Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
J Virol ; 98(5): e0178423, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38624229

ABSTRACT

Novel respiratory viruses can cause a pandemic and then evolve to coexist with humans. The Omicron strain of severe acute respiratory syndrome coronavirus 2 has spread worldwide since its emergence in late 2021, and its sub-lineages are now established in human society. Compared to previous strains, Omicron is markedly less invasive in the lungs and causes less severe disease. One reason for this is that humans are acquiring immunity through previous infection and vaccination, but the nature of the virus itself is also changing. Using our newly established low-volume inoculation system, which reflects natural human infection, we show that the Omicron strain spreads less efficiently into the lungs of hamsters compared with an earlier Wuhan strain. Furthermore, by characterizing chimeric viruses with the Omicron gene in the Wuhan strain genetic background and vice versa, we found that viral genes downstream of ORF3a, but not the S gene, were responsible for the limited spread of the Omicron strain in the lower airways of the virus-infected hamsters. Moreover, molecular evolutionary analysis of SARS-CoV-2 revealed a positive selection of genes downstream of ORF3a (M and E genes). Our findings provide insight into the adaptive evolution of the virus in humans during the pandemic convergence phase.IMPORTANCEThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has spread worldwide since its emergence in late 2021, and its sub-lineages are established in human society. Compared to previous strains, the Omicron strain is less invasive in the lower respiratory tract, including the lungs, and causes less severe disease; however, the mechanistic basis for its restricted replication in the lower airways is poorly understood. In this study, using a newly established low-volume inoculation system that reflects natural human infection, we demonstrated that the Omicron strain spreads less efficiently into the lungs of hamsters compared with an earlier Wuhan strain and found that viral genes downstream of ORF3a are responsible for replication restriction in the lower respiratory tract of Omicron-infected hamsters. Furthermore, we detected a positive selection of genes downstream of ORF3a (especially the M and E genes) in SARS-CoV-2, suggesting that these genes may undergo adaptive changes in humans.


Subject(s)
COVID-19 , Evolution, Molecular , SARS-CoV-2 , Animals , Cricetinae , COVID-19/virology , Lung/virology , Mesocricetus , SARS-CoV-2/genetics , SARS-CoV-2/physiology
2.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: mdl-34140350

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in viral infectivity. It is also the major antigen stimulating the host's protective immune response, specifically, the production of neutralizing antibodies. Recently, a new variant of SARS-CoV-2 possessing multiple mutations in the S protein, designated P.1, emerged in Brazil. Here, we characterized a P.1 variant isolated in Japan by using Syrian hamsters, a well-established small animal model for the study of SARS-CoV-2 disease (COVID-19). In hamsters, the variant showed replicative abilities and pathogenicity similar to those of early and contemporary strains (i.e., SARS-CoV-2 bearing aspartic acid [D] or glycine [G] at position 614 of the S protein). Sera and/or plasma from convalescent patients and BNT162b2 messenger RNA vaccinees showed comparable neutralization titers across the P.1 variant, S-614D, and S-614G strains. In contrast, the S-614D and S-614G strains were less well recognized than the P.1 variant by serum from a P.1-infected patient. Prior infection with S-614D or S-614G strains efficiently prevented the replication of the P.1 variant in the lower respiratory tract of hamsters upon reinfection. In addition, passive transfer of neutralizing antibodies to hamsters infected with the P.1 variant or the S-614G strain led to reduced virus replication in the lower respiratory tract. However, the effect was less pronounced against the P.1 variant than the S-614G strain. These findings suggest that the P.1 variant may be somewhat antigenically different from the early and contemporary strains of SARS-CoV-2.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Virus Replication , Animals , Antibodies, Neutralizing , COVID-19/diagnostic imaging , COVID-19/pathology , Cricetinae , Humans , Immunogenicity, Vaccine , Lung/pathology , Mesocricetus , Mice , Spike Glycoprotein, Coronavirus/genetics , X-Ray Microtomography
3.
Angew Chem Int Ed Engl ; : e202411760, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373347

ABSTRACT

Heparan sulfate (HS) is ubiquitous on cell surfaces and is used as a receptor by many viruses including SARS-CoV-2. However, increased activity of the inflammatory enzyme heparanase (HPSE), which hydrolyses HS, in patients with COVID-19 not only increases the severity of symptoms but also may facilitate the spread of the virus by degrading HS on the cell surface. Therefore, synthetic HPSE blockades, which can bind to SARS-CoV-2 spike protein (SARS-CoV-2-S) and inhibit viral entry, have attracted much attention. This study investigated the development of a new dual-targeting antiviral agent against HPSE and SARS-CoV-2-S using fucoidan as a structural motif. It was found that all-sulfated fucoidan derivative 10, which exhibited the highest binding affinity to SARS-CoV-2-S among 13 derivatives, also showed the highest inhibitory activity against HPSE. Based on this, a newly designed and synthesized fucoidan analogue 16, in which the octyl group of 10 was changed to a cholestanyl group, was found to show higher activity than 10 but did not inhibit factor Xa associated with undesired anticoagulant effects. The binding affinity of 16 to SARS-CoV-2-S was significantly increased approximately 400-fold over that of 10.Ā Furthermore, 16 effectively inhibited infection by the SARS-CoV-2 Wuhan strain and two Omicron subvariants.

4.
Proc Natl Acad Sci U S A ; 117(28): 16587-16595, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32571934

ABSTRACT

At the end of 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) was detected in Wuhan, China, that spread rapidly around the world, with severe consequences for human health and the global economy. Here, we assessed the replicative ability and pathogenesis of SARS-CoV-2 isolates in Syrian hamsters. SARS-CoV-2 isolates replicated efficiently in the lungs of hamsters, causing severe pathological lung lesions following intranasal infection. In addition, microcomputed tomographic imaging revealed severe lung injury that shared characteristics with SARS-CoV-2-infected human lung, including severe, bilateral, peripherally distributed, multilobular ground glass opacity, and regions of lung consolidation. SARS-CoV-2-infected hamsters mounted neutralizing antibody responses and were protected against subsequent rechallenge with SARS-CoV-2. Moreover, passive transfer of convalescent serum to naĆÆve hamsters efficiently suppressed the replication of the virus in the lungs even when the serum was administrated 2 d postinfection of the serum-treated hamsters. Collectively, these findings demonstrate that this Syrian hamster model will be useful for understanding SARS-CoV-2 pathogenesis and testing vaccines and antiviral drugs.


Subject(s)
Coronavirus Infections/virology , Disease Models, Animal , Lung/pathology , Pneumonia, Viral/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Cricetinae , Humans , Immunization, Passive , Lung/diagnostic imaging , Lung/virology , Mesocricetus , Pandemics , Pneumonia, Viral/pathology , Ribonucleoproteins/chemistry , SARS-CoV-2 , Vero Cells , Viral Proteins/chemistry , Virus Replication , COVID-19 Serotherapy
5.
Proc Natl Acad Sci U S A ; 116(9): 3919-3928, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808769

ABSTRACT

Ebola virus disease (EVD) often leads to severe and fatal outcomes in humans with early supportive care increasing the chances of survival. Profiling the human plasma lipidome provides insight into critical illness as well as diseased states, as lipids have essential roles as membrane structural components, signaling molecules, and energy sources. Here we show that the plasma lipidomes of EVD survivors and fatalities from Sierra Leone, infected during the 2014-2016 Ebola virus outbreak, were profoundly altered. Focusing on how lipids are associated in human plasma, while factoring in the state of critical illness, we found that lipidome changes were related to EVD outcome and could identify states of disease and recovery. Specific changes in the lipidome suggested contributions from extracellular vesicles, viremia, liver dysfunction, apoptosis, autophagy, and general critical illness, and we identified possible targets for therapies enhancing EVD survival.


Subject(s)
Critical Illness/epidemiology , Hemorrhagic Fever, Ebola/genetics , Lipid Metabolism/genetics , Lipids/genetics , Adolescent , Adult , Child , Disease Outbreaks , Ebolavirus/genetics , Ebolavirus/pathogenicity , Female , Gene Expression Regulation/genetics , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/pathology , Hemorrhagic Fever, Ebola/virology , Humans , Lipids/blood , Male , Sierra Leone/epidemiology , Young Adult
6.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: mdl-33416463

ABSTRACT

The genus Flavivirus includes a range of mosquito-specific viruses in addition to well-known medically important arboviruses. Isolation and comprehensive genomic analyses of viruses in mosquitoes collected in Bolivia resulted in the identification of three novel flavivirus species. Psorophora flavivirus (PSFV) was isolated from Psorophora albigenu. The coding sequence of the PSFV polyprotein shares 60Ć¢Ā€ĀŠ% identity with that of the Aedes-associated lineage II insect-specific flavivirus (ISF), Marisma virus. Isolated PSFV replicates in both Aedes albopictus- and Aedes aegypti-derived cells, but not in mammalian Vero or BHK-21 cell lines. Two other flaviviruses, Ochlerotatus scapularis flavivirus (OSFV) and Mansonia flavivirus (MAFV), which were identified from Ochlerotatus scapularis and Mansonia titillans, respectively, group with the classical lineage I ISFs. The protein coding sequences of these viruses share only 60 and 40Ć¢Ā€ĀŠ% identity with the most closely related of known lineage I ISFs, including Xishuangbanna aedes flavivirus and Sabethes flavivirus, respectively. Phylogenetic analysis suggests that MAFV is clearly distinct from the groups of the current known Culicinae-associated lineage I ISFs. Interestingly, the predicted amino acid sequence of the MAFV capsid protein is approximately two times longer than that of any of the other known flaviviruses. Our results indicate that flaviviruses with distinct features can be found at the edge of the Bolivian Amazon basin at sites that are also home to dense populations of human-biting mosquitoes.


Subject(s)
Culicidae/virology , Flavivirus/genetics , Flavivirus/isolation & purification , Aedes/virology , Animals , Bolivia , Capsid Proteins/chemistry , Capsid Proteins/genetics , Cell Line , Flavivirus/classification , Flavivirus/physiology , Genome, Viral , Mosquito Vectors/virology , Phylogeny , Polyproteins/chemistry , Polyproteins/genetics , RNA, Viral/genetics , Sequence Analysis, RNA , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Structural Proteins/chemistry , Viral Structural Proteins/genetics , Virus Replication , Whole Genome Sequencing
7.
J Infect Dis ; 222(7): 1155-1164, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32433769

ABSTRACT

The avian influenza A(H7N9) virus has caused high mortality rates in humans, especially in the elderly; however, little is known about the mechanistic basis for this. In the current study, we used nonhuman primates to evaluate the effect of aging on the pathogenicity of A(H7N9) virus. We observed that A(H7N9) virus infection of aged animals (defined as age 20-26 years) caused more severe symptoms than infection of young animals (defined as age 2-3 years). In aged animals, lung inflammation was weak and virus infection was sustained. Although cytokine and chemokine expression in the lungs of most aged animals was lower than that in the lungs of young animals, 1 aged animal showed severe symptoms and dysregulated proinflammatory cytokine and chemokine production. These results suggest that attenuated or dysregulated immune responses in aged animals are responsible for the severe symptoms observed among elderly patients infected with A(H7N9) virus.


Subject(s)
Aging , Influenza A Virus, H7N9 Subtype , Lung/pathology , Orthomyxoviridae Infections/virology , Animals , Cytokines/immunology , Disease Models, Animal , Female , Lung/immunology , Lung/virology , Macaca fascicularis , Orthomyxoviridae Infections/immunology , Virus Replication
8.
Virus Genes ; 55(6): 815-824, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31549291

ABSTRACT

Viruses are believed to be ubiquitous; however, the diversity of viruses is largely unknown because of the bias of previous research toward pathogenic viruses. Deep sequencing is a promising and unbiased approach to detect viruses from animal-derived materials. Although cranes are known to be infected by several viruses such as influenza A viruses, previous studies targeted limited species of viruses, and thus viruses that infect cranes have not been extensively studied. In this study, we collected crane fecal samples in the Izumi plain in Japan, which is an overwintering site for cranes, and performed metagenomic shotgun sequencing analyses. We detected aviadenovirus-like sequences in the fecal samples and tentatively named the discovered virus crane-associated adenovirus 1 (CrAdV-1). We determined that our sequence accounted for approximately three-fourths of the estimated CrAdV-1 genome size (33,245Ā bp). The GC content of CrAdV-1 genome is 34.1%, which is considerably lower than that of other aviadenoviruses. Phylogenetic analyses revealed that CrAdV-1 clusters with members of the genus Aviadenovirus, but is distantly related to the previously identified aviadenoviruses. The protein sequence divergence between the DNA polymerase of CrAdV-1 and those of other aviadenoviruses is 45.2-46.8%. Based on these results and the species demarcation for the family Adenoviridae, we propose that CrAdV-1 be classified as a new species in the genus Aviadenovirus. Results of this study contribute to a deeper understanding of the diversity and evolution of viruses and provide additional information on viruses that infect cranes, which might lead to protection of the endangered species of cranes.


Subject(s)
Adenoviridae Infections/genetics , Aviadenovirus/genetics , Bird Diseases/genetics , Adenoviridae Infections/virology , Animals , Aviadenovirus/isolation & purification , Bird Diseases/virology , Birds/genetics , Birds/virology , Feces/virology , High-Throughput Nucleotide Sequencing , Influenza A virus/genetics , Influenza A virus/pathogenicity , Japan , Phylogeny
9.
Nature ; 501(7468): 551-5, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-23842494

ABSTRACT

Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.


Subject(s)
Influenza A virus , Influenza, Human/virology , Orthomyxoviridae Infections/virology , Virus Replication , Animals , Antiviral Agents/pharmacology , Cells, Cultured , Chickens/virology , DNA-Directed RNA Polymerases/antagonists & inhibitors , Dogs , Enzyme Inhibitors/pharmacology , Female , Ferrets/virology , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A virus/chemistry , Influenza A virus/drug effects , Influenza A virus/isolation & purification , Influenza A virus/pathogenicity , Influenza, Human/drug therapy , Macaca fascicularis/virology , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Monkey Diseases/pathology , Monkey Diseases/virology , Neuraminidase/antagonists & inhibitors , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/transmission , Quail/virology , Swine/virology , Swine, Miniature/virology , Virus Replication/drug effects
10.
Nature ; 486(7403): 420-8, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22722205

ABSTRACT

Highly pathogenic avian H5N1 influenza A viruses occasionally infect humans, but currently do not transmit efficiently among humans. The viral haemagglutinin (HA) protein is a known host-range determinant as it mediates virus binding to host-specific cellular receptors. Here we assess the molecular changes in HA that would allow a virus possessing subtype H5 HA to be transmissible among mammals. We identified a reassortant H5 HA/H1N1 virus-comprising H5 HA (from an H5N1 virus) with four mutations and the remaining seven gene segments from a 2009 pandemic H1N1 virus-that was capable of droplet transmission in a ferret model. The transmissible H5 reassortant virus preferentially recognized human-type receptors, replicated efficiently in ferrets, caused lung lesions and weight loss, but was not highly pathogenic and did not cause mortality. These results indicate that H5 HA can convert to an HA that supports efficient viral transmission in mammals; however, we do not know whether the four mutations in the H5 HA identified here would render a wholly avian H5N1 virus transmissible. The genetic origin of the remaining seven viral gene segments may also critically contribute to transmissibility in mammals. Nevertheless, as H5N1 viruses continue to evolve and infect humans, receptor-binding variants of H5N1 viruses with pandemic potential, including avian-human reassortant viruses as tested here, may emerge. Our findings emphasize the need to prepare for potential pandemics caused by influenza viruses possessing H5 HA, and will help individuals conducting surveillance in regions with circulating H5N1 viruses to recognize key residues that predict the pandemic potential of isolates, which will inform the development, production and distribution of effective countermeasures.


Subject(s)
Adaptation, Physiological/genetics , Ferrets/virology , Influenza A Virus, H5N1 Subtype/pathogenicity , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Reassortant Viruses/pathogenicity , Respiratory System/virology , Animals , Bioterrorism/prevention & control , Birds/virology , Body Fluids/virology , Cell Line , Dogs , Evolution, Molecular , Female , HEK293 Cells , HeLa Cells , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hot Temperature , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/physiology , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza, Human/prevention & control , Influenza, Human/transmission , Influenza, Human/virology , Molecular Epidemiology/methods , Pandemics , Population Surveillance/methods , Protein Stability , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Reassortant Viruses/physiology , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Respiratory System/anatomy & histology , Security Measures , Zoonoses/transmission , Zoonoses/virology
11.
Nucleic Acids Res ; 44(W1): W507-13, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27131384

ABSTRACT

We present systemsDock, a web server for network pharmacology-based prediction and analysis, which permits docking simulation and molecular pathway map for comprehensive characterization of ligand selectivity and interpretation of ligand action on a complex molecular network. It incorporates an elaborately designed scoring function for molecular docking to assess protein-ligand binding potential. For large-scale screening and ease of investigation, systemsDock has a user-friendly GUI interface for molecule preparation, parameter specification and result inspection. Ligand binding potentials against individual proteins can be directly displayed on an uploaded molecular interaction map, allowing users to systemically investigate network-dependent effects of a drug or drug candidate. A case study is given to demonstrate how systemsDock can be used to discover a test compound's multi-target activity. systemsDock is freely accessible at http://systemsdock.unit.oist.jp/.


Subject(s)
Internet , Pharmacology/methods , Software , Acids, Carbocyclic , Cyclopentanes/chemistry , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Guanidines/chemistry , Guanidines/metabolism , Guanidines/pharmacology , Humans , Influenza, Human/metabolism , Influenza, Human/virology , Ligands , Molecular Docking Simulation , Orthomyxoviridae/drug effects , Orthomyxoviridae/metabolism , Oseltamivir/chemistry , Oseltamivir/metabolism , Oseltamivir/pharmacology , User-Computer Interface
12.
J Infect Dis ; 216(5): 582-593, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28931216

ABSTRACT

Antiviral compounds (eg, the neuraminidase inhibitor oseltamivir) are invaluable for the treatment of individuals infected with influenza A viruses of the H7N9 subtype (A[H7N9]), which have infected and killed hundreds of persons. However, oseltamivir treatment often leads to the emergence of resistant viruses in immunocompromised individuals. To better understand the emergence and properties of oseltamivir-resistant A(H7N9) viruses in immunosuppressed individuals, we infected immunosuppressed cynomolgus macaques with an A(H7N9) virus and treated them with oseltamivir. Disease severity and mortality were higher in immunosuppressed than in immunocompetent animals. Oseltamivir treatment at 2 different doses reduced A(H7N9) viral titers in infected animals, but even high-dose oseltamivir did not block viral replication sufficiently to suppress the emergence of resistant variants. Some resistant variants were not appreciably attenuated in cultured cells, but an oseltamivir-resistant A(H7N9) virus did not transmit among ferrets. These findings are useful for the control of A(H7N9) virus infections in clinical settings.


Subject(s)
Drug Resistance, Multiple, Viral , Immunocompromised Host , Influenza A Virus, H7N9 Subtype/drug effects , Macaca fascicularis/virology , Orthomyxoviridae Infections/drug therapy , Oseltamivir/therapeutic use , Animals , Antiviral Agents/therapeutic use , Dose-Response Relationship, Drug , Female , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , High-Throughput Nucleotide Sequencing , Influenza A Virus, H7N9 Subtype/physiology , Male , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Virus Replication
13.
PLoS Pathog ; 11(6): e1004856, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26046528

ABSTRACT

Influenza viruses present major challenges to public health, evident by the 2009 influenza pandemic. Highly pathogenic influenza virus infections generally coincide with early, high levels of inflammatory cytokines that some studies have suggested may be regulated in a strain-dependent manner. However, a comprehensive characterization of the complex dynamics of the inflammatory response induced by virulent influenza strains is lacking. Here, we applied gene co-expression and nonlinear regression analysis to time-course, microarray data developed from influenza-infected mouse lung to create mathematical models of the host inflammatory response. We found that the dynamics of inflammation-associated gene expression are regulated by an ultrasensitive-like mechanism in which low levels of virus induce minimal gene expression but expression is strongly induced once a threshold virus titer is exceeded. Cytokine assays confirmed that the production of several key inflammatory cytokines, such as interleukin 6 and monocyte chemotactic protein 1, exhibit ultrasensitive behavior. A systematic exploration of the pathways regulating the inflammatory-associated gene response suggests that the molecular origins of this ultrasensitive response mechanism lie within the branch of the Toll-like receptor pathway that regulates STAT1 phosphorylation. This study provides the first evidence of an ultrasensitive mechanism regulating influenza virus-induced inflammation in whole lungs and provides insight into how different virus strains can induce distinct temporal inflammation response profiles. The approach developed here should facilitate the construction of gene regulatory models of other infectious diseases.


Subject(s)
Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections/immunology , Animals , Blotting, Western , Female , Flow Cytometry , Inflammation/genetics , Inflammation/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/pathogenicity , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae Infections/genetics , Transcriptome , Virulence
14.
J Virol ; 90(6): 2981-92, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26719265

ABSTRACT

UNLABELLED: Highly pathogenic avian influenza viruses of the H5N1 subtype continue to circulate in poultry in Asia, Africa, and the Middle East. Recently, outbreaks of novel reassortant H5 viruses have also occurred in North America. Although the number of human infections with highly pathogenic H5N1 influenza viruses continues to rise, these viruses remain unable to efficiently transmit between humans. However, we and others have identified H5 viruses capable of respiratory droplet transmission in ferrets. Two experimentally introduced mutations in the viral hemagglutinin (HA) receptor-binding domain conferred binding to human-type receptors but reduced HA stability. Compensatory mutations in HA (acquired during virus replication in ferrets) were essential to restore HA stability. These stabilizing mutations in HA also affected the pH at which HA undergoes an irreversible switch to its fusogenic form in host endosomes, a crucial step for virus infectivity. To identify additional stabilizing mutations in an H5 HA, we subjected a virus library possessing random mutations in the ectodomain of an H5 HA (altered to bind human-type receptors) to three rounds of treatment at 50Ā°C. We isolated several mutants that maintained their human-type receptor-binding preference but acquired an appreciable increase in heat stability and underwent membrane fusion at a lower pH; collectively, these properties may aid H5 virus respiratory droplet transmission in mammals. IMPORTANCE: We have identified mutations in HA that increase its heat stability and affect the pH that triggers an irreversible conformational change (a prerequisite for virus infectivity). These mutations were identified in the genetic background of an H5 HA protein that was mutated to bind to human cells. The ability to bind to human-type receptors, together with physical stability and an altered pH threshold for HA conformational change, may facilitate avian influenza virus transmission via respiratory droplets in mammals.


Subject(s)
Adaptation, Biological , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H5N1 Subtype/physiology , Mutation, Missense , Virus Attachment , Humans , Hydrogen-Ion Concentration , Influenza A Virus, H5N1 Subtype/genetics , Mutant Proteins/chemistry , Mutant Proteins/genetics , Protein Stability , Receptors, Virus/metabolism , Temperature , Virus Internalization
15.
J Virol ; 90(5): 2240-53, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26656717

ABSTRACT

UNLABELLED: The 1918-1919 influenza pandemic remains the single greatest infectious disease outbreak in the past century. Mouse and nonhuman primate infection models have shown that the 1918 virus induces overly aggressive innate and proinflammatory responses. To understand the response to viral infection and the role of individual 1918 genes on the host response to the 1918 virus, we examined reassortant avian viruses nearly identical to the pandemic 1918 virus (1918-like avian virus) carrying either the 1918 hemagglutinin (HA) or PB2 gene. In mice, both genes enhanced 1918-like avian virus replication, but only the mammalian host adaptation of the 1918-like avian virus through reassortment of the 1918 PB2 led to increased lethality. Through the combination of viral genetics and host transcriptional profiling, we provide a multidimensional view of the molecular mechanisms by which the 1918 PB2 gene drives viral pathogenicity. We demonstrate that 1918 PB2 enhances immune and inflammatory responses concomitant with increased cellular infiltration in the lung. We also show for the first time, that 1918 PB2 expression results in the repression of both canonical and noncanonical Wnt signaling pathways, which are crucial for inflammation-mediated lung regeneration and repair. Finally, we utilize regulatory enrichment and network analysis to define the molecular regulators of inflammation, epithelial regeneration, and lung immunopathology that are dysregulated during influenza virus infection. Taken together, our data suggest that while both HA and PB2 are important for viral replication, only 1918 PB2 exacerbates lung damage in mice infected with a reassortant 1918-like avian virus. IMPORTANCE: As viral pathogenesis is determined in part by the host response, understanding the key host molecular driver(s) of virus-mediated disease, in relation to individual viral genes, is a promising approach to host-oriented drug efforts in preventing disease. Previous studies have demonstrated the importance of host adaptive genes, HA and PB2, in mediating disease although the mechanisms by which they do so are still poorly understood. Here, we combine viral genetics and host transcriptional profiling to show that although both 1918 HA and 1918 PB2 are important mediators of efficient viral replication, only 1918 PB2 impacts the pathogenicity of an avian influenza virus sharing high homology to the 1918 pandemic influenza virus. We demonstrate that 1918 PB2 enhances deleterious inflammatory responses and the inhibition of regeneration and repair functions coordinated by Wnt signaling in the lungs of infected mice, thereby promoting virus-associated disease.


Subject(s)
Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/pathogenicity , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/metabolism , Virulence Factors/metabolism , Wnt Signaling Pathway/immunology , Animals , Cell Line , Disease Models, Animal , Female , Gene Expression Profiling , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Inflammation/pathology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Lung/pathology , Lung/virology , Mice, Inbred BALB C , RNA-Dependent RNA Polymerase/genetics , Reassortant Viruses/enzymology , Reassortant Viruses/pathogenicity , Viral Proteins/genetics , Virulence , Virulence Factors/genetics
16.
Uirusu ; 66(1): 53-62, 2016.
Article in Japanese | MEDLINE | ID: mdl-28484179

ABSTRACT

Since December 2013, West Africa has experienced the worst Ebola virus outbreak in recorded history. Of the 28,639 cases reported to the World Health Organization as of March 2016, nearly half (14,124) occurred in Sierra Leone. With a case fatality rate of approximately 40%, this outbreak has claimed the lives of 11,316 individuals. No FDA-approved vaccines or drugs are available to prevent or treat Ebola virus infection. Experimental vaccines and therapies are being developed; however, their safety and efficacy are still being evaluated. Therefore, there is an urgent need to develop control measures to prevent or limit future Ebola virus outbreaks.Previously, we developed a replication-defective Ebola virus that lacks the coding region for the essential viral transcription activator VP30 (Ebola ΔVP30 virus). Here, we evaluated the vaccine efficacy of Ebola ΔVP30 virus in a non-human primate model and describe our collaborative Ebola project in Sierra Leone.


Subject(s)
Communicable Disease Control/methods , Disease Outbreaks/prevention & control , Drug Discovery/trends , Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola/prevention & control , Research/trends , Ebolavirus/genetics , Ebolavirus/growth & development , Ebolavirus/physiology , Genome, Viral/genetics , Humans , Life Cycle Stages , RNA, Viral , Sierra Leone/epidemiology , Virus Replication
17.
Uirusu ; 66(2): 155-162, 2016.
Article in Japanese | MEDLINE | ID: mdl-29081467

ABSTRACT

An ecosystem is a complex network of interactions among living organisms and the nonliving components of their environment. Generally, a living organism is defined as belonging to one of three domains of life: the archaea, bacteria, and eukaryote domains. Therefore, viruses are not considered living components of the global ecosystem. Given that approximately 1031 viruses exist on Earth and all of them are parasitic in living organisms, it is not hard to imagine how virus infection might affect the physiological functions of both hosts and the ecosystem. However, since traditional virology research tends to focus on viral pathogenicity, the significance of viruses and viral-mediated processes in the global ecosystem are poorly understood. To identify previously unrecognized roles of the virus per se in nature, here we propose to establish a new academic field designated as 'Neo-virology'. In this research field, we define a virus as a component of the global ecosystem and aim to elucidate its key roles in host organisms as a part of the global ecosystem.

18.
J Virol ; 88(6): 3127-34, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24371069

ABSTRACT

UNLABELLED: Novel avian-origin influenza A(H7N9) viruses were first reported to infect humans in March 2013. To date, 143 human cases, including 45 deaths, have been recorded. By using sequence comparisons and phylogenetic and ancestral inference analyses, we identified several distinct amino acids in the A(H7N9) polymerase PA protein, some of which may be mammalian adapting. Mutant viruses possessing some of these amino acid changes, singly or in combination, were assessed for their polymerase activities and growth kinetics in mammalian and avian cells and for their virulence in mice. We identified several mutants that were slightly more virulent in mice than the wild-type A(H7N9) virus, A/Anhui/1/2013. These mutants also exhibited increased polymerase activity in human cells but not in avian cells. Our findings indicate that the PA protein of A(H7N9) viruses has several amino acid substitutions that are attenuating in mammals. IMPORTANCE: Novel avian-origin influenza A(H7N9) viruses emerged in the spring of 2013. By using computational analyses of A(H7N9) viral sequences, we identified several amino acid changes in the polymerase PA protein, which we then assessed for their effects on viral replication in cultured cells and mice. We found that the PA proteins of A(H7N9) viruses possess several amino acid substitutions that cause attenuation in mammals.


Subject(s)
Amino Acid Substitution , Influenza A Virus, H7N9 Subtype/enzymology , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza in Birds/virology , Influenza, Human/virology , Poultry Diseases/virology , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Animals , Chickens , Ducks , Female , Humans , Influenza A Virus, H7N9 Subtype/classification , Influenza A Virus, H7N9 Subtype/genetics , Influenza A virus/classification , Influenza A virus/genetics , Influenza A virus/metabolism , Mice , Mice, Inbred BALB C , Phylogeny , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/metabolism , Virulence
19.
Nature ; 460(7258): 1021-5, 2009 Aug 20.
Article in English | MEDLINE | ID: mdl-19672242

ABSTRACT

Influenza A viruses cause recurrent outbreaks at local or global scale with potentially severe consequences for human health and the global economy. Recently, a new strain of influenza A virus was detected that causes disease in and transmits among humans, probably owing to little or no pre-existing immunity to the new strain. On 11 June 2009 the World Health Organization declared that the infections caused by the new strain had reached pandemic proportion. Characterized as an influenza A virus of the H1N1 subtype, the genomic segments of the new strain were most closely related to swine viruses. Most human infections with swine-origin H1N1 influenza viruses (S-OIVs) seem to be mild; however, a substantial number of hospitalized individuals do not have underlying health issues, attesting to the pathogenic potential of S-OIVs. To achieve a better assessment of the risk posed by the new virus, we characterized one of the first US S-OIV isolates, A/California/04/09 (H1N1; hereafter referred to as CA04), as well as several other S-OIV isolates, in vitro and in vivo. In mice and ferrets, CA04 and other S-OIV isolates tested replicate more efficiently than a currently circulating human H1N1 virus. In addition, CA04 replicates efficiently in non-human primates, causes more severe pathological lesions in the lungs of infected mice, ferrets and non-human primates than a currently circulating human H1N1 virus, and transmits among ferrets. In specific-pathogen-free miniature pigs, CA04 replicates without clinical symptoms. The assessment of human sera from different age groups suggests that infection with human H1N1 viruses antigenically closely related to viruses circulating in 1918 confers neutralizing antibody activity to CA04. Finally, we show that CA04 is sensitive to approved and experimental antiviral drugs, suggesting that these compounds could function as a first line of defence against the recently declared S-OIV pandemic.


Subject(s)
Influenza A Virus, H1N1 Subtype/physiology , Swine/virology , Animals , Antibodies, Viral/immunology , Antiviral Agents/pharmacology , Cell Line , Dogs , Female , Ferrets/virology , HN Protein/metabolism , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/pathogenicity , Lung/immunology , Lung/pathology , Lung/virology , Macaca fascicularis/immunology , Macaca fascicularis/virology , Male , Mice , Mice, Inbred BALB C , Neutralization Tests , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Primate Diseases/pathology , Primate Diseases/virology , Swine Diseases/pathology , Swine Diseases/virology , Swine, Miniature/virology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL