu Formula(ZJJ) on the intestinal flora, short chain fatty acids(SCFAs), and neuroinflammation in rats with diabetes mellitus complicated depression(DD). The DD model was established in rats and model rats were randomly divided into a model group, a positive drug(metformin + fluoxetine) group, a ZJJ low-dose group, and a ZJJ high-dose group, with eight rats in each group. Another eight rats were assigned to the blank group. Subsequently, depressive-like behavior test was conducted on the rats, and cerebrospinal fluid samples were collected to measure pro-inflammatory cytokines [interleukin-1ß(IL-1ß), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α)]. Blood serum samples were collected to measure proteins related to the hypothalamic-pituitary-adrenal axis(HPA axis), including corticotropin-releasing hormone(CRH), adrenocorticotropic hormone(ACTH), and cortisol(CORT), as well as glucose metabolism. Gut contents were collected from each group for 16S rRNA sequencing analysis of intestinal flora and SCFAs sequencing. The results indicated that ZJJ not only improved glucose metabolism in DD rats(P<0.01) but also alleviated depressive-like behavior(P<0.05) and HPA axis hyperactivity(P<0.05 or P<0.01). Besides, it also improved the neuroinflammatory response in the brain, as evidenced by a significant reduction in pro-inflammatory cytokines in cerebrospinal fluid(P<0.05 or P<0.01). Additionally, ZJJ improved the intestinal flora, causing the intestinal flora in DD rats to resemble that of the blank group, characterized by an increased Firmicutes abundance. ZJJ significantly increased the levels of SCFAs(acetic acid, butyric acid, valeric acid, and isovaleric acid)(P<0.01). Therefore, it is deduced that ZJJ can effectively ameliorate intestinal flora dysbiosis, regulate SCFAs, and thereby improve both glucose metabolism disturbances and depressive-like behavior in DD.


Subject(s)
Diabetes Mellitus , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Rats , Animals , Hypothalamo-Hypophyseal System/metabolism , Depression/drug therapy , RNA, Ribosomal, 16S , Pituitary-Adrenal System/metabolism , Corticotropin-Releasing Hormone/metabolism , Cytokines/genetics , Cytokines/metabolism , Glucose/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology
10.
J Am Chem Soc ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37909780

ABSTRACT

Electrochemical Li-alloying reactions with Li-rich alloy phases render a much higher theoretical capacity that is critical for high-energy batteries, and the accompanying phase transition determines the alloying/dealloying reversibility and cycling stability. However, the influence of phase-transition characteristics upon the thermodynamic properties and diffusion kinetic mechanisms among the two categories of alloys, solid-solutions and intermetallic compounds, remains incomplete. Here we investigated three representative Li-alloys: Li-Ag alloy of extended solid-solution regions; Li-Zn alloy of an intermetallic compound with a solid-solution phase of a very narrow window in Li atom concentration; and Li-Al alloy of an intermetallic compound. Solid-solution phases undertake a much lower phase-transition energy barrier than the intermetallic compounds, leading to a considerably higher Li-alloying/dealloying reversibility and cycling stability, which is due to the subtle structural change and chemical potential gradient built up inside of the solid-solution phases. These two effects enable the Li atoms to enter the bulk of the Li-Ag alloy to form a homogeneous alloy phase. The pouch cell of the Li-rich Li20Ag alloy pairs with a LiNi0.8Co0.1Mn0.1O2 cathode under an areal capacity of 3.5 mAh cm-2 can retain 87% of its initial capacity after 250 cycles with an enhanced Coulombic efficiency of 99.8 ± 0.1%. While Li-alloying reactions and the alloy phase transitions have always been tightly linked in past studies, our findings provide important guidelines for the intelligent design of components for secondary metal batteries.

11.
Clin Gastroenterol Hepatol ; 21(13): 3379-3386.e29, 2023 12.
Article in English | MEDLINE | ID: mdl-37660767

ABSTRACT

BACKGROUND & AIMS: Limited studies have evaluated the burden of inflammatory bowel disease (IBD) in China. We aimed to estimate the incidence of IBD including ulcerative colitis (UC) and Crohn's disease (CD) in urban China. METHODS: The national urban incidence in 2016 was calculated based on urban basic medical insurance from 2012 to 2016 in China by using a 4-year washout period. The incidence in Yinzhou District estimated from the Yinzhou electronic health care record database was used to test the accuracy of the results from insurance data. RESULTS: A total of 95,555 patients with IBD were identified. The incidence in 2016 was 10.04 (95% confidence interval, 6.95-13.71) per 100,000 person-years. The incidence rates of both UC and CD were higher among males than among females. There was a sharp increase in UC incidence before the age of 30 years and stabilization in later years (50-79 years old), whereas CD incidence peaked at 30 to 34 years old and experienced decline subsequently. The incidence of UC was much greater than that of CD, with a UC-to-CD incidence ratio of 12.61. The results from the Yinzhou database confirmed these results. CONCLUSIONS: This study is the first to draw a portrait of the distribution of IBD in urban China. The difference in IBD incidence between urban China and other countries suggests an association between the IBD burden and industrialization process. The accelerating urbanization and industrialization process in China, a country with a population of 1.4 billion people, will likely increase the burden of IBD.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Male , Female , Humans , Adult , Middle Aged , Aged , Incidence , Inflammatory Bowel Diseases/epidemiology , Crohn Disease/epidemiology , Colitis, Ulcerative/epidemiology , China/epidemiology
12.
Dermatology ; 239(2): 195-205, 2023.
Article in English | MEDLINE | ID: mdl-36592625

ABSTRACT

BACKGROUND: Few studies have reported the burden of generalized pustular psoriasis (GPP), a severe and potentially life-threatening skin disease, especially at a national level. OBJECTIVES: The aim of this study is to estimate the nationwide burden of GPP in China and make a systemic review of the published data. METHODS: We conducted a population-based study using Urban Basic Medical Insurance in China from 2012 to 2016. GPP cases were identified by primary diagnoses including the international classification of Diseases codes (ICD-10: L40.1 and ICD-9: 694.3). A systematic review was conducted using relevant databases up to January 2022. RESULTS: The crude prevalence and incidence of GPP in 2016 were 1.403 (95% confidence interval [CI]: 1.115-1.691) and 0.629 (95% CI: 0.483-0.775) per 100,000 person-years, respectively. The rates were higher in males than in females for both prevalence (1.429 vs. 1.135) and incidence (0.635 vs. 0.520). The prevalence and incidence showed a bimodal age distribution, with the first peak occurring in the 0- to 3-year age-group and the second peak occurring in the 30- to 39-year age-group. The per capita total cost per year for 1 patient with GPP was 609.26 (± 45.77) US dollars. Seven studies were identified in a systematic review, according to which the prevalence (per 100,000) of GPP tended to be higher in Asian countries (0.746-8.178 in Japan and 12.230 in Korea) than in France (0.176), Sweden (6.25), and Brazil (0.7). CONCLUSIONS: This is the largest study concerning the disease burden of GPP, and in this study, the prevalence seemed to be higher in Asia. Although the direct economic burden of GPP did not seem high during the study period, the future usage of biologics and the humanistic burden should also be considered for policy-related decision-making.


Subject(s)
Psoriasis , Male , Female , Humans , Prevalence , Psoriasis/epidemiology , Psoriasis/etiology , China/epidemiology , Asia/epidemiology , France
13.
Nutr Metab Cardiovasc Dis ; 33(5): 978-986, 2023 05.
Article in English | MEDLINE | ID: mdl-36710105

ABSTRACT

BACKGROUND AND AIMS: The lack of standard diagnostic criteria in elder patients with heart failure (HF) makes it challenging to diagnose and manage malnutrition. We aimed to explore the prevalence of malnutrition, its associations and prognostic significance among elder patients with HF using four different nutritional scoring systems. METHODS AND RESULTS: Consecutively presenting patients aged ⩾65 years, diagnosed with HF, and admitted to HF care unit of Fuwai Hospital CAMS&PUMC (Beijing, China) were assessed for nutritional indices. In total, 1371 patients were enrolled (59.4% men; mean age 72 years; median NT-proBNP 2343 ng/L). Using scores for the prognostic nutritional index (PNI) ≤38, controlling nutritional status (CONUT) score >4, geriatric nutritional risk index (GNRI) ≤91, and triglycerides, total cholesterol, and body weight index (TCBI) ≤1109, 10.4%, 18.3%, 9.2%, and 50.0% of patients had moderate or severe malnutrition, respectively. There was a strong association between worse scores and lower body mass index, more severe symptoms, atrial fibrillation, and anemia. The mortality over a median follow-up of 962 days (interquartile range (IQR): 903-1029 days) was 28.3% (n = 388). For those with moderate or severe condition, 1-year mortality was 35.2% for PNI, 28.3% for CONUT, 28.0% for GNRI, and 19.1% for TCBI. Malnutrition, defined by any of the included indices, showed added prognostic value when incorporated into a model and included preexisting prognostic factors (C-statistic: 0.711). However, defining malnutrition by the CONUT score yielded the most significant improvement in the prognostic predictive value (C-statistic: 0.721; p < 0.001). CONCLUSION: Malnutrition is prevalent among elder patients with HF and confers increased mortality risk. Among the nutritional scores studied, the CONUT score was most effective in predicting the mortality risk. CLINICAL TRIAL REGISTRATION: URL: ClinicalTrials.gov; Unique Identifier: NCT02664818.


Subject(s)
Heart Failure , Malnutrition , Aged , Female , Humans , Male , Body Weight , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Failure/complications , Malnutrition/diagnosis , Malnutrition/epidemiology , Malnutrition/complications , Nutrition Assessment , Nutritional Status , Prevalence , Prognosis , Retrospective Studies , Risk Factors
14.
Biocell ; 47(10): 2125-2132, 2023.
Article in English | MEDLINE | ID: mdl-37974562

ABSTRACT

Osteoarthritis (OA), the most common form of joint disease, is characterized clinically by joint pain, stiffness, and deformity. OA is now considered a whole joint disease; however, the breakdown of the articular cartilage remains the major hallmark of the disease. Current treatments targeting OA symptoms have a limited impact on impeding or reversing the OA progression. Understanding the molecular and cellular mechanisms underlying OA development is a critical barrier to progress in OA therapy. Recent studies by the current authors' group and others have revealed that the nuclear factor of activated T cell 1 (NFAT1), a member of the NFAT family of transcription factors, regulates the expression of many anabolic and catabolic genes in articular chondrocytes of adult mice. Mice lacking NFAT1 exhibit normal skeletal development but display OA in both appendicular and spinal facet joints as adults. This review mainly focuses on the recent advances in the regulatory role of NFAT1 transcription factor in the activities of articular chondrocytes and its implication in the pathogenesis of OA.

15.
Angew Chem Int Ed Engl ; 62(3): e202214351, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36416106

ABSTRACT

Appling an electrochemical catalyst is an efficient strategy for inhibiting the shuttle effect and enhancing the S utilization of Li-S batteries. Carbon-based materials are the most common conductive agents and catalyst supports used in Li-S batteries, but the correlation between the diversity of hybridizations and sulfur reduction reaction (SRR) catalytic activity remains unclear. Here, by establishing two forms of carbon models, i.e., graphitic carbon (GC) and amorphous carbon (AC), we observe that the nitrogen atom doped in the GC possesses a higher local charge density and a lower Gibbs free energy towards the formation of polysulfides than in the AC. And the GC-based electrode consistently inherits considerably enhanced SRR kinetics and superior cycling stability and rate capability in Li-S batteries. Therefore, the function of carbon in Li-S batteries is not only limited as conductive support but also plays an unignorable contribution to the electrocatalytic activities of SRR.

16.
Circulation ; 144(22): 1760-1776, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34698513

ABSTRACT

BACKGROUND: Loss of dystrophin protein causes Duchenne muscular dystrophy (DMD), characterized by progressive degeneration of cardiac and skeletal muscles, and mortality in adolescence or young adulthood. Although cardiac failure has risen as the leading cause of mortality in patients with DMD, effective therapeutic interventions remain underdeveloped, in part, because of the lack of a suitable preclinical model. METHODS: We analyzed a novel murine model of DMD created by introducing a 4-bp deletion into exon 4, one of the exons encoding the actin-binding domain 1 of dystrophin (referred to as DmdE4* mice). Echocardiography, microcomputed tomography, muscle force measurement, and histological analysis were performed to determine cardiac and skeletal muscle defects in these mice. Using this model, we examined the feasibility of using a cytidine base editor to install exon skipping and rescue dystrophic cardiomyopathy in vivo. AAV9-based CRISPR/Cas9-AID (eTAM) together with AAV9-sgRNA was injected into neonatal DmdE4* mice, which were analyzed 2 or 12 months after treatment to evaluate the extent of exon skipping, dystrophin restoration, and phenotypic improvements of cardiac and skeletal muscles. RESULTS: DmdE4* mice recapitulated many aspects of human DMD, including shortened life span (by ≈50%), progressive cardiomyopathy, kyphosis, profound loss of muscle strength, and myocyte degeneration. A single-dose administration of AAV9-eTAM instituted >50% targeted exon skipping in the Dmd transcripts and restored up to 90% dystrophin in the heart. As a result, early ventricular remodeling was prevented and cardiac and skeletal muscle functions were improved, leading to an increased life span of the DmdE4* mice. Despite gradual decline of AAV vector and base editor expression, dystrophin restoration and pathophysiological rescue of muscular dystrophy were long lasted for at least 1 year. CONCLUSIONS: Our study demonstrates the feasibility and efficacy to institute exon skipping through an enhanced TAM (eTAM) for therapeutic application(s).


Subject(s)
APOBEC Deaminases , CRISPR-Cas Systems , Cardiomyopathies , Dystrophin , Exons , Muscular Dystrophy, Duchenne , APOBEC Deaminases/biosynthesis , APOBEC Deaminases/genetics , Animals , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Dependovirus , Dystrophin/biosynthesis , Dystrophin/genetics , Genetic Vectors , Humans , Mice , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/therapy
17.
Respir Res ; 23(1): 111, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35509081

ABSTRACT

BACKGROUND: While the prevalence and disease burden of bronchiectasis are increasing, data in the world's largest population are lacking. We aimed to investigate the prevalence and disease burden of bronchiectasis in Chinese adults. METHODS: We conducted a population-based study using data between 2013 and 2017 from the national databases of Urban Employee Basic Medical Insurance and Urban Resident Basic Medical Insurance in China. Data from over 380 million patients aged 18 years and older during the study period were analyzed, and a total of 383,926 bronchiectasis patients were identified. Primary outcomes included the age- and sex-specific prevalence of bronchiectasis. Annual visits and hospitalizations, as well as annual costs were also calculated. RESULTS: The prevalence of bronchiectasis in Chinese adults increased 2.31-fold, from 75.48 (62.26, 88.69) per 100,000 in 2013 to 174.45 (137.02, 211.88) per 100,000 in 2017. The increase was more remarkable for patients aged over 50 years in both genders. The per-capita total cost and hospitalization cost of patients with bronchiectasis increased 2.18-fold and 1.83-fold from 2013 to 2017, respectively, mostly driven by non-bronchiectasis costs. The average annual hospitalization ranged from 1.20 to 1.24 times during the 5 years. CONCLUSION: The prevalence and disease burden of bronchiectasis in Chinese urban adults ≥ 18 years had increased significantly between 2013 and 2017.


Subject(s)
Bronchiectasis , Hospitalization , Adult , Bronchiectasis/diagnosis , Bronchiectasis/epidemiology , China/epidemiology , Cohort Studies , Female , Humans , Male , Prevalence
18.
Acta Pharmacol Sin ; 43(11): 2873-2884, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35986214

ABSTRACT

Calpains have been implicated in heart diseases. While calpain-1 has been detrimental to the heart, the role of calpain-2 in cardiac pathology remains controversial. In this study we investigated whether sustained over-expression of calpain-2 had any adverse effects on the heart and the underlying mechanisms. Double transgenic mice (Tg-Capn2/tTA) were generated, which express human CAPN2 restricted to cardiomyocytes. The mice were subjected to echocardiography at age 3, 6, 8 and 12 months, and their heart tissues and sera were collected for analyses. We showed that transgenic mice over-expressing calpain-2 restricted to cardiomyocytes had normal heart function with no evidence of cardiac pathological remodeling at age 3 months. However, they exhibited features of dilated cardiomyopathy including increased heart size, enlarged heart chambers and heart dysfunction from age 8 months; histological analysis revealed loss of cardiomyocytes replaced by myocardial fibrosis and cardiomyocyte hypertrophy in transgenic mice from age 8 months. These cardiac alterations closely correlated with aberrant autophagy evidenced by significantly increased LC3BII and p62 protein levels and accumulation of autophagosomes in the hearts of transgenic mice. Notably, injection of 3-methyladenine, a well-established inhibitor of autophagy (30 mg/kg, i.p. once every 3 days starting from age 6 months for 2 months) prevented aberrant autophagy, attenuated myocardial injury and improved heart function in the transgenic mice. In cultured cardiomyocytes, over-expression of calpain-2 blocked autophagic flux by impairing lysosomal function. Furthermore, over-expression of calpain-2 resulted in lower levels of junctophilin-2 protein in the heart of transgenic mice and in cultured cardiomyocytes, which was attenuated by 3-methyladenine. In addition, blockade of autophagic flux by bafilomycin A (100 nM) induced a reduction of junctophilin-2 protein in cardiomyocytes. In summary, transgenic over-expression of calpain-2 induces age-dependent dilated cardiomyopathy in mice, which may be mediated through aberrant autophagy and a reduction of junctophilin-2. Thus, a sustained increase in calpain-2 may be detrimental to the heart.


Subject(s)
Cardiomyopathy, Dilated , Mice , Animals , Humans , Infant , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Calpain , Myocytes, Cardiac , Autophagy , Mice, Transgenic
19.
Cell Mol Life Sci ; 78(7): 3743-3762, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33683377

ABSTRACT

Mutations in the intraflagellar transport-A (IFT-A) gene, THM1, have been identified in skeletal ciliopathies. Here, we report a genetic interaction between Thm1, and its paralog, Thm2, in postnatal skeletogenesis. THM2 localizes to primary cilia, but Thm2 deficiency does not affect ciliogenesis and Thm2-null mice survive into adulthood. However, by postnatal day 14, Thm2-/-; Thm1aln/+ mice exhibit small stature and small mandible. Radiography and microcomputed tomography reveal Thm2-/-; Thm1aln/+ tibia are less opaque and have reduced cortical and trabecular bone mineral density. In the mutant tibial growth plate, the proliferation zone is expanded and the hypertrophic zone is diminished, indicating impaired chondrocyte differentiation. Additionally, mutant growth plate chondrocytes show increased Hedgehog signaling. Yet deletion of one allele of Gli2, a major transcriptional activator of the Hedgehog pathway, exacerbated the Thm2-/-; Thm1aln/+ small phenotype, and further revealed that Thm2-/-; Gli2+/- mice have small stature. In Thm2-/-; Thm1aln/+ primary osteoblasts, a Hedgehog signaling defect was not detected, but bone nodule formation was markedly impaired. This indicates a signaling pathway is altered, and we propose that this pathway may potentially interact with Gli2. Together, our data reveal that loss of Thm2 with one allele of Thm1, Gli2, or both, present new IFT mouse models of osteochondrodysplasia. Our data also suggest Thm2 as a modifier of Hedgehog signaling in postnatal skeletal development.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Chondrocytes/pathology , Chondrogenesis , Hedgehog Proteins/metabolism , Osteoblasts/pathology , Osteogenesis , Animals , Animals, Newborn , Cell Differentiation , Chondrocytes/metabolism , Cilia , Female , Hedgehog Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/metabolism , Signal Transduction
20.
Biochem J ; 478(19): 3539-3553, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34524407

ABSTRACT

Calpain proteolysis contributes to the pathogenesis of heart failure but the calpain isoforms responsible and their substrate specificities have not been rigorously defined. One substrate, Junctophilin-2 (JP2), is essential for maintaining junctional cardiac dyads and excitation-contraction coupling. We previously demonstrated that mouse JP2 is cleaved by calpain-1 (CAPN1) between Arginine 565 (R565) and Threonine 566 (T566). Recently, calpain-2 (CAPN2) was reported to cleave JP2 at a novel site between Glycine 482 (G482) and Threonine 483 (T483). We aimed to directly compare the contributions of each calpain isoform, their Ca2+ sensitivity, and their cleavage site selection for JP2. We find CAPN1, CAPN2 and their requisite CAPNS1 regulatory subunit are induced by pressure overload stress that is concurrent with JP2 cleavage. Using in vitro calpain cleavage assays, we demonstrate that CAPN1 and CAPN2 cleave JP2 into similar 75 kD N-terminal (JP2NT) and 25 kD C-terminal fragments (JP2CT) with CAPNS1 co-expression enhancing proteolysis. Deletion mutagenesis shows both CAPN1 and CAPN2 require R565/T566 but not G482/T483. When heterologously expressed, the JP2CT peptide corresponding to R565/T566 cleavage approximates the 25 kD species found during cardiac stress while the C-terminal peptide from potential cleavage at G482/T483 produces a 35 kD product. Similar results were obtained for human JP2. Finally, we show that CAPN1 has higher Ca2+ sensitivity and cleavage efficacy than CAPN2 on JP2 and other cardiac substrates including cTnT, cTnI and ß2-spectrin. We conclude that CAPN2 cleaves JP2 at the same functionally conserved R565/T566 site as CAPN1 but with less efficacy and suggest heart failure may be targeted through specific inhibition of CAPN1.


Subject(s)
Calpain/metabolism , Heart Failure/metabolism , Membrane Proteins/metabolism , Muscle Proteins/metabolism , Proteolysis , Signal Transduction/genetics , Animals , Arginine/metabolism , Calpain/genetics , Disease Models, Animal , Glycine/metabolism , HEK293 Cells , Humans , Male , Membrane Proteins/genetics , Mice , Muscle Proteins/genetics , Mutagenesis, Site-Directed/methods , Myocytes, Cardiac/metabolism , Threonine/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL