Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
1.
Plant Cell ; 36(7): 2689-2708, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38581430

ABSTRACT

Lateral branches are important components of shoot architecture and directly affect crop yield and production cost. Although sporadic studies have implicated abscisic acid (ABA) biosynthesis in axillary bud outgrowth, the function of ABA catabolism and its upstream regulators in shoot branching remain elusive. Here, we showed that the MADS-box transcription factor AGAMOUS-LIKE 16 (CsAGL16) is a positive regulator of axillary bud outgrowth in cucumber (Cucumis sativus). Functional disruption of CsAGL16 led to reduced bud outgrowth, whereas overexpression of CsAGL16 resulted in enhanced branching. CsAGL16 directly binds to the promoter of the ABA 8'-hydroxylase gene CsCYP707A4 and promotes its expression. Loss of CsCYP707A4 function inhibited axillary bud outgrowth and increased ABA levels. Elevated expression of CsCYP707A4 or treatment with an ABA biosynthesis inhibitor largely rescued the Csagl16 mutant phenotype. Moreover, cucumber General Regulatory Factor 1 (CsGRF1) interacts with CsAGL16 and antagonizes CsAGL16-mediated CsCYP707A4 activation. Disruption of CsGRF1 resulted in elongated branches and decreased ABA levels in the axillary buds. The Csagl16 Csgrf1 double mutant exhibited a branching phenotype resembling that of the Csagl16 single mutant. Therefore, our data suggest that the CsAGL16-CsGRF1 module regulates axillary bud outgrowth via CsCYP707A4-mediated ABA catabolism in cucumber. Our findings provide a strategy to manipulate ABA levels in axillary buds during crop breeding to produce desirable branching phenotypes.


Subject(s)
Abscisic Acid , Cucumis sativus , Gene Expression Regulation, Plant , Plant Proteins , Cucumis sativus/growth & development , Cucumis sativus/genetics , Cucumis sativus/metabolism , Abscisic Acid/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/genetics , Plant Growth Regulators/metabolism , Promoter Regions, Genetic/genetics , Plants, Genetically Modified , Cytochrome P-450 Enzyme System
2.
Proc Natl Acad Sci U S A ; 120(21): e2209829120, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37200363

ABSTRACT

Solids built out of active components have exhibited odd elastic stiffness tensors whose active moduli appear in the antisymmetric part and which give rise to non-Hermitian static and dynamic phenomena. Here, we present a class of active metamaterial featured with an odd mass density tensor whose asymmetric part arises from active and nonconservative forces. The odd mass density is realized using metamaterials with inner resonators connected by asymmetric and programmable feed-forward control on acceleration and active forces along the two perpendicular directions. The active forces produce unbalanced off-diagonal mass density coupling terms, leading to non-Hermiticity. The odd mass is then experimentally validated through a one-dimensional nonsymmetric wave coupling where propagating transverse waves are coupled with longitudinal ones whereas the reverse is forbidden. We reveal that the two-dimensional active metamaterials with the odd mass can perform in either energy-unbroken or energy-broken phases separated by exceptional points along principal directions of the mass density. The odd mass density contributes to the wave anisotropy in the energy-unbroken phase and directional wave energy gain in the energy-broken phase. We also numerically illustrate and experimentally demonstrate the two-dimensional wave propagation phenomena that arise from the odd mass in active solids. Finally, the existence of non-Hermitian skin effect is discussed in which boundaries host an extensive number of localized modes. It is our hope that the emergent concept of the odd mass can open up a new research platform for mechanical non-Hermitian system and pave the ways for developing next-generation wave steering devices.

3.
Proc Natl Acad Sci U S A ; 119(39): e2209717119, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36122223

ABSTRACT

Fruit neck is the proximal portion of the fruit with undesirable taste that has detrimental effects on fruit shape and commercial value in cucumber. Despite the dramatic variations in fruit neck length of cucumber germplasms, the genes and regulatory mechanisms underlying fruit neck elongation remain mysterious. In this study, we found that Cucumis sativus HECATE1 (CsHEC1) was highly expressed in fruit neck. Knockout of CsHEC1 resulted in shortened fruit neck and decreased auxin accumulation, whereas overexpression of CsHEC1 displayed the opposite effects, suggesting that CsHEC1 positively regulated fruit neck length by modulating local auxin level. Further analysis showed that CsHEC1 directly bound to the promoter of the auxin biosynthesis gene YUCCA4 (CsYUC4) and activated its expression. Enhanced expression of CsYUC4 resulted in elongated fruit neck and elevated auxin content. Moreover, knockout of CsOVATE resulted in longer fruit neck and higher auxin. Genetic and biochemical data showed that CsOVATE physically interacted with CsHEC1 to antagonize its function by attenuating the CsHEC1-mediated CsYUC4 transcriptional activation. In cucumber germplasms, the expression of CsHEC1 and CsYUC4 positively correlated with fruit neck length, while that of CsOVATE showed a negative correlation. Together, our results revealed a CsHEC1-CsOVATE regulatory module that confers fruit neck length variation via CsYUC4-mediated auxin biosynthesis in cucumber.


Subject(s)
Cucumis sativus , Cucumis sativus/genetics , Fruit/genetics , Gene Expression Regulation, Plant , Indoleacetic Acids
4.
Plant Biotechnol J ; 22(2): 347-362, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37795910

ABSTRACT

Plant defence against pathogens generally occurs at the expense of growth and yield. Uncoupling the inverse relationship between growth and defence is of great importance for crop breeding, while the underlying genes and regulatory mechanisms remain largely elusive. The exocytosis complex was shown to play an important role in the trafficking of receptor kinases (RKs) to the plasma membrane (PM). Here, we found a Cucumis sativus exocytosis subunit Exo70B (CsExo70B) regulates the abundance of both development and defence RKs at the PM to promote fruit elongation and disease resistance in cucumber. Knockout of CsExo70B resulted in shorter fruit and susceptibility to pathogens. Mechanistically, CsExo70B associates with the developmental RK CsERECTA, which promotes fruit longitudinal growth in cucumber, and contributes to its accumulation at the PM. On the other side, CsExo70B confers to the spectrum resistance to pathogens in cucumber via a similar regulatory module of defence RKs. Moreover, CsExo70B overexpression lines showed an increased fruit yield as well as disease resistance. Collectively, our work reveals a regulatory mechanism that CsExo70B promotes both fruit elongation and disease resistance by maintaining appropriate RK levels at the PM and thus provides a possible strategy for superior cucumber breeding with high yield and robust pathogen resistance.


Subject(s)
Cucumis sativus , Cucumis sativus/genetics , Fruit/metabolism , Disease Resistance/genetics , Plant Breeding , Cell Membrane
5.
Exp Eye Res ; : 109990, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969283

ABSTRACT

Ocular melanoma, including uveal melanoma (UM) and conjunctival melanoma (CM), is the most common ocular cancer among adults with a high rate of recurrence and poor prognosis. Loss of epigenetic homeostasis disturbed gene expression patterns, resulting in oncogenesis. Herein, we comprehensively analyzed the DNA methylation, transcriptome profiles, and corresponding clinical information of UM patients through multiple machine-learning algorithms, finding that a methylation-driven gene RBMS1 was correlated with poor clinical outcomes of UM patients. RNA-seq and single-cell RNA-seq analyses revealed that RBMS1 reflected diverse tumor microenvironments, where high RBMS1 expression marked an immune active TME. Furthermore, we found that tumor cells were identified to have the higher communication probability in RBMS1+ state. The functional enrichment analysis revealed that RBMS1 was associated with pigment granule and melanosome, participating in cell proliferation as well as apoptotic signaling pathway. Biological experiments were performed and demonstrated that the silencing of RBMS1 inhibited ocular melanoma proliferation and promoted apoptosis. Our study highlighted that RBMS1 reflects a distinct microenvironment and promotes tumor progression in ocular melanoma, contributing to the therapeutic customization and clinical decision-making.

6.
J Integr Plant Biol ; 66(5): 1024-1037, 2024 May.
Article in English | MEDLINE | ID: mdl-38578173

ABSTRACT

Leaves are the main photosynthesis organ that directly determines crop yield and biomass. Dissecting the regulatory mechanism of leaf development is crucial for food security and ecosystem turn-over. Here, we identified the novel function of R2R3-MYB transcription factors CsRAXs in regulating cucumber leaf size and fruiting ability. Csrax5 single mutant exhibited enlarged leaf size and stem diameter, and Csrax1/2/5 triple mutant displayed further enlargement phenotype. Overexpression of CsRAX1 or CsRAX5 gave rise to smaller leaf and thinner stem. The fruiting ability of Csrax1/2/5 plants was significantly enhanced, while that of CsRAX5 overexpression lines was greatly weakened. Similarly, cell number and free auxin level were elevated in mutant plants while decreased in overexpression lines. Biochemical data indicated that CsRAX1/5 directly promoted the expression of auxin glucosyltransferase gene CsUGT74E2. Therefore, our data suggested that CsRAXs function as repressors for leaf size development by promoting auxin glycosylation to decrease free auxin level and cell division in cucumber. Our findings provide new gene targets for cucumber breeding with increased leaf size and crop yield.


Subject(s)
Cucumis sativus , Gene Expression Regulation, Plant , Indoleacetic Acids , Plant Leaves , Plant Proteins , Indoleacetic Acids/metabolism , Cucumis sativus/genetics , Cucumis sativus/growth & development , Cucumis sativus/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Glycosylation , Transcription Factors/metabolism , Transcription Factors/genetics , Fruit/metabolism , Fruit/growth & development , Fruit/genetics , Mutation/genetics
7.
Compr Rev Food Sci Food Saf ; 23(1): e13285, 2024 01.
Article in English | MEDLINE | ID: mdl-38284579

ABSTRACT

The use of biomolecules, such as proteins, polysaccharides, saponins, and phospholipids, instead of synthetic emulsifiers in food emulsion creation has generated significant interest among food scientists due to their advantages of being nontoxic, harmless, edible, and biocompatible. However, using a single biomolecule may not always meet practical needs for food emulsion applications. Therefore, biomolecules often require modification to achieve ideal interfacial properties. Among them, noncovalent interactions between biomolecules represent a promising physical modification method to modulate their interfacial properties without causing the health risks associated with forming new chemical bonds. Electrostatic interactions, hydrophobic interactions, and hydrogen bonding are examples of noncovalent interactions that facilitate biomolecules' effective applications in food emulsions. These interactions positively impact the physical stability, oxidative stability, digestibility, delivery characteristics, response sensitivity, and printability of biomolecule-based food emulsions. Nevertheless, using noncovalent interactions between biomolecules to facilitate their application in food emulsions still has limitations that need further improvement. This review introduced common biomolecule emulsifiers, the promotion effect of noncovalent interactions between biomolecules on the construction of emulsions with different biomolecules, their positive impact on the performance of emulsions, as well as their limitations and prospects in the construction of biomolecule-based emulsions. In conclusion, the future design and development of food emulsions will increasingly rely on noncovalent interactions between biomolecules. However, further improvements are necessary to fully exploit these interactions for constructing biomolecule-based emulsions.


Subject(s)
Emulsifying Agents , Proteins , Emulsions/chemistry , Emulsifying Agents/chemistry , Proteins/chemistry , Food
8.
Compr Rev Food Sci Food Saf ; 23(1): e13267, 2024 01.
Article in English | MEDLINE | ID: mdl-38284586

ABSTRACT

Three-dimensional (3D) printing has been applied to produce food products with intricate and fancy shapes. Dimensional quality, such as dimensional stability, surface smoothness, shape fidelity, and resolution, are essential for the attractive appearance of 3D-printed food. Various methods have been extensively studied and proposed to control the dimensional quality of printed foods, but few papers focused on comprehensively and deeply summarizing the key factors of the dimensional quality of printed products at each stage-before, during, and after printing-of the 3D printing process. Therefore, the effects of pretreatment, printing parameters and rheological properties, and cooking and storage on the dimensional quality of the printed foods are summarized, and solutions are also provided for improving the dimensional quality of the printed products at each step. Before printing, incorporating additives or applying physical, chemical, or biological pretreatments can improve the dimensional quality of carbohydrate-based, protein-based, or lipid-based printed food. During printing, controlling the printing parameters and modifying the rheological properties of inks can affect the shape of printed products. Furthermore, post-processing is essential for some printed foods. After printing, changing formulations, incorporating additives, and selecting post-processing methods and conditions may help achieve the desired shape of 3D-printed or 4D-printed products during cooking. Additives help in the storage stability of printed food. Finally, various opportunities have been proposed to regulate the dimensional properties of 3D-printed structures. This review provides detailed guidelines for researchers and users of 3D printers to produce various printed foods with the desired shapes and appearances.


Subject(s)
Food , Printing, Three-Dimensional , Cooking , Rheology
9.
Compr Rev Food Sci Food Saf ; 23(3): e13349, 2024 05.
Article in English | MEDLINE | ID: mdl-38638060

ABSTRACT

3D printing is an additive manufacturing technology that locates constructed models with computer-controlled printing equipment. To achieve high-quality printing, the requirements on rheological properties of raw materials are extremely restrictive. Given the special structure and high modifiability under external physicochemical factors, the rheological properties of proteins can be easily adjusted to suitable properties for 3D printing. Although protein has great potential as a printing material, there are many challenges in the actual printing process. This review summarizes the technical considerations for protein-based ink 3D printing. The physicochemical factors used to enhance the printing adaptability of protein inks are discussed. The post-processing methods for improving the quality of 3D structures are described, and the application and problems of fourth dimension (4D) printing are illustrated. The prospects of 3D printing in protein manufacturing are presented to support its application in food and cultured meat. The native structure and physicochemical factors of proteins are closely related to their rheological properties, which directly link with their adaptability for 3D printing. Printing parameters include extrusion pressure, printing speed, printing temperature, nozzle diameter, filling mode, and density, which significantly affect the precision and stability of the 3D structure. Post-processing can improve the stability and quality of 3D structures. 4D design can enrich the sensory quality of the structure. 3D-printed protein products can meet consumer needs for nutritional or cultured meat alternatives.


Subject(s)
Ink , Printing, Three-Dimensional , Food , In Vitro Meat , Meat Substitutes
10.
Crit Rev Food Sci Nutr ; : 1-17, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37218684

ABSTRACT

Condiments (such as sodium chloride and glutamate sodium) cause consumers to ingest too much sodium and may lead to a variety of diseases, thus decreasing their quality of life. Recently, a salt reduction strategy using flavor peptides has been established. However, the development of this strategy has not been well adopted by the food industry. There is an acute need to screen for peptides with salty and umami taste, and to understand their taste characteristic and taste mechanism. This review provides a thorough analysis of the literature on flavor peptides with sodium-reducing ability, involving their preparation, taste characteristic, taste mechanism and applications in the food industry. Flavor peptides come from a wide range of sources and can be sourced abundantly from natural foods. Flavor peptides with salty and umami tastes are mainly composed of umami amino acids. Differences in amino acid sequences, spatial structures and food matrices will cause different tastes in flavor peptides, mostly attributed to the interaction between peptides and taste receptors. In addition to being used in condiments, flavor peptides have also anti-hypertensive, anti-inflammatory and anti-oxidant abilities, offering the potential to be used as functional ingredients, thus making their future in the food industry extremely promising.

11.
Crit Rev Food Sci Nutr ; 63(19): 3803-3820, 2023.
Article in English | MEDLINE | ID: mdl-34669530

ABSTRACT

With the advances in Polygonatum research, there is a huge interest in harnessing the valuable functional ingredients of this genus with the potential for functional foods. This review emphasizes the different aspects of Ploygonatum based research starting from its bioactive compounds, their structural characterization, various extraction methods, as well as biological activities. In view of its integral use as an essential medicinal plant, our review emphasizes on its promising food applications both as an ingredient and as a whole food, and its improved health benefits with potential for agricultural and environmental relevance are also discussed. As we collated the recent research information, we present the main challenges and limitations of the current research trend in this area which can upgrade the further expansion of Polygonatum-related research that will strengthen its economic and accessible nutritional value in the food and health industries. By highlighting the need for the unattended species, this review not only fills existing research gaps, but also encourages the researchers to find new avenues for the natural production of bio-based functional materials and the development of highly functional and health-promoting foods for disease prevention and treatment.


Subject(s)
Plants, Medicinal , Polygonatum , Functional Food , Polygonatum/chemistry , Medicine, Traditional , Nutritive Value
12.
Chem Eng J ; 4702023 Aug 15.
Article in English | MEDLINE | ID: mdl-37484781

ABSTRACT

Development of reversible wet or underwater adhesives remains a grand challenge. Because weakened intermolecular interactions by water molecules or/and low effective contact area cause poor interface to the wet surfaces, which significantly decreases adhesive strength. Herein, a new photocured, bio-based shape memory polymer (SMP) that shows both chemical and structural wet adhesion to various types of surfaces is developed. The SMP is polymerized from three monomers mainly from bio-sources to form linear polymer chains dangled with hydrophobic side chains. The hydrogen acceptor and donor groups in the chains form hydrogen bonding with the surfaces, which is protected by the hydrophobic chains in the interface. The SMP shows tunable phase transition temperature (Tg) of 17-38 °C. In a rubbery state above Tg, the adhesive forms conformable contact with the targeted surfaces. Below Tg, a transition to a glassy state locks the conformed shapes to largely increase the effective contact area. As a result, the adhesive exhibits long-term underwater adhesion of > 15 days with the best adhesion strength of ~ 0.9 MPa. Its applications in leak repair, underwater on-skin sensors were demonstrated. This new, general strategy would pave avenues to designing bio-based, long-lasting, and reversible adhesives from renewable feedstocks for widespread applications.

13.
J Sci Food Agric ; 103(5): 2502-2511, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36606415

ABSTRACT

BACKGROUND: Surimi products occupy a large market in the food industry, and the gel performance is an important index to evaluate them. Thus, it is of great significance and practical value to find better food ingredients to regulate the structure and gel performance of surimi products. In this study, we used pea protein (PP) to restructure fish myofibrillar proteins (MPs) to achieve regulation of protein gel performance. RESULTS: PP could enhance MP gel performance in terms of compressive strength, water-holding capacity, and some texture parameters. This may be the result of an increasing ß-sheet content and a decreasing trend in the α-helix content, along with enhancements in hydrophobic interactions, nonspecific associations, and ionic bonds in a mixed PP-MP gel. The compressive strength, texture, and water-holding capacity of MP gel were positively correlated with surface hydrophobicity, active sulfhydryl, turbidity, and ß-sheet of the mixed PP-MP system. CONCLUSION: The findings suggest that PP can regulate the gel performance by remodeling the structure of MP. The regulation and correlation analysis between gel performance, structure, and physicochemical properties were explored and established to provide a theoretical basis for improving the quality of surimi products. This study will broaden the application of PP in the field of food processing and provide theoretical guidance for the manufacture of new surimi products. © 2023 Society of Chemical Industry.


Subject(s)
Pea Proteins , Animals , Gels/chemistry , Hot Temperature , Fish Proteins/chemistry , Water/chemistry
14.
J Sci Food Agric ; 103(8): 4211-4220, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36647322

ABSTRACT

BACKGROUND: Apple polyphenols (APs) with multiple biological effects have attracted extensive attention due to their broad opportunities for application. However, the use of APs is hampered by their instability in the face of environmental changes. Designing efficient carriers to improve the bioavailability of APs is the key to solving these problems. In this study, gelatin-chitooligosaccharide nanoparticles produced by the Maillard reaction (GCM) were fabricated to encapsulate AP, and the structure, antioxidant activity, and stability of the GMM-AP nanoparticle system were evaluated. RESULTS: The results of endogenous fluorescence spectrum, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction, and simultaneous thermal analysis confirmed structural changes and interactions between GCM and AP. Combination with GCM did not adversely affect the antioxidant properties of AP, and the GCM-AP nanoparticles possessed superior temperature and storage stability. In comparison with fish gelatin-apple polyphenol nanoparticles, the GCM-AP nanoparticles were more stable at a wider pH range, and were more resistant to the electrostatic shielding effect of NaCl. After simulating gastric digestion, the particle size and polydispersity index (PDI) of GCM-AP nanoparticles were almost unchanged. CONCLUSION: The findings suggest that GCM nanoparticles loaded with AP could be used as good carriers with good antioxidant activity and stability. This study therefore provides a theoretical foundation for the development and industrial application of food functional factors. © 2023 Society of Chemical Industry.


Subject(s)
Nanoparticles , Polyphenols , Animals , Polyphenols/chemistry , Antioxidants , Gelatin/chemistry , Chitin , Nanoparticles/chemistry , Particle Size
15.
Small ; 18(21): e2201766, 2022 05.
Article in English | MEDLINE | ID: mdl-35491505

ABSTRACT

Skin wounds, especially infected chronic wounds, have attracted worldwide attention due to the high prevalence and poor treatment outcomes. Hydrogel dressings with antibacterial ability and immune regulation property are urgently required. Herein, inspired by the grinding treatment of traditional Chinese medicine, mechanical force is introduced to promote the effective molecular collision and accelerate the self-assembly of chitosan (CS) and puerarin (PUE) for fabricating Chinese-herb-based hydrogels. The antibacterial rate of CS@PUE (C@P) hydrogel is more than 95%, and the wound closed rate is twice that of the control group. Interestingly, the rational design of C@P hydrogels with different PUE ratios enables a refined control over hydrogel formation, nanofiber appearance, viscoelastic, physicochemical, and biological properties. The extraordinary antibacterial ability of C@P hydrogels may originate from the nanofiber structure and the improved zeta potential on account of the orientation of amino groups in CS . Thus, the synergistically antibacterial and immune regulation properties of C@P hydrogels kill bacteria and relieve inflammation in the wound bed, ensuring the anti-infection effect, and boosting wound healing. In addition to providing a universal mechanosynthesis of PUE-based hydrogel for wound healing, this finding is expected to increase the attention paid to Chinese herbal medicines in the construction of biomaterials.


Subject(s)
Chitosan , Hydrogels , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , China , Chitosan/chemistry , Hydrogels/chemistry , Wound Healing
16.
Plant Physiol ; 187(3): 1619-1635, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34618075

ABSTRACT

Warty fruit in cucumber (Cucumis sativus L.) is an important quality trait that greatly affects fruit appearance and market value. The cucumber wart consists of fruit trichomes (spines) and underlying tubercules, in which the existence of spines is prerequisite for tubercule formation. Although several regulators have been reported to mediate spine or tubercule formation, the direct link between spine and tubercule development remains unknown. Here, we found that the basic Helix-Loop-Helix (bHLH) gene HECATE2 (CsHEC2) was highly expressed in cucumber fruit peels including spines and tubercules. Knockout of CsHEC2 by the CRISPR/Cas9 system resulted in reduced wart density and decreased cytokinin (CTK) accumulation in the fruit peel, whereas overexpression of CsHEC2 led to elevated wart density and CTK level. CsHEC2 is directly bound to the promoter of the CTK hydroxylase-like1 gene (CsCHL1) that catalyzes CTK biosynthesis, and activated CsCHL1 expression. Moreover, CsHEC2 physically interacted with GLABROUS3 (CsGL3, a key spine regulator) and Tuberculate fruit (CsTu, a core tubercule formation factor), and such interactions further enhanced CsHEC2-mediated CsCHL1 expression. These data suggested that CsHEC2 promotes wart formation by acting as an important cofactor for CsGL3 and CsTu to directly stimulate CTK biosynthesis in cucumber. Thus, CsHEC2 can serve as a valuable target for molecular breeding of cucumber varieties with different wart density requirements.


Subject(s)
Cucumis sativus/genetics , Cytokinins/biosynthesis , Fruit/growth & development , Plant Proteins/genetics , Cucumis sativus/metabolism , Fruit/genetics , Plant Proteins/metabolism
17.
Crit Rev Food Sci Nutr ; 62(19): 5113-5129, 2022.
Article in English | MEDLINE | ID: mdl-33567903

ABSTRACT

Traditionally, walnuts have occupied an imperative position in the functional food market with consistently recognized nutritious and functional properties. In the past years, the lipid profile of walnuts has brought much scientific attention via linking a cascade of biological attributes and health-promoting effects. Over time, researchers have focused on diversified composition (polyphenols and vitamins) of different parts of walnut (flower, pellicle, and kernel) and emphasized their physiological significance. Consequently, a plethora of reports has emerged on the potential role of walnut consumption against a series of diseases including cancer, gut dysbiosis, cardiovascular, and neurodegenerative diseases. Therefore, we accumulated the updated data on composition and classification, extraction methods, and utilization of different parts of walnuts as well as associated beneficial effects under in vivo and clinical studies. Altogether, this review summarized the ameliorative effects of a walnut-enriched diet in chronic diseases which can be designated to the synergistic or individual effects of walnut components mainly through anti-oxidative and anti-inflammatory role.


Subject(s)
Juglans , Anti-Inflammatory Agents , Diet , Nuts/chemistry , Polyphenols/analysis
18.
Mol Ther ; 29(6): 2121-2133, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33601055

ABSTRACT

Ocular melanoma, including uveal melanoma (UM) and conjunctival melanoma (CM), is the most common and deadly eye cancer in adults. Both UM and CM originate from melanocytes and exhibit an aggressive growth pattern with high rates of metastasis and mortality. The integral membrane glycoprotein beta-secretase 2 (BACE2), an enzyme that cleaves amyloid precursor protein into amyloid beta peptide, has been reported to play a vital role in vertebrate pigmentation and metastatic melanoma. However, the role of BACE2 in ocular melanoma remains unclear. In this study, we showed that BACE2 was significantly upregulated in ocular melanoma, and inhibition of BACE2 significantly impaired tumor progression both in vitro and in vivo. Notably, we identified that transmembrane protein 38B (TMEM38B), whose expression was highly dependent on BACE2, modulated calcium release from endoplasmic reticulum (ER). Inhibition of the BACE2/TMEM38B axis could trigger exhaustion of intracellular calcium release and inhibit tumor progression. We further demonstrated that BACE2 presented an increased level of N6-methyladenosine (m6A) RNA methylation, which led to the upregulation of BACE2 mRNA. To our knowledge, this study provides a novel pattern of BACE2-mediated intracellular calcium release in ocular melanoma progression, and our findings suggest that m6A/BACE2/TMEM38b could be a potential therapeutic axis for ocular melanoma.


Subject(s)
Amyloid Precursor Protein Secretases/genetics , Aspartic Acid Endopeptidases/genetics , Calcium/metabolism , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Melanoma/genetics , Melanoma/metabolism , RNA/genetics , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism , Adenosine/analogs & derivatives , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Epigenesis, Genetic , Gene Expression Profiling , Humans , Ion Channels/genetics , Ion Channels/metabolism , Melanoma/mortality , Melanoma/pathology , Methylation , RNA/metabolism , RNA Interference , Uveal Neoplasms/mortality , Uveal Neoplasms/pathology
19.
J Craniofac Surg ; 33(3): e238-e240, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34374675

ABSTRACT

ABSTRACT: The aim of the study was to report a novel forkhead box L2 (FOXL2) missense mutation in a Chinese blepharophimosis/ ptosis/epicanthus inversus syndrome family. Three generations of the Chinese family with blepharophimosis/ptosis/epicanthus inversus syndrome were enrolled in this study. Blood samples from patients of this family were collected and then analyzed by whole-exome sequencing. Confocal microscopy was performed to detect the subcellular location of FOXL2. Transactivation studies were performed and verified with real time polymerase chain reaction. A novel mutation (c.1068G>C) located in the downstream of deoxyribonucleic acid-binding forkhead domain was identified. Confocal photos showed the novel mutation did not disturb FOXL2 function, and the mutant protein could still transactivate steroidogenic acute regulatory protein, a key regulator of primary ovarian failure (POF). Our study revealed a novel missense mutation (c.1068G>C) and expanded the spectrum of FOXL2 gene mutations.


Subject(s)
Blepharophimosis , Forkhead Box Protein L2 , Skin Abnormalities , Urogenital Abnormalities , Blepharophimosis/diagnosis , Blepharophimosis/genetics , China , Forkhead Box Protein L2/genetics , Humans , Mutation, Missense , Pedigree , Skin Abnormalities/diagnosis , Skin Abnormalities/genetics , Urogenital Abnormalities/diagnosis , Urogenital Abnormalities/genetics
20.
Langmuir ; 37(34): 10249-10258, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34415769

ABSTRACT

In the present research, magnetically recyclable polyphosphazene (PCTP)/Ag (MPCTP-Ag) nanoparticles are prepared by a green path, in which PCTP was used to modify Fe3O4 nanoparticles and provide nucleation sites for the reduction of Ag nanoparticles. The prepared MPCTP-Ag nanoparticles were characterized by TEM, SEM, EDS, BET, XRD, vibrating sample magnometry, XPS, and TGA analysis. The catalytic performances of the MPCTP-Ag nanoparticles for the degradation of 4-nitrophenol (4-NP), methylene blue (MB), methyl orange (MO), and their mixtures in the presence of NaBH4 were studied. The main factors affecting the catalytic performance, including temperature, reactant concentration, and catalyst dosage, were investigated. The results showed that the MPCTP-Ag nanoparticles exhibited excellent catalytic activity for the degradation of all three targeted organic contaminants (4-NP, MB, and MO). Moreover, the product retains its catalytic activity after being reused five times by magnetic separation. The results showed that MPCTP-Ag composite nanoparticles were efficient recyclable magnetic nanocatalysts with promising application in environment protection.

SELECTION OF CITATIONS
SEARCH DETAIL