Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 265
Filter
1.
Mol Cell ; 75(1): 102-116.e9, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31128943

ABSTRACT

Transcription regulation underlies stem cell function and development. Here, we elucidate an unexpected role of an essential ribogenesis factor, WDR43, as a chromatin-associated RNA-binding protein (RBP) and release factor in modulating the polymerase (Pol) II activity for pluripotency regulation. WDR43 binds prominently to promoter-associated noncoding/nascent RNAs, occupies thousands of gene promoters and enhancers, and interacts with the Pol II machinery in embryonic stem cells (ESCs). Nascent transcripts and transcription recruit WDR43 to active promoters, where WDR43 facilitates releases of the elongation factor P-TEFb and paused Pol II. Knockdown of WDR43 causes genome-wide defects in Pol II release and pluripotency-associated gene expression. Importantly, auxin-mediated rapid degradation of WDR43 drastically reduces Pol II activity, precluding indirect consequences. These results reveal an RNA-mediated recruitment and feedforward regulation on transcription and demonstrate an unforeseen role of an RBP in promoting Pol II elongation and coordinating high-level transcription and translation in ESC pluripotency.


Subject(s)
Cation Transport Proteins/genetics , Chromatin/chemistry , Gene Expression Regulation, Developmental , Mouse Embryonic Stem Cells/metabolism , RNA Polymerase II/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Transcription, Genetic , Zebrafish Proteins/genetics , Animals , Binding Sites , Cation Transport Proteins/metabolism , Cell Differentiation , Cell Line , Chromatin/metabolism , Embryo, Mammalian , Enhancer Elements, Genetic , Gene Deletion , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Mice , Mice, Inbred C57BL , Mouse Embryonic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Biosynthesis , Proteolysis , RNA Polymerase II/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Zebrafish Proteins/metabolism
2.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36398911

ABSTRACT

Identification of RNA-small molecule binding sites plays an essential role in RNA-targeted drug discovery and development. These small molecules are expected to be leading compounds to guide the development of new types of RNA-targeted therapeutics compared with regular therapeutics targeting proteins. RNAs can provide many potential drug targets with diverse structures and functions. However, up to now, only a few methods have been proposed. Predicting RNA-small molecule binding sites still remains a big challenge. New computational model is required to better extract the features and predict RNA-small molecule binding sites more accurately. In this paper, a deep learning model, RLBind, was proposed to predict RNA-small molecule binding sites from sequence-dependent and structure-dependent properties by combining global RNA sequence channel and local neighbor nucleotides channel. To our best knowledge, this research was the first to develop a convolutional neural network for RNA-small molecule binding sites prediction. Furthermore, RLBind also can be used as a potential tool when the RNA experimental tertiary structure is not available. The experimental results show that RLBind outperforms other state-of-the-art methods in predicting binding sites. Therefore, our study demonstrates that the combination of global information for full-length sequences and local information for limited local neighbor nucleotides in RNAs can improve the model's predictive performance for binding sites prediction. All datasets and resource codes are available at https://github.com/KailiWang1/RLBind.


Subject(s)
Deep Learning , RNA , RNA/metabolism , Algorithms , Protein Binding , Ligands , Binding Sites
3.
Small ; : e2404566, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963158

ABSTRACT

Optoelectronic synapses have gained increasing attentions as a fundamental building block in the development of neuromorphic visual systems. However, it remains a challenge to integrate multiple functions into a single optoelectronic synapse that can be widely applied in wearable artificial intelligence and implantable neuromorphic vision systems. In this study, a stretchable optoelectronic synapse based on biodegradable ionic gelatin heterojunction is successfully developed. This device exhibits self-powered synaptic plasticity behavior with broad spectral response and excellent elastic properties, yet it degrades rapidly upon disposal. After complete cleavage, the device can be fully repaired within 1 min, which is mainly attributed to the non-covalent interactions between different molecular chains. Moreover, the recovery and reprocessing of the ionic gelatins result in optoelectronic properties that are virtually indistinguishable from their original state, showcasing the resilience and durability of ionic gelatins. The combination of biodegradability, stretchability, self-healing, zero-power consumption, ease of large-scale preparation, and low cost makes the work a major step forward in the development of biodegradable and stretchable optoelectronic synapses.

