Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.541
Filter
1.
Cell ; 181(2): 442-459.e29, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32302573

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is a powerful tool for defining cellular diversity in tumors, but its application toward dissecting mechanisms underlying immune-modulating therapies is scarce. We performed scRNA-seq analyses on immune and stromal populations from colorectal cancer patients, identifying specific macrophage and conventional dendritic cell (cDC) subsets as key mediators of cellular cross-talk in the tumor microenvironment. Defining comparable myeloid populations in mouse tumors enabled characterization of their response to myeloid-targeted immunotherapy. Treatment with anti-CSF1R preferentially depleted macrophages with an inflammatory signature but spared macrophage populations that in mouse and human expresses pro-angiogenic/tumorigenic genes. Treatment with a CD40 agonist antibody preferentially activated a cDC population and increased Bhlhe40+ Th1-like cells and CD8+ memory T cells. Our comprehensive analysis of key myeloid subsets in human and mouse identifies critical cellular interactions regulating tumor immunity and defines mechanisms underlying myeloid-targeted immunotherapies currently undergoing clinical testing.


Subject(s)
Colonic Neoplasms/pathology , Myeloid Cells/metabolism , Single-Cell Analysis/methods , Adult , Aged , Aged, 80 and over , Animals , Base Sequence/genetics , CD8-Positive T-Lymphocytes/immunology , China , Colonic Neoplasms/therapy , Colorectal Neoplasms/pathology , Dendritic Cells/immunology , Female , Humans , Immunotherapy , Macrophages/immunology , Male , Mice , Middle Aged , Sequence Analysis, RNA/methods , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
2.
Cell ; 181(4): 848-864.e18, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32298651

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a progressive condition of chronic bronchitis, small airway obstruction, and emphysema that represents a leading cause of death worldwide. While inflammation, fibrosis, mucus hypersecretion, and metaplastic epithelial lesions are hallmarks of this disease, their origins and dependent relationships remain unclear. Here we apply single-cell cloning technologies to lung tissue of patients with and without COPD. Unlike control lungs, which were dominated by normal distal airway progenitor cells, COPD lungs were inundated by three variant progenitors epigenetically committed to distinct metaplastic lesions. When transplanted to immunodeficient mice, these variant clones induced pathology akin to the mucous and squamous metaplasia, neutrophilic inflammation, and fibrosis seen in COPD. Remarkably, similar variants pre-exist as minor constituents of control and fetal lung and conceivably act in normal processes of immune surveillance. However, these same variants likely catalyze the pathologic and progressive features of COPD when expanded to high numbers.


Subject(s)
Lung/pathology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Adult , Aged , Animals , Female , Fibrosis/physiopathology , Humans , Inflammation/pathology , Lung/metabolism , Male , Metaplasia/physiopathology , Mice , Middle Aged , Neutrophils/immunology , Pneumonia/pathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Single-Cell Analysis/methods , Stem Cells/metabolism
3.
N Engl J Med ; 390(8): 712-722, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38381674

ABSTRACT

BACKGROUND: Biomarker changes that occur in the period between normal cognition and the diagnosis of sporadic Alzheimer's disease have not been extensively investigated in longitudinal studies. METHODS: We conducted a multicenter, nested case-control study of Alzheimer's disease biomarkers in cognitively normal participants who were enrolled in the China Cognition and Aging Study from January 2000 through December 2020. A subgroup of these participants underwent testing of cerebrospinal fluid (CSF), cognitive assessments, and brain imaging at 2-year-to-3-year intervals. A total of 648 participants in whom Alzheimer's disease developed were matched with 648 participants who had normal cognition, and the temporal trajectories of CSF biochemical marker concentrations, cognitive testing, and imaging were analyzed in the two groups. RESULTS: The median follow-up was 19.9 years (interquartile range, 19.5 to 20.2). CSF and imaging biomarkers in the Alzheimer's disease group diverged from those in the cognitively normal group at the following estimated number of years before diagnosis: amyloid-beta (Aß)42, 18 years; the ratio of Aß42 to Aß40, 14 years; phosphorylated tau 181, 11 years; total tau, 10 years; neurofilament light chain, 9 years; hippocampal volume, 8 years; and cognitive decline, 6 years. As cognitive impairment progressed, the changes in CSF biomarker levels in the Alzheimer's disease group initially accelerated and then slowed. CONCLUSIONS: In this study involving Chinese participants during the 20 years preceding clinical diagnosis of sporadic Alzheimer's disease, we observed the time courses of CSF biomarkers, the times before diagnosis at which they diverged from the biomarkers from a matched group of participants who remained cognitively normal, and the temporal order in which the biomarkers became abnormal. (Funded by the Key Project of the National Natural Science Foundation of China and others; ClinicalTrials.gov number, NCT03653156.).


Subject(s)
Alzheimer Disease , Biomarkers , Cognitive Dysfunction , Humans , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/complications , Alzheimer Disease/diagnosis , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Case-Control Studies , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , tau Proteins/cerebrospinal fluid , Follow-Up Studies
4.
Proc Natl Acad Sci U S A ; 121(24): e2404668121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833473

ABSTRACT

Developing anticancer drugs with low side effects is an ongoing challenge. Immunogenic cell death (ICD) has received extensive attention as a potential synergistic modality for cancer immunotherapy. However, only a limited set of drugs or treatment modalities can trigger an ICD response and none of them have cytotoxic selectivity. This provides an incentive to explore strategies that might provide more effective ICD inducers free of adverse side effects. Here, we report a metal-based complex (Cu-1) that disrupts cellular redox homeostasis and effectively stimulates an antitumor immune response with high cytotoxic specificity. Upon entering tumor cells, this Cu(II) complex enhances the production of intracellular radical oxidative species while concurrently depleting glutathione (GSH). As the result of heightening cellular oxidative stress, Cu-1 gives rise to a relatively high cytotoxicity to cancer cells, whereas normal cells with low levels of GSH are relatively unaffected. The present Cu(II) complex initiates a potent ferroptosis-dependent ICD response and effectively inhibits in vivo tumor growth in an animal model (c57BL/6 mice challenged with colorectal cancer). This study presents a strategy to develop metal-based drugs that could synergistically potentiate cytotoxic selectivity and promote apoptosis-independent ICD responses through perturbations in redox homeostasis.


Subject(s)
Copper , Glutathione , Homeostasis , Oxidation-Reduction , Animals , Mice , Humans , Glutathione/metabolism , Mice, Inbred C57BL , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Oxidative Stress/drug effects , Drug Synergism , Immunogenic Cell Death/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Ferroptosis/drug effects , Reactive Oxygen Species/metabolism , Colorectal Neoplasms/immunology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism
5.
Proc Natl Acad Sci U S A ; 121(12): e2316723121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38478686

ABSTRACT

Many environmental and industrial processes depend on how fluids displace each other in porous materials. However, the flow dynamics that govern this process are still poorly understood, hampered by the lack of methods to measure flows in optically opaque, microscopic geometries. We introduce a 4D microvelocimetry method based on high-resolution X-ray computed tomography with fast imaging rates (up to 4 Hz). We use this to measure flow fields during unsteady-state drainage, injecting a viscous fluid into rock and filter samples. This provides experimental insight into the nonequilibrium energy dynamics of this process. We show that fluid displacements convert surface energy into kinetic energy. The latter corresponds to velocity perturbations in the pore-scale flow field behind the invading fluid front, reaching local velocities more than 40 times faster than the constant pump rate. The characteristic length scale of these perturbations exceeds the characteristic pore size by more than an order of magnitude. These flow field observations suggest that nonlocal dynamic effects may be long-ranged even at low capillary numbers, impacting the local viscous-capillary force balance and the representative elementary volume. Furthermore, the velocity perturbations can enhance unsaturated dispersive mixing and colloid transport and yet, are not accounted for in current models. Overall, this work shows that 4D X-ray velocimetry opens the way to solve long-standing fundamental questions regarding flow and transport in porous materials, underlying models of, e.g., groundwater pollution remediation and subsurface storage of CO2 and hydrogen.

6.
Circulation ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686562

ABSTRACT

BACKGROUND: Myocardial mitochondrial dysfunction underpins the pathogenesis of heart failure (HF), yet therapeutic options to restore myocardial mitochondrial function are scarce. Epigenetic modifications of mitochondrial DNA (mtDNA), such as methylation, play a pivotal role in modulating mitochondrial homeostasis. However, their involvement in HF remains unclear. METHODS: Experimental HF models were established through continuous angiotensin II and phenylephrine (AngII/PE) infusion or prolonged myocardial ischemia/reperfusion injury. The landscape of N6-methyladenine (6mA) methylation within failing cardiomyocyte mtDNA was characterized using high-resolution mass spectrometry and methylated DNA immunoprecipitation sequencing. A tamoxifen-inducible cardiomyocyte-specific Mettl4 knockout mouse model and adeno-associated virus vectors designed for cardiomyocyte-targeted manipulation of METTL4 (methyltransferase-like protein 4) expression were used to ascertain the role of mtDNA 6mA and its methyltransferase METTL4 in HF. RESULTS: METTL4 was predominantly localized within adult cardiomyocyte mitochondria. 6mA modifications were significantly more abundant in mtDNA than in nuclear DNA. Postnatal cardiomyocyte maturation presented with a reduction in 6mA levels within mtDNA, coinciding with a decrease in METTL4 expression. However, an increase in both mtDNA 6mA level and METTL4 expression was observed in failing adult cardiomyocytes, suggesting a shift toward a neonatal-like state. METTL4 preferentially targeted mtDNA promoter regions, which resulted in interference with transcription initiation complex assembly, mtDNA transcriptional stalling, and ultimately mitochondrial dysfunction. Amplifying cardiomyocyte mtDNA 6mA through METTL4 overexpression led to spontaneous mitochondrial dysfunction and HF phenotypes. The transcription factor p53 was identified as a direct regulator of METTL4 transcription in response to HF-provoking stress, thereby revealing a stress-responsive mechanism that controls METTL4 expression and mtDNA 6mA. Cardiomyocyte-specific deletion of the Mettl4 gene eliminated mtDNA 6mA excess, preserved mitochondrial function, and mitigated the development of HF upon continuous infusion of AngII/PE. In addition, specific silencing of METTL4 in cardiomyocytes restored mitochondrial function and offered therapeutic relief in mice with preexisting HF, irrespective of whether the condition was induced by AngII/PE infusion or myocardial ischemia/reperfusion injury. CONCLUSIONS: Our findings identify a pivotal role of cardiomyocyte mtDNA 6mA and the corresponding methyltransferase, METTL4, in the pathogenesis of mitochondrial dysfunction and HF. Targeted suppression of METTL4 to rectify mtDNA 6mA excess emerges as a promising strategy for developing mitochondria-focused HF interventions.

7.
Hum Mol Genet ; 32(14): 2373-2385, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37195288

ABSTRACT

PURPOSE: To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS: We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS: We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS: Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.


Subject(s)
Axon Initial Segment , Epilepsy , Induced Pluripotent Stem Cells , Humans , Axon Initial Segment/metabolism , Ankyrins/genetics , Ankyrins/metabolism , Neurons/metabolism , Epilepsy/genetics , Epilepsy/metabolism
8.
Hum Genomics ; 18(1): 39, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632618

ABSTRACT

Age-related cataract and hearing difficulties are major sensory disorders that often co-exist in the global-wide elderly and have a tangible influence on the quality of life. However, the epidemiologic association between cataract and hearing difficulties remains unexplored, while little is known about whether the two share their genetic etiology. We first investigated the clinical association between cataract and hearing difficulties using the UK Biobank covering 502,543 individuals. Both unmatched analysis (adjusted for confounders) and a matched analysis (one control matched for each patient with cataract according to confounding factors) were undertaken and confirmed that cataract was associated with hearing difficulties (OR, 2.12; 95% CI, 1.98-2.27; OR, 2.03; 95% CI, 1.86-2.23, respectively). Furthermore, we explored and quantified the shared genetic architecture of these two complex sensory disorders at the common variant level using the bivariate causal mixture model (MiXeR) and conditional/conjunctional false discovery rate method based on the largest available genome-wide association studies of cataract (N = 585,243) and hearing difficulties (N = 323,978). Despite detecting only a negligible genetic correlation, we observe polygenic overlap between cataract and hearing difficulties and identify 6 shared loci with mixed directions of effects. Follow-up analysis of the shared loci implicates candidate genes QKI, STK17A, TYR, NSF, and TCF4 likely contribute to the pathophysiology of cataracts and hearing difficulties. In conclusion, this study demonstrates the presence of epidemiologic association between cataract and hearing difficulties and provides new insights into the shared genetic architecture of these two disorders at the common variant level.


Subject(s)
Cataract , Hearing Loss , Aged , Middle Aged , Humans , Genome-Wide Association Study/methods , Quality of Life , Hearing , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Genetic Loci , Protein Serine-Threonine Kinases , Apoptosis Regulatory Proteins
9.
Nucleic Acids Res ; 51(W1): W387-W396, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37158276

ABSTRACT

How to effectively convert genomic summary data into downstream knowledge discovery represents a major challenge in human genomics research. To address this challenge, we have developed efficient and effective approaches and tools. Extending our previously established software tools, we here introduce OpenXGR (http://www.openxgr.com), a newly designed web server that offers almost real-time enrichment and subnetwork analyses for a user-input list of genes, SNPs or genomic regions. It achieves so through leveraging ontologies, networks, and functional genomic datasets (such as promoter capture Hi-C, e/pQTL and enhancer-gene maps for linking SNPs or genomic regions to candidate genes). Six analysers are provided, each doing specific interpretations tailored to genomic summary data at various levels. Three enrichment analysers are designed to identify ontology terms enriched for input genes, as well as genes linked from input SNPs or genomic regions. Three subnetwork analysers allow users to identify gene subnetworks from input gene-, SNP- or genomic region-level summary data. With a step-by-step user manual, OpenXGR provides a user-friendly and all-in-one platform for interpreting summary data on the human genome, enabling more integrated and effective knowledge discovery.


Subject(s)
Genomics , Software , Humans , Genome, Human , Genomics/instrumentation , Genomics/methods , Internet , Regulatory Sequences, Nucleic Acid , Computer Simulation , Chromosome Mapping
10.
Neurobiol Dis ; 191: 106409, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218457

ABSTRACT

Interictal epileptiform discharges (IEDs) often co-occur across spatially-separated cortical regions, forming IED networks. However, the factors prompting IED propagation remain unelucidated. We hypothesized that slow oscillations (SOs) might facilitate IED propagation. Here, the amplitude and phase synchronization of SOs preceding propagating and non-propagating IEDs were compared in 22 patients with focal epilepsy undergoing intracranial electroencephalography (EEG) evaluation. Intracranial channels were categorized into the irritative zone (IZ) and normal zone (NOZ) regarding the presence of IEDs. During wakefulness, we found that pre-IED SOs within the IZ exhibited higher amplitudes for propagating IEDs than non-propagating IEDs (delta band: p = 0.001, theta band: p < 0.001). This increase in SOs was also concurrently observed in the NOZ (delta band: p = 0.04). Similarly, the inter-channel phase synchronization of SOs prior to propagating IEDs was higher than those preceding non-propagating IEDs in the IZ (delta band: p = 0.04). Through sliding window analysis, we observed that SOs preceding propagating IEDs progressively increased in amplitude and phase synchronization, while those preceding non-propagating IEDs remained relatively stable. Significant differences in amplitude occurred approximately 1150 ms before IEDs. During non-rapid eye movement (NREM) sleep, SOs on scalp recordings also showed higher amplitudes before intracranial propagating IEDs than before non-propagating IEDs (delta band: p = 0.006). Furthermore, the analysis of IED density around sleep SOs revealed that only high-amplitude sleep SOs demonstrated correlation with IED propagation. Overall, our study highlights that transient but widely distributed SOs are associated with IED propagation as well as generation in focal epilepsy during sleep and wakefulness, providing new insight into the EEG substrate supporting IED networks.


Subject(s)
Electroencephalography , Epilepsies, Partial , Humans , Sleep , Electrocorticography , Wakefulness
11.
Nat Prod Rep ; 41(2): 273-297, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37942836

ABSTRACT

Covering: 2000 to up to 2023α,ß-Dehydroamino acids (dhAAs) are unsaturated nonproteinogenic amino acids found in a wide array of naturally occurring peptidyl metabolites, predominantly those from bacteria. Other organisms, such as fungi, higher plants and marine invertebrates, have also been found to produce dhAA-containing peptides. The α,ß-unsaturation in dhAAs has profound effects on the properties of these molecules. They display significant synthetic flexibility, readily undergoing reactions such as Michael additions, transition-metal-catalysed cross-couplings, and cycloadditions. These residues in peptides/proteins also exhibit great potential in bioorthogonal applications using click chemistry. Peptides containing contiguous dhAA residues have been extensively investigated in the field of foldamers, self-assembling supermolecules that mimic biomacromolecules such as proteins to fold into well-defined conformations. dhAA residues in these peptidyl materials tend to form a 2.05-helix. As a result, stretches of dhAA residues arrange in an extended conformation. In particular, peptidyl foldamers containing ß-enamino acid units display interesting conformational, electronic, and supramolecular aggregation properties that can be modulated by light-dependent E-Z isomerization. Among approximately 40 dhAAs found in the natural product inventory, dehydroalanine (Dha) and dehydrobutyrine (Dhb) are the most abundant. Dha is the simplest dehydro-α-amino acid, or α-dhAA, without any geometrical isomers, while its re-arranged isomer, 3-aminoacrylic acid (Aaa or ΔßAla), is the simplest dehydro-ß-amino acid, or ß-enamino acid, and displays E/Z isomerism. Dhb is the simplest α-dhAA that exhibits E/Z isomerism. The Z-isomer of Dhb (Z-Dhb) is sterically favourable and is present in the majority of naturally occurring peptides containing Dhb residues. Dha and Z-Dhb motifs are commonly found in ribosomally synthesized and post-translationally modified peptides (RiPPs). In the last decade, the formation of Dha and Dhb motifs in RiPPs has been extensively investigated, which will be briefly discussed in this review. The formation of other dhAA residues in natural products (NPs) is, however, less understood. In this review, we will discuss recent advances in the biosynthesis of peptidyl NPs containing unusual dhAA residues and cryptic dhAA residues. The proposed biosynthetic pathways of these natural products will also be discussed.


Subject(s)
Biological Products , Amino Acids/chemistry , Peptides/chemistry , Proteins , Isomerism
12.
Apoptosis ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622369

ABSTRACT

The high heterogeneity of breast cancer (BC) caused by pathogenic gene mutations poses a challenge to immunotherapy, but the underlying mechanism remains unknown. The difference in the infiltration of M1 macrophages induced by TP53 mutations has a significant impact on BC immunotherapy. The aim of this study was to develop a TP53-related M1 macrophage infiltration molecular typing risk signature in BC and evaluate the biological functions of the key gene to find new immunotherapy biomarkers. Weighted correlation network analysis (WGCNA) and negative matrix factorization (NMF) were used for distinguishing BC subtypes. The signature and the nomogram were both constructed and evaluated. Biological functions of the novel signature gene SLC2A6 were confirmed through in vitro and in vivo experiments. RNA-Sequencing and protein profiling were used for detecting the possible mechanism of SLC2A6. The results suggested that four BC subtypes were distinguished by TP53-related genes that affect M1 macrophage infiltration. The signature constructed by molecular typing characteristics could evaluate BC's clinical features and tumor microenvironment. The nomogram could accurately predict the prognosis. The signature gene SLC2A6 was found to have an abnormally low expression in tumor tissues. Overexpression of SLC2A6 could inhibit proliferation, promote mitochondrial damage, and result in apoptosis of tumor cells. The HSP70 family member protein HSPA6 could bind with SLC2A6 and increase with the increased expression of SLC2A6. In summary, the risk signature provides a reference for BC risk assessment, and the signature gene SLC2A6 could act as a tumor suppressor in BC.

13.
EMBO J ; 39(10): e103111, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32187724

ABSTRACT

The homeostatic link between oxidative stress and autophagy plays an important role in cellular responses to a wide variety of physiological and pathological conditions. However, the regulatory pathway and outcomes remain incompletely understood. Here, we show that reactive oxygen species (ROS) function as signaling molecules that regulate autophagy through ataxia-telangiectasia mutated (ATM) and cell cycle checkpoint kinase 2 (CHK2), a DNA damage response (DDR) pathway activated during metabolic and hypoxic stress. We report that CHK2 binds to and phosphorylates Beclin 1 at Ser90/Ser93, thereby impairing Beclin 1-Bcl-2 autophagy-regulatory complex formation in a ROS-dependent fashion. We further demonstrate that CHK2-mediated autophagy has an unexpected role in reducing ROS levels via the removal of damaged mitochondria, which is required for cell survival under stress conditions. Finally, CHK2-/- mice display aggravated infarct phenotypes and reduced Beclin 1 p-Ser90/Ser93 in a cerebral stroke model, suggesting an in vivo role of CHK2-induced autophagy in cell survival. Taken together, these results indicate that the ROS-ATM-CHK2-Beclin 1-autophagy axis serves as a physiological adaptation pathway that protects cells exposed to pathological conditions from stress-induced tissue damage.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Beclin-1/metabolism , Checkpoint Kinase 2/metabolism , Ischemic Stroke/metabolism , Reactive Oxygen Species/metabolism , Animals , Autophagy , Cell Line , Disease Models, Animal , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Mice , Oxidative Stress , Phosphorylation
14.
Biochem Cell Biol ; 102(3): 262-274, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38567768

ABSTRACT

Cell-in-cell (CIC) structures have been suggested to mediate intracellular substance transport between cells and have been found widely in inflammatory lung tissue of asthma. The aim of this study was to investigate the significance of CIC structures in inflammatory progress of asthma. CIC structures and related inflammatory pathways were analyzed in asthmatic lung tissue and normal lung tissue of mouse model. In vitro, the activation of inflammatory pathways by CIC-mediated intercellular communication was analyzed by RNA-Seq and verified by Western blotting and immunofluorescence. Results showed that CIC structures of lymphocytes and alveolar epithelial cells in asthmatic lung tissue mediated intercellular substance (such as mitochondria) transfer and promoted pro-inflammation in two phases. At early phase, internal lymphocytes triggered inflammasome-dependent pro-inflammation and cell death of itself. Then, degraded lymphocytes released cellular contents such as mitochondria inside alveolar epithelial cells, further activated multi-pattern-recognition receptors and NF-kappa B signaling pathways of alveolar epithelial cells, and thereby amplified pro-inflammatory response in asthma. Our work supplements the mechanism of asthma pro-inflammation progression from the perspective of CIC structure of lymphocytes and alveolar epithelial cells, and provides a new idea for anti-inflammatory therapy of asthma.


Subject(s)
Asthma , Cell Communication , Inflammation , Asthma/metabolism , Asthma/pathology , Animals , Mice , Inflammation/metabolism , Inflammation/pathology , Mice, Inbred BALB C , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Lymphocytes/metabolism , Lymphocytes/pathology , Disease Models, Animal , Humans , Signal Transduction , Disease Progression
15.
Gastroenterology ; 164(3): 407-423.e17, 2023 03.
Article in English | MEDLINE | ID: mdl-36574521

ABSTRACT

BACKGROUND & AIMS: Lack of thorough knowledge about the complicated immune microenvironment (IM) within a variety of liver metastases (LMs) leads to inappropriate treatment and unsatisfactory prognosis. We aimed to characterize IM subtypes and investigate potential mechanisms in LMs. METHODS: Mass cytometry was applied to characterize immune landscape of a primary liver cancers and liver metastases cohort. Transcriptomic and whole-exome sequencing were used to explore potential mechanisms across distinct IM subtypes. Single-cell transcriptomic sequencing, multiplex fluorescent immunohistochemistry, cell culture, mouse model, Western blot, quantitative polymerase chain reaction, and immunohistochemistry were used for validation. RESULTS: Five IM subtypes were revealed in 100 LMs and 50 primary liver cancers. Patients featured terminally exhausted (IM1) or rare T-cell-inflamed (IM2 and IM3) immune characteristics showed worse outcome. Increased intratumor heterogeneity, enriched somatic TP53, KRAS, APC, and PIK3CA mutations and hyperactivated hypoxia signaling accounted for the formation of vicious subtypes. SLC2A1 promoted immune suppression and desert via increasing proportion of Spp1+ macrophages and their inhibitory interactions with T cells in liver metastatic lesions. Furthermore, SLC2A1 promoted immune escape and LM through inducing regulatory T cells, including regulatory T cells and LAG3+CD4+ T cells in primary colorectal cancer. CONCLUSIONS: The study provided integrated multi-omics landscape of LM, uncovering potential mechanisms for vicious IM subtypes and confirming the roles of SLC2A1 in regulating tumor microenvironment remodeling in both primary tumor and LM lesions.


Subject(s)
Liver Neoplasms , Multiomics , Animals , Mice , Mutation , Liver Neoplasms/pathology , Exome Sequencing , Tumor Microenvironment
16.
Anal Chem ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982573

ABSTRACT

Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory disease, whose etiology is intimately related to the overproduction of hypochlorous acid (HClO). Optical monitoring of HClO in the living body favors real-time diagnosis of inflammatory diseases. However, HClO-activated near-infrared (NIR) fluorescent probes with rapid response and high inflammatory cell uptake are still lacking. Herein, we report an activatable acceptor-π-acceptor (A-π-A)-type NIR fluorescent probe (Cy-DM) bearing two d-mannosamine groups for the sensitive detection of HClO in early IBD and stool testing. Once reacted with HClO, nonfluorescent Cy-DM could be turned on within 2 s by generating a donor-π-acceptor (D-π-A) structure due to the enhanced intramolecular charge transfer mechanism, showing intense NIR fluorescence emission at 700 nm and a large Stokes shift of 115 nm. Moreover, it was able to sensitively and selectively image exogenous and endogenous HClO in the lysosomes of living cells with a detection limit of 0.84 µM. More importantly, because of the d-mannosamine modification, Cy-DM was efficiently taken up by inflammatory cells in the intestine after intravenous administration, allowing noninvasive visualization of endogenous HClO in a lipopolysaccharide-induced IBD mouse model with a high fluorescence contrast of 6.8/1. In addition, water-soluble Cy-DM has also been successfully applied in ex vivo optical fecal analysis, exhibiting a 3.4-fold higher fluorescence intensity in the feces excreted by IBD mice. We believe that Cy-DM is promising as an invaluable tool for rapid diagnosis of HClO-related diseases as well as stool testing.

17.
Microcirculation ; 31(5): e12853, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38690605

ABSTRACT

OBJECTIVE: Both low serum albumin (SA) concentration and coronary microvascular dysfunction (CMD) are risk factors for the development of heart failure (HF). We hypothesized that SA concentration is associated with myocardial flow reserve (MFR) and implicated in pathophysiological mechanism of HF. METHODS: We retrospectively studied 454 patients undergoing dynamic cardiac cadmium-zinc-telluride myocardial perfusion imaging from April 2018 to February 2020. The population was categorized into three groups according to SA level (g/dL): Group 1: >4, Group 2: 3.5-4, and Group 3: <3.5. Myocardial blood flow (MBF) and myocardial flow reserve (MFR, defined as stress/rest MBF ratio) were compared. RESULTS: The mean age of the whole cohort was 66.2 years, and 65.2% were men. As SA decreased, stress MBF (mL min-1 g-1) and MFR decreased (MBF: 3.29 ± 1.03, MFR: 3.46 ± 1.33 in Group 1, MBF: 2.95 ± 1.13, MFR: 2.51 ± 0.93 in Group 2, and MBF: 2.64 ± 1.16, MFR: 1.90 ± 0.50 in Group 3), whereas rest MBF (mL min-1 g-1) increased (MBF: 1.05 ± 0.42 in Group 1, 1.27 ± 0.56 in Group 2, and 1.41 ± 0.61 in Group 3). After adjusting for covariates, compared with Group 1, the odds ratios for impaired MFR (defined as MFR < 2.5) were 3.57 (95% CI: 2.32-5.48) for Group 2 and 34.9 (95% CI: 13.23-92.14) for Group 3. The results would be similar if only regional MFR were assessed. The risk prediction for CMD using SA was acceptable, with an AUC of 0.76. CONCLUSION: Low SA concentration was associated with the severity of CMD in both global and regional MFR as well as MBF.


Subject(s)
Cadmium , Coronary Circulation , Tellurium , Tomography, Emission-Computed, Single-Photon , Zinc , Humans , Male , Female , Aged , Middle Aged , Retrospective Studies , Zinc/blood , Cadmium/blood , Microcirculation , Myocardial Perfusion Imaging/methods , Heart Failure/physiopathology , Heart Failure/blood , Heart Failure/diagnostic imaging , Zinc Compounds , Serum Albumin
18.
BMC Med ; 22(1): 29, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38267950

ABSTRACT

BACKGROUND: A previously trained deep learning-based smartphone app provides an artificial intelligence solution to help diagnose biliary atresia from sonographic gallbladder images, but it might be impractical to launch it in real clinical settings. This study aimed to redevelop a new model using original sonographic images and their derived smartphone photos and then test the new model's performance in assisting radiologists with different experiences to detect biliary atresia in real-world mimic settings. METHODS: A new model was first trained retrospectively using 3659 original sonographic gallbladder images and their derived 51,226 smartphone photos and tested on 11,410 external validation smartphone photos. Afterward, the new model was tested in 333 prospectively collected sonographic gallbladder videos from 207 infants by 14 inexperienced radiologists (9 juniors and 5 seniors) and 4 experienced pediatric radiologists in real-world mimic settings. Diagnostic performance was expressed as the area under the receiver operating characteristic curve (AUC). RESULTS: The new model outperformed the previously published model in diagnosing BA on the external validation set (AUC 0.924 vs 0.908, P = 0.004) with higher consistency (kappa value 0.708 vs 0.609). When tested in real-world mimic settings using 333 sonographic gallbladder videos, the new model performed comparable to experienced pediatric radiologists (average AUC 0.860 vs 0.876) and outperformed junior radiologists (average AUC 0.838 vs 0.773) and senior radiologists (average AUC 0.829 vs 0.749). Furthermore, the new model could aid both junior and senior radiologists to improve their diagnostic performances, with the average AUC increasing from 0.773 to 0.835 for junior radiologists and from 0.749 to 0.805 for senior radiologists. CONCLUSIONS: The interpretable app-based model showed robust and satisfactory performance in diagnosing biliary atresia, and it could aid radiologists with limited experiences to improve their diagnostic performances in real-world mimic settings.


Subject(s)
Biliary Atresia , Mobile Applications , Infant , Child , Humans , Gallbladder/diagnostic imaging , Artificial Intelligence , Biliary Atresia/diagnostic imaging , Retrospective Studies , Radiologists
19.
Int J Obes (Lond) ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806646

ABSTRACT

OBJECTIVE: To evaluate the causal relationship between sleep fragmentation (SF) parameters with general and abdominal obesity in free-living conditions. METHODS: SF parameters were assessed by ActiGraph accelerometers for 7 consecutive days. Obesity was measured at baseline and 1-year follow-up with InBody S10 body composition analyzer. RESULTS: At baseline, the mean age of the study population was 18.7 years old (SD = 0.9) and 139 (35.7%) were male. Each 1-unit increase of baseline sleep fragmentation index (SFI) was associated with 0.08 kg/m2-increase of body mass index (BMI) (95% CI: 0.03, 0.14), 0.20%-increase of percentage of body fat (PBF) (95% CI: 0.07, 0.32), 0.15 kg-increase of fat mass (FM) (95% CI: 0.03, 0.27), 0.15 cm-increase of waist circumference (WC) (95% CI: 0.03, 0.26) and 0.91 cm2-increase of visceral fat area (VFA) (95% CI: 0.36, 1.46) at the 1-year follow-up. In addition, each 1-unit increase of baseline SFI was associated with 15% increased risk of general obesity (OR = 1.15, 95% CI = 1.04-1.28; p = 0.006) and 7% increased risk of abdominal obesity (OR = 1.07, 95% CI = 1.01-1.13; p = 0.021) in the following year. CONCLUSIONS: Fragmented sleep is independently associated with an increased risk of both general and abdominal obesity. The result highlights SF as a modifiable risk factor for the prevention and treatment of obesity.

20.
Nat Mater ; 22(5): 591-598, 2023 May.
Article in English | MEDLINE | ID: mdl-37012436

ABSTRACT

Large spin-orbit torques (SOTs) generated by topological materials and heavy metals interfaced with ferromagnets are promising for next-generation magnetic memory and logic devices. SOTs generated from y spin originating from spin Hall and Edelstein effects can realize field-free magnetization switching only when the magnetization and spin are collinear. Here we circumvent the above limitation by utilizing unconventional spins generated in a MnPd3 thin film grown on an oxidized silicon substrate. We observe conventional SOT due to y spin, and out-of-plane and in-plane anti-damping-like torques originated from z spin and x spin, respectively, in MnPd3/CoFeB heterostructures. Notably, we have demonstrated complete field-free switching of perpendicular cobalt via out-of-plane anti-damping-like SOT. Density functional theory calculations show that the observed unconventional torques are due to the low symmetry of the (114)-oriented MnPd3 films. Altogether our results provide a path toward realization of a practical spin channel in ultrafast magnetic memory and logic devices.

SELECTION OF CITATIONS
SEARCH DETAIL