Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 229
Filter
1.
Nature ; 619(7970): 563-571, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37407812

ABSTRACT

Whereas progress has been made in the identification of neural signals related to rapid, cued decisions1-3, less is known about how brains guide and terminate more ethologically relevant decisions in which an animal's own behaviour governs the options experienced over minutes4-6. Drosophila search for many seconds to minutes for egg-laying sites with high relative value7,8 and have neurons, called oviDNs, whose activity fulfills necessity and sufficiency criteria for initiating the egg-deposition motor programme9. Here we show that oviDNs express a calcium signal that (1) dips when an egg is internally prepared (ovulated), (2) drifts up and down over seconds to minutes-in a manner influenced by the relative value of substrates-as a fly determines whether to lay an egg and (3) reaches a consistent peak level just before the abdomen bend for egg deposition. This signal is apparent in the cell bodies of oviDNs in the brain and it probably reflects a behaviourally relevant rise-to-threshold process in the ventral nerve cord, where the synaptic terminals of oviDNs are located and where their output can influence behaviour. We provide perturbational evidence that the egg-deposition motor programme is initiated once this process hits a threshold and that subthreshold variation in this process regulates the time spent considering options and, ultimately, the choice taken. Finally, we identify a small recurrent circuit that feeds into oviDNs and show that activity in each of its constituent cell types is required for laying an egg. These results argue that a rise-to-threshold process regulates a relative-value, self-paced decision and provide initial insight into the underlying circuit mechanism for building this process.


Subject(s)
Decision Making , Drosophila melanogaster , Oviposition , Animals , Female , Calcium Signaling , Decision Making/physiology , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/physiology , Neural Pathways , Neurons/metabolism , Oviposition/physiology , Presynaptic Terminals/metabolism , Psychomotor Performance
2.
Nature ; 589(7843): 577-581, 2021 01.
Article in English | MEDLINE | ID: mdl-33239786

ABSTRACT

Choosing a mate is one of the most consequential decisions a female will make during her lifetime. A female fly signals her willingness to mate by opening her vaginal plates, allowing a courting male to copulate1,2. Vaginal plate opening (VPO) occurs in response to the male courtship song and is dependent on the mating status of the female. How these exteroceptive (song) and interoceptive (mating status) inputs are integrated to regulate VPO remains unknown. Here we characterize the neural circuitry that implements mating decisions in the brain of female Drosophila melanogaster. We show that VPO is controlled by a pair of female-specific descending neurons (vpoDNs). The vpoDNs receive excitatory input from auditory neurons (vpoENs), which are tuned to specific features of the D. melanogaster song, and from pC1 neurons, which encode the mating status of the female3,4. The song responses of vpoDNs, but not vpoENs, are attenuated upon mating, accounting for the reduced receptivity of mated females. This modulation is mediated by pC1 neurons. The vpoDNs thus directly integrate the external and internal signals that control the mating decisions of Drosophila females.


Subject(s)
Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Mating Preference, Animal , Neural Pathways/cytology , Neural Pathways/physiology , Neurons/physiology , Acoustic Stimulation , Animals , Auditory Pathways , Copulation , Courtship , Female , Male , Optogenetics , Vocalization, Animal
3.
Nature ; 579(7797): 101-105, 2020 03.
Article in English | MEDLINE | ID: mdl-32103180

ABSTRACT

Mating and egg laying are tightly cooordinated events in the reproductive life of all oviparous females. Oviposition is typically rare in virgin females but is initiated after copulation. Here we identify the neural circuitry that links egg laying to mating status in Drosophila melanogaster. Activation of female-specific oviposition descending neurons (oviDNs) is necessary and sufficient for egg laying, and is equally potent in virgin and mated females. After mating, sex peptide-a protein from the male seminal fluid-triggers many behavioural and physiological changes in the female, including the onset of egg laying1. Sex peptide is detected by sensory neurons in the uterus2-4, and silences these neurons and their postsynaptic ascending neurons in the abdominal ganglion5. We show that these abdominal ganglion neurons directly activate the female-specific pC1 neurons. GABAergic (γ-aminobutyric-acid-releasing) oviposition inhibitory neurons (oviINs) mediate feed-forward inhibition from pC1 neurons to both oviDNs and their major excitatory input, the oviposition excitatory neurons (oviENs). By attenuating the abdominal ganglion inputs to pC1 neurons and oviINs, sex peptide disinhibits oviDNs to enable egg laying after mating. This circuitry thus coordinates the two key events in female reproduction: mating and egg laying.


Subject(s)
Copulation/physiology , Drosophila melanogaster/physiology , Neural Pathways/physiology , Oviposition/physiology , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Female , Ganglia, Sympathetic/cytology , Male , Peptides/metabolism , Sensory Receptor Cells/metabolism , Sexual Abstinence/physiology
4.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38741271

ABSTRACT

This study investigates abnormalities in cerebellar-cerebral static and dynamic functional connectivity among patients with acute pontine infarction, examining the relationship between these connectivity changes and behavioral dysfunction. Resting-state functional magnetic resonance imaging was utilized to collect data from 45 patients within seven days post-pontine infarction and 34 normal controls. Seed-based static and dynamic functional connectivity analyses identified divergences in cerebellar-cerebral connectivity features between pontine infarction patients and normal controls. Correlations between abnormal functional connectivity features and behavioral scores were explored. Compared to normal controls, left pontine infarction patients exhibited significantly increased static functional connectivity within the executive, affective-limbic, and motor networks. Conversely, right pontine infarction patients demonstrated decreased static functional connectivity in the executive, affective-limbic, and default mode networks, alongside an increase in the executive and motor networks. Decreased temporal variability of dynamic functional connectivity was observed in the executive and default mode networks among left pontine infarction patients. Furthermore, abnormalities in static and dynamic functional connectivity within the executive network correlated with motor and working memory performance in patients. These findings suggest that alterations in cerebellar-cerebral static and dynamic functional connectivity could underpin the behavioral dysfunctions observed in acute pontine infarction patients.


Subject(s)
Brain Stem Infarctions , Cerebellum , Magnetic Resonance Imaging , Neural Pathways , Pons , Humans , Male , Female , Middle Aged , Cerebellum/physiopathology , Cerebellum/diagnostic imaging , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Pons/diagnostic imaging , Pons/physiopathology , Brain Stem Infarctions/physiopathology , Brain Stem Infarctions/diagnostic imaging , Aged , Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging
5.
J Am Chem Soc ; 146(1): 89-94, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38109262

ABSTRACT

The synthesis of crystalline polyphenylene covalent organic frameworks (COFs) was accomplished by linking fluorinated tris(4-acetylphenyl)benzene building units using aldol cyclotrimerization. The structures of the two COFs, reported here, were confirmed by powder X-ray diffraction techniques, Fourier transform infrared, and solid-state 13C CP/MAS NMR spectroscopy. The results showed that the COFs were porous and chemically stable in corrosive, harsh environments for at least 1 week. Accordingly, postsynthetically modified derivatives of these COFs using primary amines showed CO2 uptake from air and flue gas.

6.
J Am Chem Soc ; 146(4): 2835-2844, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38236722

ABSTRACT

We have developed two series of amine-functionalized zirconium (Zr) metal-organic framework-808 (MOF-808), which were produced by postsynthetic modifications to have either amino acids coordinated to Zr ions (MOF-808-AAs) or polyamines covalently bound to the chloro-functionalized structure (MOF-808-PAs). These MOF variants were comprehensively characterized by liquid-state 1H nuclear magnetic resonance (NMR) measurements and potentiometric acid-base titration to determine the amounts of amines, energy-dispersive X-ray spectroscopy to assess the extent of covalent substitution by polyamines, powder X-ray diffraction analysis to verify the maintenance of the MOF crystallinity and structure after postsynthetic modifications, nitrogen sorption isotherm measurements to confirm retention of the porosity, and water sorption isotherm measurements to find the water uptake in the pores of each member of the series. Evaluation and testing of these compounds in direct air capture (DAC) of CO2 showed improved CO2 capture performance for the functionalized forms, especially under humid conditions: In dry conditions, the l-lysine- and tris(3-aminopropyl)amine-functionalized variants, termed as MOF-808-Lys and MOF-808-TAPA, exhibited the highest CO2 uptakes at 400 ppm, measuring 0.612 and 0.498 mmol g-1, and further capacity enhancement was achieved by introducing 50% relative humidity, resulting in remarkable uptakes of 1.205 and 0.872 mmol g-1 corresponding to 97 and 75% increase compared to the dry uptakes, respectively. The mechanism underlying the enhanced uptake efficiency was revealed by 13C solid-state NMR and temperature-programmed desorption measurements, indicating the formation of bicarbonate species, and therefore a stoichiometry of 1:1 CO2 to each amine site.

7.
Biochem Biophys Res Commun ; 714: 149970, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38663097

ABSTRACT

Movement dynamics in the nucleus involve various biological processes, including DNA repair, which is crucial for cancer prevention. Changes in the movement of the components of the nucleus indicate the changes in movement dynamics in the nucleus. In Schizosaccharomyces pombe, the inner nuclear membrane protein Bqt4 plays an essential role in attaching telomeres to the nuclear envelope. We observed that the deletion of bqt4+ caused a significant decrease in the mean square displacement (MSD) calculated from the distance between the nucleolar center and spindle pole body (SPB), hereafter referred to as MSD(SPB-Nucleolus). The MSD(SPB-Nucleolus) decrease in bqt4Δ was microtubule-dependent. The Rap1-binding ability loss mutant, bqt4F46A, and nonspecific DNA-binding ability mutants, bqt43E-A, did not exhibit an MSD(SPB-Nucleolus) decrease compared to the WT. Moreover, the bqt43E-Arap1Δ double mutant and 1-262 amino acids truncated mutant bqt4ΔN (263-432), which does not have either Rap1-binding or nonspecific DNA-binding abilities, did not exhibit the MSD(SPB-Nucleolus) decrease to the same extent as bqt4Δ. These results suggest that the unknown function of Bqt4 in the C-terminal domain is essential for the maintenance of the pattern of relative movement between SPB and the nucleolus.


Subject(s)
Cell Nucleolus , DNA-Binding Proteins , Nuclear Proteins , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Spindle Pole Bodies , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Cell Nucleolus/metabolism , Spindle Pole Bodies/metabolism , Mutation , Microtubules/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Protein Binding
8.
Mol Pharm ; 21(1): 267-282, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38079527

ABSTRACT

Messenger ribonucleic acid (mRNA)-based gene therapy has great potential for cancer gene therapy. However, the effectiveness of mRNA in cancer therapy needs to be further improved, and the delivery efficiency and instability of mRNA limit the application of mRNA-based products. Both the delivery efficiency can be elevated by cell-penetrating peptide modification, and the immune response can be enhanced by tumor cell lysate stimulation, representing an advantageous strategy to expand the effectiveness of mRNA gene therapy. Therefore, it is vital to exploit a vector that can deliver high-efficiency mRNA with codelivery of tumor cell lysate to induce specific immune responses. We previously reported that DMP cationic nanoparticles, formed by the self-assembly of DOTAP and mPEG-PCL, can deliver different types of nucleic acids. DMP has been successfully applied in gene therapy research for various tumor types. Here, we encapsulated tumor cell lysates with DMP nanoparticles and then modified them with a fused cell-penetrating peptide (TAT-iRGD) to form an MLSV system. The MLSV system was loaded with encoded Bim mRNA, forming the MLSV/Bim complex. The average size of the synthesized MLSV was 191.4 nm, with a potential of 47.8 mV. The MLSV/mRNA complex promotes mRNA absorption through caveolin-mediated endocytosis, with a transfection rate of up to 68.6% in B16 cells. The MLSV system could also induce the maturation and activation of dendritic cells, obviously promoting the expression of CD80, CD86, and MHC-II both in vitro and in vivo. By loading the encoding Bim mRNA, the MLSV/Bim complex can inhibit cell proliferation and tumor growth, with inhibition rates of up to 87.3% in vitro. Similarly, the MLSV/Bim complex can inhibit tumor growth in vivo, with inhibition rates of up to 78.7% in the B16 subcutaneous tumor model and 63.3% in the B16 pulmonary metastatic tumor model. Our results suggest that the MLSV system is an advanced candidate for mRNA-based immunogene therapy.


Subject(s)
Cell-Penetrating Peptides , Melanoma , Multifunctional Nanoparticles , Nanoparticles , Humans , Melanoma/genetics , Melanoma/therapy , Transfection , Genetic Therapy , Cell Line, Tumor
9.
J Opt Soc Am A Opt Image Sci Vis ; 41(2): 349-354, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38437349

ABSTRACT

A simple twin-core D-shape photonic crystal fiber sensor based on surface plasmon resonance (SPR) is designed for the measurement of refractive indices (RI). The twin-core D-shape structure enhances the SPR effect, and the M g F 2-Au dual-layer film narrows the linewidth in the loss spectrum, consequently improving both the sensitivity and figure of merit (FOM). The properties of the sensor are analyzed by the finite element method. In the RI range of 1.32-1.42, the maximum wavelength sensitivity, FOM, and resolution are 62,000 nm/RIU, 1281R I U -1, and 1.61×10-6, respectively.

10.
J Am Chem Soc ; 145(42): 22885-22889, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37844128

ABSTRACT

Although reticular chemistry has commonly utilized mutually embracing tetrahedral metal complexes as crossing points to generate three-dimensional molecularly woven structures, weaving in two dimensions remains largely unexplored. We report a new strategy to access 2D woven COFs by controlling the angle of the usually linear linker, resulting in the successful synthesis of a 2D woven pattern based on chain-link fence. The synthesis was accomplished by linking aldehyde-functionalized copper(I) bisphenanthroline complexes with bent 4,4'-oxydianiline building units. This results in the formation of a crystalline solid, termed COF-523-Cu, whose structure was characterized by spectroscopic techniques and electron and X-ray diffraction techniques to reveal a molecularly woven, twofold-interpenetrated chain-link fence. The present work significantly advances the concept of molecular weaving and its practice in the design of complex chemical structures.

11.
J Hum Genet ; 68(11): 769-775, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37491516

ABSTRACT

Acute necrotizing encephalopathy (ANE) is a rare disease that predominantly affects children and is associated with a high mortality rate. Here we report three cases of COVID-19-related ANE in children, with the mutation detection in two genes associated with mitochondrial dysfunction. The cases exhibited common ANE symptoms, such as fever, impaired consciousness, positive pathological reflex, increased cerebrospinal fluid protein, and multifocal and symmetric brain lesions identified through MRI. Using genotype-phenotype correlation analysis in trio-whole exome sequencing (WES), four potential pathogenic variants were identified in two genes associated with mitochondrial function (RANBP2 and MCCC2). Notably, MCCC2 was identified as being potentially associated with COVID-19-related ANE for the first time, and two of the four variants had not been previously reported. Our findings expand the clinical and mutation spectrum of COVID-19-related ANE in pediatric cases. The finding of these three new cases in our study further supports the previous hypothesis about the role of mitochondrial homeostatic imbalance in COVID-19-related ANE. It is essential to use genetic testing to identify this subset of patients with compromised mitochondrial function in order to improve patient management and prognosis.

12.
Opt Express ; 31(23): 38970-38976, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017987

ABSTRACT

The wide applications of terahertz (THz) wave technology in the ∼1-3 THz range has resulted in a surge in the demand for the performance improvement of THz wave detection technique. In this study, a frequency tunable, highly sensitive frequency upconversion detection based on a 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene) malononitrile (OH1) crystal at room temperature is demonstrated. Moreover, to effectively increase the signal-to-noise ratio in the low frequency range, a beam isolation enhancer is proposed and its effect is verified. The minimum detectable THz pulse energy reaches about 100 aJ at 1.9 THz. The frequency tuning ranging from 1 to 3 THz. Sensitivity comparison with a 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystal system shows that OH1 is a more suitable nonlinear crystal in the 1-2.4 THz range.

13.
BMC Cancer ; 23(1): 858, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700255

ABSTRACT

BACKGROUND: Downstaging of hepatocellular carcinoma (HCC) makes it possible for patients beyond the criteria to have the chance of liver transplantation (LT) and improved outcomes. Thus, a procedure to predict the prognosis of the treatment is an urgent requisite. The present study aimed to construct a comprehensive framework with clinical information and radiomics features to accurately predict the prognosis of downstaging treatment. METHODS: Specifically, three-dimensional (3D) tumor segmentation from contrast-enhanced computed tomography (CT) is employed to extract spatial information of the lesions. Then, the radiomics features within the segmented region are calculated. Combining radiomics features and clinical data prompts the development of feature selection to enhance the robustness and generalizability of the model. Finally, we adopt the support vector machine (SVM) algorithm to establish a classification model for predicting HCC downstaging outcomes. RESULTS: Herein, a comparative study was conducted on three different models: a radiomics features-based model (R model), a clinical features-based model (C model), and a joint radiomics clinical features-based model (R-C model). The average accuracy of the three models was 0.712, 0.792, and 0.844, and the average area under the receiver-operating characteristic (AUROC) of the three models was 0.775, 0.804, and 0.877, respectively. CONCLUSIONS: The novel and practical R-C model accurately predicted the downstaging outcomes, which could be utilized to guide the HCC downstaging toward LT treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Liver Transplantation , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Algorithms , ROC Curve
14.
J Opt Soc Am A Opt Image Sci Vis ; 40(12): 2128-2134, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38086021

ABSTRACT

A novel anti-resonant fiber for low-loss terahertz waveguides is proposed and analyzed. The terahertz fiber uses high-resistivity silicon as the bulk material and nine nested double-layer concentric circular tubes in the cladding to reduce propagation losses. The effects of the geometric parameters on the propagation characteristics are analyzed by the finite element method. The result indicates that an ultra-low total loss of 4.9×10-4 d B/m is achieved at f=1T H z. The low-loss propagation window is 0.48 THz ranging from 0.6 to 1.4 THz. In addition, the influence of mechanical bending on the propagation loss is investigated and the bending loss can be maintained at less than 7.3×10-3 d B/m at f=1T H z even if the bending radius is larger than 60 cm. The properties of this anti-resonant fiber are significantly superior to those of previously reported structures and the fiber thus has large commercial potential.

15.
J Opt Soc Am A Opt Image Sci Vis ; 40(7): 1352-1358, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37706736

ABSTRACT

A surface plasmon resonance sensor composed of photonic crystal fibers (PCF-SPR) with an A u-T i O 2-A u triple layer is designed for refractive index (RI) sensing and analyzed theoretically by the finite element method. The sensor exhibits enhanced resonance coupling between the core mode and surface plasmon polariton (SPP) mode as well as better sensitivity than the structure with a single gold coating. Furthermore, the A u-T i O 2-A u tri-layer structure narrows the linewidth of the loss spectrum and improves the figure of merit (FOM). In the analyte RI range of 1.30-1.42, the maximum wavelength sensitivity is 20,300 nm/RIU, resolution is 4.93×10-6, amplitude sensitivity is 6427R I U -1, and FOM is 559R I U -1. The results provide insights into the design of high-performance PCF-SPR sensors.

16.
Curr Microbiol ; 81(1): 36, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38063939

ABSTRACT

Staphylococcus aureus is one of the most prevalent bacteria found in acute wounds. S. aureus produces many virulence factors and extracellular enzymes that contribute to bacterial survival, dissemination, and pathogenicity. Lipase GehB is a glycerol ester hydrolase that hydrolyzes triglycerides to facilitate the evasion of S. aureus from host immune recognition. However, the role and mechanism of lipase GehB in skin acute wound healing after S. aureus infection remain unclear. In this study, we found that the gehB gene deletion mutant (USA300ΔgehB) stimulated significantly higher levels of pro-inflammatory cytokines in RAW264.7 and Toll-like receptor 2 (TLR2)-transfected HEK293 cells than the wild-type USA300 strain did. Recombinant GehB-His treated lipoprotein (Lpp) reduced stimulation of TLR2-dependent TNF-α production by RAW264.7 macrophages. GehB delayed the skin acute wound healing in BALB/c mice infected with S. aureus, while wound healing was similar in C57BL/6 TLR2-/- mice infected with either wild-type USA300 or USA300ΔgehB. In BALB/c mice, we also observed more bacterial survival, less leukocyte recruitment, lower IL-8 production, and adipocyte differentiation in USA300-infected skin acute wound tissues than those in USA300ΔgehB-challenged ones. Our data indicated that GehB inactivates lipoproteins to shield S. aureus from innate immune killing, resulting in delayed the healing of skin acute wounds infected with S. aureus.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Humans , Mice , HEK293 Cells , Lipase , Lipoproteins/genetics , Mice, Inbred C57BL , Staphylococcus aureus/genetics , Toll-Like Receptor 2/genetics , Wound Healing , Bacterial Proteins/metabolism
17.
Angew Chem Int Ed Engl ; 62(36): e202307674, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37439285

ABSTRACT

Herein, we report the synthesis of a nitrone-linked covalent organic framework, COF-115, by combining N, N', N', N'''-(ethene-1, 1, 2, 2-tetrayltetrakis(benzene-4, 1-diyl))tetrakis(hydroxylamine) and terephthaladehyde via a polycondensation reaction. The formation of the nitrone functionality was confirmed by solid-state 13 C multi cross-polarization magic angle spinning NMR spectroscopy of the 13 C-isotope-labeled COF-115 and Fourier-transform infrared spectroscopy. The permanent porosity of COF-115 was evaluated through low-pressure N2 , CO2 , and H2 sorption experiments. Water vapor and carbon dioxide sorption analysis of COF-115 and the isoreticular imine-linked COF indicated a superior potential of N-oxide-based porous materials for atmospheric water harvesting and CO2 capture applications. Density functional theory calculations provided valuable insights into the difference between the adsorption properties of these COFs. Lastly, photoinduced rearrangement of COF-115 to the associated amide-linked material was successfully demonstrated.

18.
J Am Chem Soc ; 144(28): 12989-12995, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35786881

ABSTRACT

We report the first covalent incorporation of reactive aliphatic amine species into covalent organic frameworks (COFs). This was achieved through the crystallization of an imine-linked COF, termed COF-609-Im, followed by conversion of its imine linkage to base-stable tetrahydroquinoline linkage through aza-Diels-Alder cycloaddition, and finally, the covalent incorporation of tris(3-aminopropyl)amine into the framework. The obtained COF-609 exhibits a 1360-fold increase in CO2 uptake capacity compared to the pristine framework and a further 29% enhancement in the presence of humidity. We confirmed the chemistry of framework conversion and corroborated the enhanced CO2 uptake phenomenon with and without humidity through isotope-labeled Fourier transform infrared spectroscopy and solid-state nuclear magnetic resonance spectroscopy. With this study, we established a new synthetic strategy to access a class of chemisorbents characterized by high affinity to CO2 in dilute sources, such as the air.


Subject(s)
Metal-Organic Frameworks , Amines , Carbon Dioxide/chemistry , Crystallization , Imines/chemistry
19.
Hum Brain Mapp ; 43(15): 4676-4688, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35770854

ABSTRACT

Cognitive dysfunction in patients with infratentorial stroke has been paid little attention. Brainstem stroke may disrupt network connectivity across the whole brain and affect multidomain cognition, but the details of this process remain unclear. The study aimed to investigate the effects of stroke-induced pontine injury on whole-brain network connectivity and cognitive function. We included 47 patients with pontine stroke and 56 healthy comparisons (HC), who underwent cognitive tests and functional magnetic resonance imaging (fMRI). Seven meaningful brain networks were identified using independent component analysis (ICA). Patients with pontine stroke had decreased intra-network functional connectivities (FCs) in the primary perceptual and higher cognitive control networks, including sensorimotor network (SMN), visual network (VIS), default mode network (DMN), and salience network (SAN), as well as decreased inter-network FCs in the primary perceptual (VIS-SMN) and higher cognitive control networks (bilateral frontoparietal networks, rFPN-lFPN). While the FCs between the primary perceptual and higher cognitive control networks (VIS-DMN, VIS-rFPN, VIS-lFPN) were increased. Furthermore, the alterations in these FCs correlated with patients' cognitive measurements. These findings suggested that the infratentorial stroke can induce dysfunctional connectivity in both primary perceptual and higher cognitive control networks at the whole-brain level, which may be attributable to the neural substrates of multidomain cognitive deficits in these patients.


Subject(s)
Cognitive Dysfunction , Stroke , Brain/diagnostic imaging , Brain Mapping/methods , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Humans , Magnetic Resonance Imaging/methods , Stroke/complications , Stroke/diagnostic imaging
20.
Small ; 18(45): e2203565, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36156855

ABSTRACT

The photodetector (PD) is the key component to realize efficient optoelectronic conversion signal in the visible light communication (VLC) system. The response speed directly determines the bandwidth of the whole system. Metal halide perovskite is a neotype of low-cost solution processing semiconductor, with strong optical absorption, low trap density, and high carrier mobility, thus has been widely explored in photoelectric detection applications. However, previously reported perovskite polycrystalline photodetectors exhibit limited response speed due to the existence of grain boundaries. Here, an improved confined space method is developed through adjusting the heating area to control nucleation, resulting in centimeter scale fully inorganic perovskite CsPbBr3 thin single crystal films (SCFs) (<40 µm). The smooth surface and high crystallinity of CsPbBr3 SCFs render admirable exciton lifetime. The planar metal-semiconductor-metal photodetector using CsPbBr3 SCF as the photosensitive layer demonstrates a limit response time of 200/300 ns and a VLC within 100-500 kHz frequency for both 365 nm and white light, which is superior to previously reported CsPbBr3 polycrystalline film and single crystal photodetectors.

SELECTION OF CITATIONS
SEARCH DETAIL