4.
Small ; : e2401701, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705844

ABSTRACT

Enhancing the intrinsic stability of perovskite and through encapsulation to isolate water, oxygen, and UV-induced decomposition are currently common and most effective strategies in perovskite solar cells. Here, the atomic layer deposition process is employed to deposit a nanoscale (≈100 nm), uniform, and dense Al2O3 film on the front side of perovskite devices, effectively isolating them from the erosion caused by water and oxygen in the humid air. Simultaneously, nanoscale (≈100 nm) TiO2 films are also deposited on the glass surface to efficiently filter out the ultraviolet (UV) light in the light source, which induces degradation in perovskite. Ultimately, throughthe collaborative effects of both aspects, the stability of the devices is significantly improved under conditions of humid air and illumination. As a result, after storing the devices in ambient air for 1000 h, the efficiency only declines to 95%, and even after 662 h of UV exposure, the efficiency remains at 88%, far surpassing the performance of comparison devices. These results strongly indicate that the adopted Al2O3 and TiO2 thin films play a significant role in enhancing the stability of perovskite solar cells, demonstrating substantial potential for widespread industrial applications.

5.
Plant Biotechnol J ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864414

ABSTRACT

With global climate change, it is essential to find strategies to make crops more resistant to different stresses and guarantee food security worldwide. E3 ubiquitin ligases are critical regulatory elements that are gaining importance due to their role in selecting proteins for degradation in the ubiquitin-proteasome proteolysis pathway. The role of E3 Ub ligases has been demonstrated in numerous cellular processes in plants responding to biotic and abiotic stresses. E3 Ub ligases are considered a class of proteins that are difficult to control by conventional inhibitors, as they lack a standard active site with pocket, and their biological activity is mainly due to protein-protein interactions with transient conformational changes. Proteolysis-targeted chimeras (PROTACs) are a new class of heterobifunctional molecules that have emerged in recent years as relevant alternatives for incurable human diseases like cancer because they can target recalcitrant proteins for destruction. PROTACs interact with the ubiquitin-proteasome system, principally the E3 Ub ligase in the cell, and facilitate proteasome turnover of the proteins of interest. PROTAC strategies harness the essential functions of E3 Ub ligases for proteasomal degradation of proteins involved in dysfunction. This review examines critical advances in E3 Ub ligase research in plant responses to biotic and abiotic stresses. It highlights how PROTACs can be applied to target proteins involved in plant stress response to mitigate pathogenic agents and environmental adversities.

6.
Plant Biotechnol J ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497586

ABSTRACT

Adzuki bean (Vigna angularis) is an important legume crop cultivated in over 30 countries worldwide. We developed a high-quality chromosome-level reference genome of adzuki bean cultivar Jingnong6 by combining PacBio Sequel long-read sequencing with short-read and Hi-C technologies. The assembled genome covers 97.8% of the adzuki bean genome with a contig N50 of approximately 16 Mb and a total of 32 738 protein-coding genes. We also generated a comprehensive genome variation map of adzuki bean by whole-genome resequencing (WGRS) of 322 diverse adzuki beans accessions including both wild and cultivated. Furthermore, we have conducted comparative genomics and a genome-wide association study (GWAS) on key agricultural traits to investigate the evolution and domestication. GWAS identified several candidate genes, including VaCycA3;1, VaHB15, VaANR1 and VaBm, that exhibited significant associations with domestication traits. Furthermore, we conducted functional analyses on the roles of VaANR1 and VaBm in regulating seed coat colour. We provided evidence for the highest genetic diversity of wild adzuki (Vigna angularis var. nipponensis) in China with the presence of the most original wild adzuki bean, and the occurrence of domestication process facilitating transition from wild to cultigen. The present study elucidates the genetic basis of adzuki bean domestication traits and provides crucial genomic resources to support future breeding efforts in adzuki bean.

7.
Bioinformatics ; 39(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37225408

ABSTRACT

MOTIVATION: Computational approaches for identifying the protein-ligand binding affinity can greatly facilitate drug discovery and development. At present, many deep learning-based models are proposed to predict the protein-ligand binding affinity and achieve significant performance improvement. However, protein-ligand binding affinity prediction still has fundamental challenges. One challenge is that the mutual information between proteins and ligands is hard to capture. Another challenge is how to find and highlight the important atoms of the ligands and residues of the proteins. RESULTS: To solve these limitations, we develop a novel graph neural network strategy with the Vina distance optimization terms (GraphscoreDTA) for predicting protein-ligand binding affinity, which takes the combination of graph neural network, bitransport information mechanism and physics-based distance terms into account for the first time. Unlike other methods, GraphscoreDTA can not only effectively capture the protein-ligand pairs' mutual information but also highlight the important atoms of the ligands and residues of the proteins. The results show that GraphscoreDTA significantly outperforms existing methods on multiple test sets. Furthermore, the tests of drug-target selectivity on the cyclin-dependent kinase and the homologous protein families demonstrate that GraphscoreDTA is a reliable tool for protein-ligand binding affinity prediction. AVAILABILITY AND IMPLEMENTATION: The resource codes are available at https://github.com/CSUBioGroup/GraphscoreDTA.


Subject(s)
Neural Networks, Computer , Proteins , Ligands , Proteins/chemistry , Protein Binding , Drug Discovery
8.
J Exp Bot ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38912636

ABSTRACT

Recent research findings established the cruciality of Cys2/His2-type Zinc Finger Proteins (C2H2-ZFPs) in plant growth and their relevance in coping with various stressors. Nevertheless, the complex structure of the C2H2-ZFPs network and the molecular mechanisms of response to stress in adversity have received considerable attention and now require more in-depth examination. This paper reviews the structural characteristics, classification, and recent functional research advances of C2H2-ZFPs. In addition, it systematically introduces the roles of these proteins across diverse facets of plant biology, encompassing growth and development, responses to biotic and abiotic stresses, and laying the foundation for future functional studies of C2H2-ZFPs.

9.
Nat Chem Biol ; 18(1): 70-80, 2022 01.
Article in English | MEDLINE | ID: mdl-34916619

ABSTRACT

An RNA-involved phase-separation model has been proposed for transcription control. However, the molecular links that connect RNA to the transcription machinery remain missing. Here we find that RNA-binding proteins (RBPs) constitute half of the chromatin proteome in embryonic stem cells (ESCs), some being colocalized with RNA polymerase (Pol) II at promoters and enhancers. Biochemical analyses of representative RBPs show that the paraspeckle protein PSPC1 inhibits the RNA-induced premature release of Pol II, and makes use of RNA as multivalent molecules to enhance the formation of transcription condensates and subsequent phosphorylation and release of Pol II. This synergistic interplay enhances polymerase engagement and activity via the RNA-binding and phase-separation activities of PSPC1. In ESCs, auxin-induced acute degradation of PSPC1 leads to genome-wide defects in Pol II binding and nascent transcription. We propose that promoter-associated RNAs and their binding proteins synergize the phase separation of polymerase condensates to promote active transcription.


Subject(s)
RNA Polymerase II/metabolism , RNA-Binding Proteins/metabolism , Transcription, Genetic , Gene Expression Regulation , Phosphorylation , Promoter Regions, Genetic , Protein Binding
10.
Crit Rev Food Sci Nutr ; : 1-16, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38595109

ABSTRACT

Raw milk is the foundation of quality and safety in the dairy industry, and improving milk source management is the fundamental guarantee. Milk-derived exosomes (MDEs) are nanoscale information transfer molecules secreted by mammary cells with unique content and high stability, which can be used not only as potential markers to analyze key traits of lactation, reproduction, nutrition and health of animals, but also help farm managers to take timely interventions to improve animal welfare, milk quality, and functional traits. Our review first outlines the latest advances in MDEs isolation and purification, compositional analysis and characterization tools. We then provide a comprehensive summary of recent applications of MDEs liquid biopsy in breed selection, disease prevention and control, and feeding management. Finally, we evaluate the impact of processing on the stability of MDEs to offer guidance for dairy production and storage. The limitations and challenges in the development and use of MDEs markers are also discussed. As a noninvasive marker with high sensitivity and specificity, the MDEs-mediated assay technology is expected to be a powerful tool for measuring cow health and raw milk quality, enabling dynamic and precise regulation of dairy cows and full traceability of raw milk.

11.
J Chem Inf Model ; 64(8): 3105-3113, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38516950

ABSTRACT

Molecular property prediction is a fundamental task of drug discovery. With the rapid development of deep learning, computational approaches for predicting molecular properties are experiencing increasing popularity. However, these existing methods often ignore the 3D information on molecules, which is critical in molecular representation learning. In the past few years, several self-supervised learning (SSL) approaches have been proposed to exploit the geometric information by using pre-training on 3D molecular graphs and fine-tuning on 2D molecular graphs. Most of these approaches are based on the global geometry of molecules, and there is still a challenge in capturing the local structure and local interpretability. To this end, we propose local geometry-guided graph attention (LGGA), which integrates local geometry into the attention mechanism and message-passing of graph neural networks (GNNs). LGGA introduces a novel method to model molecules, enhancing the model's ability to capture intricate local structural details. Experiments on various data sets demonstrate that the integration of local geometry has a significant impact on the improved results, and our model outperforms the state-of-the-art methods for molecular property prediction, establishing its potential as a promising tool in drug discovery and related fields.


Subject(s)
Drug Discovery , Neural Networks, Computer , Drug Discovery/methods , Models, Molecular , Deep Learning
12.
Oecologia ; 204(4): 899-913, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38582800

ABSTRACT

Allelopathy has a profound impact on the germination and growth of plants, influencing the establishment of plant populations and shaping community ecological patterns. However, the allelopathic potential of many grassland species remains poorly understood. In this study, we prepared aqueous extracts from 17 herbaceous plants to investigate their allelopathic effects on the seed germination and seedling growth of Leymus chinensis, a dominant grassland species. Our results revealed that the response of L. chinensis to allelopathic compounds was dependent on the specific plant species, extract concentration, and target plant organ. Notably, Fabaceae plants exhibited a stronger allelopathic potential than Poaceae, Asteraceae, and other plant families. Moreover, we observed that root growth of L. chinensis was more sensitive to allelopathy than shoot growth, and seed germination was more affected than seedling growth. Generally, the germination of L. chinensis was strongly inhibited as the donor plant extract concentration increased. The leachate of Fabaceae plants inhibited the seedling growth of L. chinensis at concentrations ranging from 0.025 to 0.1 g mL-1. On the other hand, the leachate from other families' plants exhibited either inhibitory or hormetic effects on the early growth of L. chinensis, promoting growth at 0.025 g mL-1 and hindering it at concentrations between 0.05 and 0.1 g mL-1. These findings highlight the significant allelopathic potential of grassland plants, which plays a critical role in establishing plant populations and associated ecological processes. In addition, they shed light on the coexistence of other plants with dominant plants in the community.


Subject(s)
Allelopathy , Germination , Grassland , Seedlings , Seedlings/growth & development , Seeds/growth & development , Poaceae/growth & development , Plant Roots/growth & development
13.
Antonie Van Leeuwenhoek ; 117(1): 73, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676821

ABSTRACT

The deoxynivalenol (DON)-degrading bacterium JB1-3-2 T was isolated from a rhizosphere soil sample of cucumber collected from a greenhouse located in Zhenjiang, Eastern China. The JB1-3-2 T strain is a Gram-stain-positive, nonmotile and round actinomycete. Growth was observed at temperatures between 15 and 40 ℃ (optimum, 35 ℃), in the presence of 15% (w/v) NaCl (optimum, 3%), and at pH 3 and 11 (optimum, 7). The major cellular fatty acids identified were anteiso-C15:0, iso-C16:0 and anteiso-C17:0. Genome sequencing revealed a genome size of 4.11 Mb and a DNA G + C content of 72.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the JB1-3-2 T strain was most closely related to type strains of the Oerskovia species, with the highest sequence similarity to Oerskovia turbata NRRL B-8019 T (98.2%), and shared 98.1% sequence identity with other valid type strains of this genus. Digital DNA‒DNA hybridization (dDDH) and average nucleotide identity (ANI) showed 21.8-22.2% and 77.2-77.3% relatedness, respectively, between JB1-3-2 T and type strains of the genus Oerskovia. Based on genotypic, phylogenetic, chemotaxonomic, physiological and biochemical characterization, Oerskovia flava, a novel species in the genus Oerskovia, was proposed, and the type strain was JB1-3-2 T (= CGMCC 1.18555 T = JCM 35248 T). Additionally, this novel strain has a DON degradation ability that other species in the genus Oerskovia do not possess, and glutathione-S-transferase was speculated to be the key enzyme for strain JB1-3-2 T to degrade DON.


Subject(s)
Cucumis sativus , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , Trichothecenes , Cucumis sativus/microbiology , Trichothecenes/metabolism , RNA, Ribosomal, 16S/genetics , Fatty Acids/metabolism , DNA, Bacterial/genetics , China , Base Composition , Bacterial Typing Techniques , Sequence Analysis, DNA , Genome, Bacterial
14.
Pestic Biochem Physiol ; 198: 105748, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225091

ABSTRACT

Fungal diseases pose significant threats to the production of asparagus, resulting in economic losses and decreased crop quality. The potential of the yeast Yarrowia lipolytica as a biocontrol agent against Fusarium proliferatum, a common pathogen of asparagus, was investigated in this study. The effects of Y. lipolytica treatment on decay incidence, disease index, and activities of major disease defense-related enzymes were investigated. In addition, we examined the levels of antifungal compounds such as total phenols, flavonoids, and lignin in asparagus plants exposed to Y. lipolytica. The results showed that Y. lipolytica treatment significantly reduced decay incidence and disease index caused by F. proliferatum when compared to the control group. Furthermore, Y. lipolytica-treated plants showed increased activity of disease defense-related enzymes, indicating that defense responses were activated. The activities of all evaluated enzymes were significantly higher in Y. lipolytica-treated asparagus, indicating an improved ability to combat fungal pathogens. Furthermore, Y. lipolytica treatment increased the content of antifungal compounds such as total phenols, flavonoids, and lignin, which are known to possess antimicrobial properties. These findings highlight the potential of Y. lipolytica as a biocontrol agent for fungal diseases in asparagus crops. The ability of Y. lipolytica to reduce disease incidence, boost disease defense-related enzymes, and increase antifungal compound content provides valuable insights into its efficacy as a natural and sustainable approach to disease management. However, further investigations are needed to optimize application methods and determine its efficacy under field conditions.


Subject(s)
Asparagus Plant , Mycoses , Yarrowia , Antifungal Agents/pharmacology , Asparagus Plant/microbiology , Lignin , Flavonoids/pharmacology , Phenols
15.
Int J Neurosci ; : 1-28, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963402

ABSTRACT

Introduction In recent years, exercise has been increasingly recognised as an effective and promising non-pharmacological intervention to improve physical function in patients with Parkinson's disease (PD). Cardiorespiratory fitness (CRF) is an objective measure of a person's ability to perform aerobic exercise. Therefore, it is necessary to evaluate the CRF of patients with PD.However, the CRF of Chinese patients with PD is deficient.This study is to evaluate cardiorespiratory fitness in patients with early to mid-stage PD by cardiopulmonary exercise test(CPET) on a stationary cycle ergometer; Methods:To compare the differences in each index of the CPET between the two groups of subjects; general data such as disease duration, medication use and exercise habits were also collected.Results:1)Finally, 36 PD patients and 12 healthy controls successfully completed the CPET without any adverse events.2)The V'O2peak, Metspeak, RERpeak, MVVpeak, Wpeak, HRpeak, HRpeak/pre,percentage of HRR-1 min decay > 12 bpm,SBPpeak in the PD group were lower than those in the control group(p < 0.05,each). Detailed data:V'O2peak(15.7 ± 4.5vs21.5 ± 3.6ml/kg/min,p < 0.01),Metspeak(4.5 ± 1.3 vs 6.1 ± 1.0,p < 0.01),RERpeak(1.04 ± 0.10 vs 1.15 ± 0.10,p = 0.001),MVVpeak(37.22 ± 11.58 vs 53.00 ± 16.85L/min,p = 0.009),Wpeak(49.17 ± 29.72vs49.17 ± 29.72W,p < 0.01),HRpeak(111.08 ± 16.67 vs111.08 ± 16.67bpm,p < 0.01),HRpeak/pre(71.19 ± 10.06 vs96.00 ± 21.13,p = 0.002),percentage of HRR-1min decay > 12bpm(33.3% vs 100%,p < 0.01),SBP(155.81 ± 31.83 vs 175.83 ± 17.84mmHg,p = 0.01).3)Divided PD patients into high V'O2peak group(V'O2peak ≥ 15 mL/kg/min) and low V'O2peak group(V'O2peak < 15 mL/kg/min). The age of patients, Hoehn-Yahr grade and incidence of symptom fluctuation in high V'O2peak group were lower(p < 0.05,respectively),percentage of males and percentage of HRR-1 min decay > 12 bpm were higher(p < 0.05,respectively);p < 0.05 is considered a statistically significant difference.Detailed data:age of patients(61.05 ± 6.93vs68.57 ± 7.99years,p = 0.005),Hoehn-Yahr grade(1.75 ± 0.48 vs 2.18 ± 0.64,p = 0.028),incidence of symptom fluctuation(59.1 vs 92.9%,p = 0.03),percentage of males(77.7 vs 42.9%,p = 0.041),percentage of HRR-1 min decay > 12 bpm(50 vs 7.1%,p = 0.008). Conclusions:CPET were safe to perform and the cardiorespiratory fitness is significantly reduced in patients with early and middle stage Parkinson's disease.Patients with PD presented blunted HR and SBP responses to exercise test. Females, older age, fluctuating symptoms, high H-Y staging, and higher ADL may be associated with lower oxygen uptake.

16.
Molecules ; 29(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611704

ABSTRACT

Tumors have a huge impact on human life and are now the main cause of disease-related deaths. The main means of treatment are surgery and radiotherapy, but they are more damaging to the organism and have a poor postoperative prognosis. Therefore, we urgently need safe and effective drugs to treat tumors. In recent years, Chinese herbal medicines have been widely used in tumor therapy as complementary and alternative therapies. Medicinal and edible herbs are popular and have become a hot topic of research, which not only have excellent pharmacological effects and activities, but also have almost no side effects. Therefore, as a typical medicine and food homology, some components of Paeoniae Radix Alba (PRA, called Baishao in China) have been shown to have good efficacy and safety against cancer. Numerous studies have also shown that Paeoniae Radix Alba and its active ingredients treat cancer through various pathways and are also one of the important components of many antitumor herbal compound formulas. In this paper, we reviewed the literature on the intervention of Paeoniae Radix Alba in tumors and its mechanism of action in recent years and found that there is a large amount of literature on its effect on total glucosides of paeony (TGP) and paeoniflorin (PF), as well as an in-depth discussion of the mechanism of action of Paeoniae Radix Alba and its main constituents, with a view to promote the clinical development and application of Paeoniae Radix Alba in the field of antitumor management.


Subject(s)
Drugs, Chinese Herbal , Medicine , Neoplasms , Paeonia , Plant Extracts , Humans , China , Neoplasms/drug therapy
17.
Compr Rev Food Sci Food Saf ; 23(4): e13374, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38847750

ABSTRACT

Dairy is recognized as a good source of calcium, which is important for preventing osteoporosis. However, the relationship between milk and bone health is more complex than just calcium supplementation. It is unwise to focus solely on observing the effects of a single nutrient. Lactose, proteins, and vitamins in milk, as well as fatty acids, oligosaccharides, and exosomes, all work together with calcium to enhance its bioavailability and utilization efficiency through various mechanisms. We evaluate the roles of dairy nutrients and active ingredients in maintaining bone homeostasis from the perspective of the dairy matrix effects. Special attention is given to threshold effects, synergistic effects, and associations with the gut-bone axis. We also summarize the associations between probiotic/prebiotic milk, low-fat/high-fat milk, lactose-free milk, and fortified milk with a reduced risk of osteoporosis and discuss the potential benefits and controversies of these dairy products. Moreover, we examine the role of dairy products in increasing peak bone mass during adolescence and reducing bone loss in old age. It provides a theoretical reference for the use of dairy products in the accurate prevention and management of osteoporosis and related chronic diseases and offers personalized dietary recommendations for bone health in different populations.


Subject(s)
Dairy Products , Milk , Osteoporosis , Osteoporosis/prevention & control , Humans , Animals , Milk/chemistry , Calcium, Dietary , Bone Density/drug effects , Nutrients
18.
Angew Chem Int Ed Engl ; 63(7): e202318133, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38168100

ABSTRACT

Buried interface modification can effectively improve the compatibility between interfaces. Given the distinct interface selections in perovskite solar cells (PSCs), the applicability of a singular modification material remains limited. Consequently, in response to this challenge, we devised a tailored molecular strategy based on the electronic effects of specific functional groups. Therefore, we prepared three distinct silane coupling agents, and due to the varying inductive effects of these functional groups, the electronic distribution and molecular dipole moments of the coupling agents are correspondingly altered. Among them, trimethoxy (3,3,3-trifluoropropyl)-silane (F3 -TMOS), which possesses electron-withdrawing groups, generates a molecular dipole moment directed toward the hole transport layer (HTL). This approach changes the work function of the HTL, optimizes the energy level alignment, reduces the open-circuit voltage loss, and facilitates carrier transport. Furthermore, through the buffering effect of the coupling agent, the interface strain and lattice distortion caused by annealing the perovskite are reduced, enhancing the stability of the tin-based perovskite. Encouragingly, tin PSCs treated with F3 -TMOS achieved a champion efficiency of 14.67 %. This strategy provides an expedient avenue for the design of buried interface modification materials, enabling precise molecular adjustments in accordance with distinct interfacial contexts to ameliorate mismatched energetics and enhance carrier dynamics.

19.
Angew Chem Int Ed Engl ; 63(22): e202403739, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38565430

ABSTRACT

Deep-blue perovskite light-emitting diodes (PeLEDs) based on quasi-two-dimensional (quasi-2D) systems exist heightened sensitivity to the domain distribution. The top-down crystallization mode will lead to a vertical gradient distribution of quantum well (QW) structure, which is unfavorable for deep-blue emission. Herein, a thermal gradient annealing treatment is proposed to address the polydispersity issue of vertical QWs in quasi-2D perovskites. The formation of large-n domains at the upper interface of the perovskite film can be effectively inhibited by introducing a low-temperature source in the annealing process. Combined with the utilization of NaBr to inhibit the undesirable n=1 domain, a vertically concentrated QW structure is ultimately attained. As a result, the fabricated device delivers a narrow and stable deep-blue emission at 458 nm with an impressive external quantum efficiency (EQE) of 5.82 %. Green and sky-blue PeLEDs with remarkable EQE of 21.83 % and 17.51 % are also successfully achieved, respectively, by using the same strategy. The findings provide a universal strategy across the entire quasi-2D perovskites, paving the way for future practical application of PeLEDs.

20.
Small ; 19(15): e2207135, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36610055

ABSTRACT

Electrocatalytic hydrogen evolution is an important approach to produce clean energy, and many electrocatalysts (e.g., platinum) are developed for hydrogen production. However, the electrocatalytic efficiency of commonly used metal catalysts needs to be improved to compensate their high cost. Herein, the electrocatalytic efficiency of platinum nanoparticles (PtNPs) in hydrogen evolution is largely improved via simple surface adsorption of sub-monolayer p-aminothiophenol (PATP) molecules. The overpotential goes down to 86.1 mV, which is 50.2 mV lower than that on naked PtNPs. This catalytic activity is even better than that of 20 wt.% Pt/C, despite the much smaller active surface area of PATP-adsorbed PtNPs than Pt/C. It is theoretically and experimentally confirmed that the improved electrocatalytic activity in hydrogen evolution can be attributed to the change in electronic structure of PtNPs induced by surface adsorption of PATP molecules. More importantly, this strategy can also be used to improve the electrocatalytic activity of palladium, gold, and silver nanoparticles. Therefore, this work provides a simple, convenient, and versatile method for improving the electrocatalytic activity of metal nanocatalysts. This surface adsorption strategy may also be used for improving the efficiency of many other nanocatalysts in many reactions.

SELECTION OF CITATIONS
SEARCH DETAIL