Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Arch Sex Behav ; 53(4): 1591-1594, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38366312

ABSTRACT

Tarlov cysts adjacent to the spinal cord are usually asymptomatic and found incidentally via magnetic resonance imaging. On rare occasions, they increase in size to produce symptoms resembling disk herniation. We report a rare case of a sacral cyst resulting in premature ejaculation in a 32-year-old man who presented with pelvic pain and acquired premature ejaculation. Spinal nerve root decompression, excision of intraspinal Tarlov cyst, and spinal nerve root adhesion release surgery significantly improved his pain and premature ejaculation at a six-month follow-up.


Subject(s)
Premature Ejaculation , Tarlov Cysts , Male , Humans , Adult , Tarlov Cysts/diagnostic imaging , Tarlov Cysts/surgery , Premature Ejaculation/diagnostic imaging , Premature Ejaculation/surgery , Pelvic Pain , Magnetic Resonance Imaging
2.
J Environ Manage ; 366: 121864, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39018837

ABSTRACT

This research aimed to design an integrated aerobic-anaerobic reactor with dynamic aeration that was automatically regulated based on real-time oxygen concentration and investigate the aerobic pretreatment and subsequent dry co-anaerobic digestion (co-AD) characteristics of highly solids-loaded corn stover and swine manure in terms of temperature rise, physiochemical characteristics, and methane production. The high-temperature feedstocks from the aerobic pretreatment phase rapidly entered the AD phase without transportation and effectively improved the start-up and methane production of the co-AD. Oxygen concentration range, aeration rate, and pretreatment time affected the cumulative aeration time, temperature rise, and organic matter removal interactively during aerobic pretreatment, and a low aeration rate was relatively preferable. Although the lignocellulose removal increased with the increase in pretreatment duration, the maximal lignin elimination efficiency only reached 1.30%. The inoculum injection in the transition phase from aerobic pretreatment to co-AD and the leachate reflux during co-AD were also critical for producing methane steadily apart from aerobic pretreatment. The cold air weakened the temperature rise of aerobic pretreatment, and the low-temperature leachate reduced the methane production in the co-AD process. An oxygen concentration range of 13%-17%, aeration rate of 0.10 m3/(min·m3), pretreatment time of 84 h, inoculum loading of 40%, leachate refluxing thrice per day, and double-layer inoculation were optimum for improving the integrated aerobic-anaerobic digestion system's ability to resist low temperatures and achieving high methane production. The maximal cumulative and volatile solids (VS) methane yields of corn stover and swine manure reached 444.58 L and 266.30 L/kg VS.


Subject(s)
Manure , Methane , Temperature , Zea mays , Zea mays/metabolism , Animals , Methane/metabolism , Swine , Anaerobiosis , Bioreactors , Aerobiosis , Lignin
3.
Compr Rev Food Sci Food Saf ; 23(5): e13431, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39165140

ABSTRACT

Human milk oligosaccharides (HMOs) are an evolutionarily significant advantage bestowed by mothers for facilitating the development of the infant's gut microbiota. They can avoid absorption in the stomach and small intestine, reaching the colon successfully, where they engage in close interactions with gut microbes. This process also enables HMOs to exert additional prebiotic effects, including regulating the mucus layer, promoting physical growth and brain development, as well as preventing and mitigating conditions such as NEC, allergies, and diarrhea. Here, we comprehensively review the primary ways by which gut microbiota, including Bifidobacteria and other genera, utilize HMOs, and we classify them into five central pathways. Furthermore, we emphasize the metabolic benefits of bacteria consuming HMOs, particularly the recently identified intrinsic link between HMOs and the metabolic conversion of tryptophan to indole and its derivatives. We also examine the extensive probiotic roles of HMOs and their recent research advancements, specifically concentrating on the unsummarized role of HMOs in regulating the mucus layer, where their interaction with the gut microbiota becomes crucial. Additionally, we delve into the principal tools used for functional mining of new HMOs. In conclusion, our study presents a thorough analysis of the interaction mechanism between HMOs and gut microbiota, emphasizing the cooperative utilization of HMOs by gut microbiota, and provides an overview of the subsequent probiotic effects of this interaction. This review provides new insights into the interaction of HMOs with the gut microbiota, which will inform the mechanisms by which HMOs function.


Subject(s)
Gastrointestinal Microbiome , Milk, Human , Oligosaccharides , Prebiotics , Humans , Gastrointestinal Microbiome/physiology , Milk, Human/chemistry , Milk, Human/microbiology , Oligosaccharides/chemistry , Probiotics , Infant , Bacteria/metabolism , Bifidobacterium/physiology
4.
Audiol Neurootol ; 28(2): 138-150, 2023.
Article in English | MEDLINE | ID: mdl-36513028

ABSTRACT

INTRODUCTION: Sudden sensorineural hearing loss (SSNHL) is one of the most common acute symptoms in the otolaryngology department. Etiological diagnosis is the premise of effective treatment of SSNHL, and prognostic evaluation is the key. However, most of the patients are diagnosed as idiopathic due to a lack of overall assessment, while prognostic factors of SSNHL are numerous and controversial. Our purpose was to validate the potential value of a novel three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) MR protocol in SSNHL and to establish a clinical-image prognostic model for unilateral SSNHL. METHODS: This prospective study included consecutive patients from May 2019 to November 2021. Pathogenic diagnosis relied on expertise-based estimation and the associations of MR findings with clinical features of unilateral SSNHL were assessed. The prognostic evaluation of unilateral SSNHL was adopted for recovery and no recovery groups and complete and incomplete recovery groups. Significant clinical and MR features were compared and screened out by single-factor analyses. The primary clinical-image prognosis assessment model was built by multifactor logistic regression analyses. RESULTS: A total of 101 patients were enrolled in our study who acquired the correct etiological diagnosis based on the novel 3D-FLAIR MR combined with clinical examination. Among the 93 patients with unilateral SSNHL, 30.1% (28/93) showed labyrinthine abnormalities on 3D-FLAIR images. The severity of initial hearing loss in the MR+ group was worse than that in the MR- group (p < 0.05), and patients with positive MR findings tended to have poor recovery. An excellent prognostic model was built for hearing complete recovery and no recovery. The combination of three independent risk factors, including abnormal distortion products otoacoustic emission and transient evoked otoacoustic emission, the period from onset to treatment, and PTA at the onset, was adopted for hearing recovery/no recovery (accuracy = 90.2%, AUC = 0.820). Furthermore, adding the factor of positive MRI findings could improve the confidence for the judgment of hearing no recovery. The only independent risk factor, PTA at the onset, was adopted for complete/incomplete hearing recovery (accuracy = 86.1%, AUC = 0.874). CONCLUSION: The novel MR protocol had a good advantage in pathogenic diagnosis. Labyrinthine MR 3D-FLAIR signal abnormalities were related to the severity of an initial hearing loss and had a greater tendency to be found in patients with no recovery. A prognostic model with two main steps of unilateral SSNHL, mainly for SSNHL with no recovery and complete recovery, was built successfully and needed further verification by larger series of patients.


Subject(s)
Deafness , Ear, Inner , Hearing Loss, Sensorineural , Hearing Loss, Sudden , Humans , Prospective Studies , Prognosis , Hearing Loss, Sensorineural/diagnostic imaging , Magnetic Resonance Imaging/methods , Hearing Loss, Sudden/diagnostic imaging , Retrospective Studies
5.
Compr Rev Food Sci Food Saf ; 21(2): 1940-1957, 2022 03.
Article in English | MEDLINE | ID: mdl-35182006

ABSTRACT

Considering that a series of complex issues such as environmental problems, sustainable development, animal welfare, and human health are on a global scale, the development of vegetable protein-based meat substitutes provides a potential solution to the disparity between meat consumption demand and supply. The research and development of vegetable protein-based meat substitutes have become a major commercial activity, and the market is expanding to meet the growing consumer demand. Soy protein isolates (SPI) are often used as a raw material for vegetable meat substitutes because of their potential to form fiber structures. Although significant initial success has been achieved, it is still a challenge to explain how the composition and aggregation of SPI influence gel properties and the mechanism(s) involved. This article reviews the latest research about SPI. The relationship between the composition, aggregation, and gelation properties of SPI is based on a through literature search. It focused on the application of SPI in heat- and cold-induced gels, given the diversified market demands. The research on cold gel has helped expand the market. The methods to improve the properties of SPI gels, including physical, chemical, and biological properties, are reviewed to provide insights on its role in the properties of SPI gels. To achieve environmentally friendly and efficient ways for the food industry to use SPI gel properties, the research prospects and development trends of the gel properties of SPI are summarized. New developments and practical applications in the production technology, such as for ultrasound, microwave and high pressure, are reviewed. The potential and challenges for practical applications of cold plasma technology for SPI gel properties are also discussed. There is a need to transfer the laboratory technology to actual food production efficiently and safely.


Subject(s)
Plant Proteins, Dietary , Soybean Proteins , Dietary Fiber , Gels/chemistry , Hot Temperature , Soybean Proteins/chemistry
6.
J Sci Food Agric ; 100(12): 4565-4574, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32419135

ABSTRACT

BACKGROUND: Medium- and long- chain triacylglycerols (MLCTs) are functional structural lipids that can provide the human body with essential fatty acids and a faster energy supply. This study aimed to prepare MLCTs rich in α-linolenic by enzymatic interesterification of perilla oil and medium-chain triacylglycerols (MCTs), catalyzed by Lipozyme RM IM, Lipozyme TL IM, Lipozyme 435, and Novozyme 435 respectively. RESULTS: The effects of lipase loading, concentration of MCTs, reaction temperature, and reaction time on the yield of MLCTs were investigated. It was found that the reaction achieved more than a 70% yield of MLCTs in triacylglycerols under the conditions of 400 g kg-1 MCTs and 60 g kg-1 lipase loading after equilibrium. A novel two-stage deodorization was also applied to purify the interesterification products. The triacylglycerols reach over 97% purity in the products with significant removal (P < 0.05) of the free fatty acids, and the trans fatty acids were strictly controlled at below 1%. There was more than 40% α-linolenic in the purified products, with long-chain fatty acids mostly occupying the desired sn-2 position in acylglycerols, which are more active in hydrolysis. CONCLUSION: A series of novel α-linolenic acid-rich medium- and long-chain triacylglycerols was prepared. Under appropriate reaction conditions, the yield of MLCTs in triacylglycerols was above 70%. A novel two-stage deodorization can be used to promote the elimination of free fatty acids and limit the generation of trans fatty acids. © 2020 Society of Chemical Industry.


Subject(s)
Lipase/chemistry , Triglycerides/chemistry , alpha-Linolenic Acid/chemistry , Biocatalysis , Enzymes, Immobilized , Fatty Acids/chemistry , Fungal Proteins , Plant Oils/chemistry
7.
Molecules ; 22(11)2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29099771

ABSTRACT

The objective of the present study was to examine the structural and functional changes of ß-conglycinin exposed to oxidizing radicals produced by FeCl3/H2O2/ascorbic acid hydroxyl radical-generating system (HRGS) for 3 h at room temperature. Increasing H2O2 concentrations resulted in a loss of histidine residues, lysine residues, and available lysine, which was accompanied by the formation of protein carbonyls and disulphide bonds (p < 0.05). Changes in secondary structure, surface hydrophobicity, and intrinsic fluorescence indicated that hydroxyl radicals had induced protein unfolding and conformational alterations. Results from SDS-PAGE implied that a small amount of protein cross-linkages produced by oxidative incubation. The emulsifying properties of ß-conglycinin were gradually improved with the increasing extent of oxidation. The structural changes above contributed to the reduction of potential allergenicity of ß-conglycinin, as verified by specific ELISA analysis. These results suggest that moderate oxidation could partially improve the protein functional properties and reduced the potential allergy of protein, providing guidance for effective use of moderately oxidized soy protein in the industry.


Subject(s)
Antigens, Plant/chemistry , Globulins/chemistry , Hydroxyl Radical/chemistry , Seed Storage Proteins/chemistry , Soybean Proteins/chemistry , Emulsions , Fluorescence , Hydrophobic and Hydrophilic Interactions , Oxidation-Reduction , Protein Conformation , Solubility
8.
Toxicol Appl Pharmacol ; 309: 129-40, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27616297

ABSTRACT

BACKGROUND: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO2); early stages are characterized by alveolar inflammation, and later stages are characterized by progressive lung fibrosis. Mounting evidence indicates that high-mobility group box 1 (HMGB1) is involved in pulmonary fibrosis. Whether neogambogic acid (NGA) inhibits macrophage and fibroblast activation induced by SiO2 by targeting HMGB1 remains unclear. METHODS AND RESULTS: Experiments using cultured mouse macrophages (RAW264.7 cells) demonstrated that SiO2 treatment induces the expression of HMGB1 in a time- and dose-dependent manner via mitogen-activated protein kinases (MAPKs) and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway; in turn, this expression causes macrophage apoptosis and fibroblast activation. Pretreating macrophages with NGA inhibited the HMGB1 expression induced by SiO2 and attenuated both macrophage apoptosis and fibroblast activation. Moreover, NGA directly inhibited MCP-1-induced protein 1 (MCPIP1) expression, as well as markers of fibroblast activation and migration induced by SiO2. Furthermore, the effects of NGA on macrophages and fibroblasts were confirmed in vivo by exposing mice to SiO2. CONCLUSION: NGA can prevent SiO2-induced macrophage activation and apoptosis via HMGB1 inhibition and SiO2-induced fibrosis via the MCPIP1 pathway. Targeting HMGB1 and MCPIP1 with NGA could provide insights into the potential development of a therapeutic approach for alleviating the inflammation and fibrosis induced by SiO2.


Subject(s)
HMGB1 Protein/antagonists & inhibitors , Pulmonary Fibrosis/prevention & control , Ribonucleases/antagonists & inhibitors , Silicon Dioxide/toxicity , Xanthenes/pharmacology , Animals , Cell Line , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Male , Mice , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced
9.
J Sci Food Agric ; 96(5): 1532-40, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-25973991

ABSTRACT

BACKGROUND: The objective of this study was to determine the effect of ultrasound treatment on the wet heating Maillard reaction between mung bean protein isolates (MBPIs) and glucose, and on structural and physico-chemical properties of the conjugates. RESULTS: The degree of glycosylation of MBPI-glucose conjugates treated by ultrasound treatment and wet heating (MBPI-GUH) was higher than that of MBPI-glucose conjugates only treated by wet heating (MBPI-GH). Solubility, emulsification activity, emulsification stability and surface hydrophobicity of MBPI-GUH were higher than that of MBPI-GH. Grafted MBPIs had a lower content of α-helix and unordered coil, but a higher content of ß-sheet and ß-turn structure than MBPIs. No significant structural changes were observed in ß-turn and random coil structure of MBPI-GUH, while α-helix content increased with ultrasonic time, and decreased at 300 W ultrasonic power with the increase of ß-sheet. MBPI-GUH had a less compact tertiary structure compared to MBPI-GH and MBPI. Grafting MBPIs with glucose formed conjugates of higher molecular weight, while no significant changes were observed in electrophoresis profiles of MBPI-GUH. CONCLUSION: Ultrasound-assisted wet heating Maillard reaction between MBPIs and glucose could be a promising way to improve functional properties of MBPIs.


Subject(s)
Glucose/chemistry , Hot Temperature , Maillard Reaction , Plant Proteins/chemistry , Ultrasonics , Vigna/chemistry , Chemical Phenomena , Emulsifying Agents , Glycosylation , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Solubility
10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(7): 2318-24, 2016 Jul.
Article in English | MEDLINE | ID: mdl-30036021

ABSTRACT

This article focused on the assessment of the potential of Raman spectroscopy for the determination of structural changes in black-bean protein isolate (BBPI) dispersions with low-frequency (20 kHz) ultrasonication applied at various powers (150, 300 or 450 W) and for different durations (12 or 24 min). It also reported on differential scanning calorimetry analyses. A decrease in TD at low- and medium-power ultrasonication confirmed these ultrasonication treatment disrupted internal hydrophobic interactions of protein molecules and broke up unstable aggregates to smaller soluble protein aggregates, while an increase in TD at high-power was attributed to repolymerization of aggregates. Raman spectroscopy analysis revealed a decrease in the α-helix proportion and an increase in ß-sheets after ultrasonic treatment except Sample E (300 W, 24 min). Transformation of aggregation results in a reconstruction in secondary structure of BBPI, especially in ß-sheet structure. Ultrasonic-treatment induced a decrease in the normalized intensity of the Raman band near 760 cm-1 which indicated that Tryptophan residues tended to expose and also indicated protein partially unfolding. No significant difference was found in Tyr doublet ratios between unheated and ultrasound-treated BBPI indicated that ultrasound did not change the microenvironment around tyrosyl residues. While the intensity of 1 450 cm-1 band increased with increasing ultrasonic intensity and treatment time, and then decreased with further increase in power and treatment time. In general, the formation of aggregation transferred g-g-t conformation to t-g-t conformation. Though some mechanism of aggregation-repolymerization of BBPI remains to be clearly defined, Raman spectroscopy provide a feasible tool to study the structural changes of BBPI prepared under different ultrasonic conditions, give a new perspective to elucidation of protein structure.

11.
Gels ; 10(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38391428

ABSTRACT

In the actual production process of soy protein isolate (SPI), most of the homogeneous operating pressure is controlled below 20 MPa due to the consideration of production safety and the limitation of the pressure control capability of homogeneous equipment. In order to improve the functional properties of SPI and adapt it to actual production, the effects of different homogeneous pressures (4, 8, 10, 12, and 14 MPa) on the structure and gel properties of SPI were studied from the perspective of production control. Compared to the control group, the modified SPI improved the hardness, springiness, cohesiveness, chewiness, and water holding capacity (WHC) of the protein gel (p < 0.05). Rheological analysis shows that both G' and G″ increase with increasing frequency, reaching a maximum at 12 MPa. The gel intermolecular force results show that the disulfide bond, hydrophobic interaction, and non-disulfide bond are important molecular forces for gel formation. The particle size distribution uniformity of modified SPI was high, and scanning electron microscopy (SEM) analysis showed that the protein gel with a continuous uniform and dense network structure could be formed by high-pressure homogeneous modification. Overall, high-pressure homogenization technology has the potential to improve SPI gel structure and WHC, and 12 MPa modified SPI gel has the most significant effect.

12.
Biosens Bioelectron ; 262: 116567, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39013360

ABSTRACT

Food safety and human health remain significant concerns in the food industry. Detecting food contaminants and diagnosing diseases are critical aspects. Ferritin, an iron storage protein widely found in nature, offers unique advantages. Its hollow protein nanocage structure, distinct interfaces, hydrophobic or hydrophilic channels, and B-C loop regions recognized by transferrin receptor 1 make ferritin versatile for detecting heavy metals, free radicals, and bioimaging both in vitro and in vivo. This review summarizes ferritin's general characteristics, its specific properties as biosensors, and its applications in food safety and in vivo imaging. It emphasizes not only ferritin's role in detecting heavy metals like mercury and chemical hazards but also its potential in early diagnosing chronic diseases such as tumors, macrophages, and kidney diseases. Further research into ferritin promises advancements in enhancing food safety and improving human health diagnostics.


Subject(s)
Biosensing Techniques , Ferritins , Ferritins/chemistry , Humans , Biosensing Techniques/methods , Animals , Nanostructures/chemistry , Metals, Heavy/chemistry , Food Safety , Food Contamination/analysis
13.
Foods ; 13(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928742

ABSTRACT

The low rehydration properties of commercial soy protein powder (SPI), a major plant-based food ingredient, have limited the development of plant-based foods. The present study proposes a treatment of soy lecithin modification combined with Alcalase hydrolysis to improve the rehydration of soy protein powder, as well as other processing properties (emulsification, viscosity). The results show that the soy protein-soy lecithin complex powder, which is hydrolyzed for 30 min (SPH-SL-30), has the smallest particle size, the smallest zeta potential, the highest surface hydrophobicity, and a uniform microstructure. In addition, the value of the ratio of the α-helical structure/ß-folded structure was the smallest in the SPH-SL-30. After measuring the rehydration properties, emulsification properties, and viscosity, it was found that the SPH-SL-30 has the shortest wetting time of 3.04 min, the shortest dispersion time of 12.29 s, the highest solubility of 93.17%, the highest emulsifying activity of 32.42 m2/g, the highest emulsifying stability of 98.33 min, and the lowest viscosity of 0.98 pa.s. This indicates that the treatment of soy lecithin modification combined with Alcalase hydrolysis destroys the structure of soy protein, changes its physicochemical properties, and improves its functional properties. In this study, soy protein was modified by the treatment of soy lecithin modification combined with Alcalase hydrolysis to improve the processing characteristics of soy protein powders and to provide a theoretical basis for its high-value utilization in the plant-based food field.

14.
Food Chem X ; 21: 101122, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38261844

ABSTRACT

Protein-polysaccharide composite is of great significance for the development of soluble protein recovery process. This study investigated the effects of cavitation jet (CJ) pretreatment at different time (0, 60, 120, 180, 240, 300 s) intervals on the recovery of soy whey protein (SWP) from soy whey wastewater using chitosan (CH). In addition, the structure and properties of the SWP/CH complexes were examined. The results showed that the recovery yield of SWP reached 84.44 % when the CJ pretreatment time was 180 s, and the EAI and ESI values of the SWP/CH complex increased from 32.39 m2/g and 21 min to 48.47 m2/g and 32 min, respectively. In the CJ pretreatment process, SWP promotes the recombination with chitosan through electrostatic interaction and hydrogen bond, while hydrophobic interaction is also involved. This study has guiding significance for CJ technology in the recovery and utilization of protein in industrial wastewater.

15.
Environ Technol ; : 1-10, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820584

ABSTRACT

The conventional aeration method is compulsorily continuous ventilation or aeration at equal intervals, and a uniform aeration rate does not vary during composting. A dynamic on-demand aeration approach based on the diverse oxygen consumption of microorganisms at different composting stages could solve the problems of insufficient oxygen supply or excessive aeration. This study aims to design an aerobic composting system with dynamic aeration, investigate the effects of dynamic aeration on the temperature rise and physicochemical characteristics during the aerobic composting of corn straw and pig manure, and optimise the control parameters of oxygen concentration. Higher temperatures and longer high-temperature durations were achieved under dynamic aeration, thereby accelerating the decomposition of organic compounds. Dynamic aeration effectively reduced the aeration frequency, the convective latent heat and moisture losses, and the power consumption in the middle and later stages of composting. The dynamic aeration regulated according to the oxygen concentration of 14%-17% in the exhaust was optimum. Under the optimal conditions, the period above 50 ℃ lasted 8.5 days, and the highest temperature, organic matter removal, and seed germination index reached 65.82 ℃, 37.59%, and 74.59%, respectively. The power consumption was decreased by 33.58% compared to the traditional intermittent aeration. Dynamic aeration would be a competitive approach for improving aerobic composting characteristics and reducing the power consumption and the hot exhaust gas emissions, especially in the cooling maturation stage, which was of great significance for realising the low-cost production of composting at scale and promoting the blossom of the organic fertiliser industry.

16.
Int J Biol Macromol ; 256(Pt 1): 128381, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000596

ABSTRACT

The interactions between carboxymethyl cellulose sodium and proteins can regulate the interfacial and rheological properties of HIPEs, which plays a leading role in the stabilities of HIPEs. This article prepared various ratios of soluble soy protein isolate/carboxymethyl cellulose sodium (SPI/CMC) complexes in different proportions and examined the impact of various ratios of complexes on the structure and interface properties of complexes systems. Additionally, it explored the co-emulsification mechanism of HIPEs using SPI and CMC. At appropriate ratios of SPI/CMC, SPI and CMC mainly combine through non covalent binding and form complexes with smaller particle sizes and stronger electrostatic repulsion. The interfacial properties indicated that adding appropriate CMC increased the pliability and reduced the interfacial tension, while also enhancing the wettability of SPI/CMC complexes. At the ratio of 2:1, the SPI/CMC complexes-stabilized HIPPEs exhibited smaller oil droplets size, tighter droplet packing, and thicker interfacial film through the bridging of droplets and the generation of stronger gel-like network structures to prevent the coalescence/flocculation of droplets. These results suggested that the appropriate ratios of SPI/CMC can improve the physical stability of HIPEs by changing the structure and interface characteristics of the SPI/CMC complexes. This work provided theoretical support for stable HIPEs formed with protein-polysaccharide complexes.


Subject(s)
Carboxymethylcellulose Sodium , Soybean Proteins , Soybean Proteins/chemistry , Emulsions/chemistry , Wettability , Particle Size , Sodium
17.
Bioresour Technol ; 393: 130145, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042430

ABSTRACT

Medium-chain fatty acids (MCFAs) are essential chemical feedstocks. Microbial production of MCFAs offers an attractive alternative to conventional methods, but the costly media and external inducers limit its practical application. To address this issue and make MCFA production more cost-effective, an E.coli platform was developed using soy whey as a medium and galactose as an autoinducer. We first designed an efficient, stringent, homogeneous, and robust galactose-based autoinduction system for the expression of pathway enzymes by rationally engineering the promoter of the galactose-proton symporter (GalP). Subsequently, the intracellular acetyl-CoA availability and NADH regeneration were enhanced to improve the reversal of the ß-oxidation cycle. The resulting strain yielded 8.20 g/L and 16.42 g/L MCFA in pH-controlled batch fermentation and fed-batch fermentation with glucose added using soy whey as medium, respectively. This study provided a cost-effective and promising platform for MCFA production, as well as future strain development for other value-added chemicals production.


Subject(s)
Escherichia coli , Fatty Acids , Escherichia coli/metabolism , Fatty Acids/metabolism , Galactose/metabolism , Whey/metabolism , Cost-Benefit Analysis , Metabolic Engineering/methods , Whey Proteins/metabolism , Fermentation
18.
Foods ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731711

ABSTRACT

The low solubility and stability of fat-soluble curcumin in water limit its application in active packaging. This study explored the use of a pH-driven method to investigate the preparation and enhancement of the performance of films loaded with curcumin in a matrix of sodium alginate (Alg) and egg white protein (EWP). In this study, the EWP, Alg, and curcumin primarily bind through hydrogen bonding, electrostatic interactions, and hydrophobic interactions. Compared to EWP films, the films loaded with curcumin through the pH-driven method exhibited enhanced extensibility and water resistance, with an elongation at break (EB) of 103.56 ± 3.13% and a water vapor permeability (WVP) of 1.67 ± 0.03 × 10-10 g·m/m2·Pa·s. The addition of Alg improved the encapsulation efficiency and thermal stability of curcumin, thereby enhancing the antioxidant activity of the film through the addition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, which resulted in 106.95 ± 2.61 µg TE/g and 144.44 ± 8.89 µg TE/g, respectively. It is noteworthy that the detrimental effect of Alg on the color responsiveness of films containing curcumin has also been observed. This study provides a potential strategy and consideration for the loading of low water-soluble active substances and the preparation of active packaging.

19.
Int J Biol Macromol ; 278(Pt 4): 134988, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39181369

ABSTRACT

Soy proteins are seen as a promising alternative food source for meat with environmentally friendly properties. The problem is that the functional properties of soy proteins do not meet the needs of the food industry, and some existing modification technologies have adverse effects. Recently, cavitation jet technology (CJT) has been studied because it generates high heat, high pressure, strong shear and strong shock waves. This review summarizes the history and mechanism of cavitation jets. The energy generated during the cavitation jet process can open molecular structures, and the shock waves and microjets generated can pulverize the materials by erosion. The impact of the CJT on the morphology, structure, and functionality of soy proteins is discussed. The impact of combining CJT with other techniques on the production of soy proteins was also reviewed. The modification of proteins using two or more methods with complementary strengths, avoiding the disadvantages of certain techniques, makes the modification of proteins more effective. One of the most prominent effects is the combined treatment of cavitation jets with physical techniques. Finally, the review provides a comprehensive analysis of the application of modified soy proteins in the food industry and highlights promising avenues for future research.

20.
Int J Biol Macromol ; 270(Pt 1): 131889, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782624

ABSTRACT

This work aimed at building functional emulsions based on the linear dextrins (LDs) emulsion system. The gradient polyethylene glycol (PEG) precipitaion method was used to fractionate LDs into fractions with different degrees of polymerization (DP). A package, and co-precipitation procedure of LDs, and eicosapentaenoic acid (EPA) was used to fabricate LDs-EPA composites. The gas chromatograph, Fourier transform infrared spectroscopy, X-ray diffraction and differential scanning calorimetry analyses affirmed the formation of the LDs-EPA composites. The sizes of these composites were 38.55 nm, 59.14 nm to 80.62 nm, respectively, and they had good amphiphilicity. Compared with LDs, these LDs-EPA composites stabilized Pickering emulsion had higher stability and antioxidant capacity. Their emulsifying ability was positively correlated with the DP values of LDs. Furthermore, the oxidation stability results showed that LDsF10-EPA emulsion had the lowest lipid hydroperoxide (LHs) content, malondioxide (MDA) content and hexal concentration, which were 138.75 mmol kg-1 oil, 15.50 mmol kg-1 oil and 3.83 µmol kg-1 oil, respectively. The study provided a new idea and application values for the application of LDs in emulsion.


Subject(s)
Dextrins , Eicosapentaenoic Acid , Emulsions , Polymerization , Emulsions/chemistry , Eicosapentaenoic Acid/chemistry , Eicosapentaenoic Acid/analogs & derivatives , Dextrins/chemistry , Antioxidants/chemistry , Emulsifying Agents/chemistry , Polyethylene Glycols/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL