Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Circulation ; 149(15): 1205-1230, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38189150

ABSTRACT

BACKGROUND: The relationship between heart failure (HF) and atrial fibrillation (AF) is clear, with up to half of patients with HF progressing to AF. The pathophysiological basis of AF in the context of HF is presumed to result from atrial remodeling. Upregulation of the transcription factor FOG2 (friend of GATA2; encoded by ZFPM2) is observed in human ventricles during HF and causes HF in mice. METHODS: FOG2 expression was assessed in human atria. The effect of adult-specific FOG2 overexpression in the mouse heart was evaluated by whole animal electrophysiology, in vivo organ electrophysiology, cellular electrophysiology, calcium flux, mouse genetic interactions, gene expression, and genomic function, including a novel approach for defining functional transcription factor interactions based on overlapping effects on enhancer noncoding transcription. RESULTS: FOG2 is significantly upregulated in the human atria during HF. Adult cardiomyocyte-specific FOG2 overexpression in mice caused primary spontaneous AF before the development of HF or atrial remodeling. FOG2 overexpression generated arrhythmia substrate and trigger in cardiomyocytes, including calcium cycling defects. We found that FOG2 repressed atrial gene expression promoted by TBX5. FOG2 bound a subset of GATA4 and TBX5 co-bound genomic locations, defining a shared atrial gene regulatory network. FOG2 repressed TBX5-dependent transcription from a subset of co-bound enhancers, including a conserved enhancer at the Atp2a2 locus. Atrial rhythm abnormalities in mice caused by Tbx5 haploinsufficiency were rescued by Zfpm2 haploinsufficiency. CONCLUSIONS: Transcriptional changes in the atria observed in human HF directly antagonize the atrial rhythm gene regulatory network, providing a genomic link between HF and AF risk independent of atrial remodeling.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Heart Failure , Humans , Mice , Animals , Atrial Fibrillation/genetics , Gene Regulatory Networks , Calcium/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Heart Atria , Heart Failure/genetics , Genomics , GATA4 Transcription Factor/genetics
2.
Alzheimers Dement ; 20(7): 4625-4634, 2024 07.
Article in English | MEDLINE | ID: mdl-38824659

ABSTRACT

INTRODUCTION: Recent growth in the functionality and use of technology has prompted an increased interest in the potential for remote or decentralized clinical trials in dementia. There are many potential benefits associated with decentralized medication trials, but we currently lack specific recommendations for their delivery in the dementia field. METHODS: A modified Delphi method engaged an expert panel to develop recommendations for the conduct of decentralized medication trials in dementia prevention. A working group of researchers and clinicians with expertise in dementia trials further refined the recommendations. RESULTS: Overall, the recommendations support the delivery of decentralized trials in dementia prevention provided adequate safety checks and balances are included. A total of 40 recommendations are presented, spanning aspects of decentralized clinical trials, including safety, dispensing, outcome assessment, and data collection. DISCUSSION: These recommendations provide an accessible, pragmatic guide for the design and conduct of remote medication trials for dementia prevention. HIGHLIGHTS: Clinical trials of medication have begun adopting decentralized approaches. Researchers in the field lack guidance on what would be appropriate circumstances and frameworks for what would be appropriate circumstances and frameworks for the use of decentralized trial methods in dementia prevention. The present report provides consensus-based expert recommendations for decentralized clinical trials for dementia prevention.


Subject(s)
Clinical Trials as Topic , Consensus , Dementia , Humans , Dementia/prevention & control , Dementia/drug therapy , Delphi Technique , Research Design/standards
3.
Int J Mol Sci ; 25(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542338

ABSTRACT

Claudins are one of the major components of tight junctions (TJs) that polymerize within the cell membrane and form interactions between cells. Some claudins seal the paracellular space, limiting paracellular flux, while others form selectively permeable ion channels that control the paracellular permeability of small ions. Claudin strands are known to be dynamic and reshape within TJs to accommodate large-scale movements and rearrangements of epithelial tissues. Here, we summarize the recent computational and modeling studies on claudin assembly into tetrameric ion channels and their polymerization into µm long strands within the membrane. Computational studies ranging from all-atom molecular dynamics, coarse-grained simulations, and hybrid-resolution simulations elucidate the molecular nature of claudin assembly and function and provide a framework that describes the lateral flexibility of claudin strands.


Subject(s)
Claudins , Tight Junctions , Claudins/metabolism , Tight Junctions/metabolism , Ion Channels/metabolism , Molecular Dynamics Simulation , Epithelium/metabolism , Claudin-3/metabolism
4.
bioRxiv ; 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38106010

ABSTRACT

Spatial transcriptomics (ST) has enhanced RNA analysis in tissue biopsies, but interpreting these data is challenging without expert input. We present Automated Tissue Alignment and Traversal (ATAT), a novel computational framework designed to enhance ST analysis in the context of multiple and complex tissue architectures and morphologies, such as those found in biopsies of the gastrointestinal tract. ATAT utilizes self-supervised contrastive learning on hematoxylin and eosin (H&E) stained images to automate the alignment and traversal of ST data. This approach addresses a critical gap in current ST analysis methodologies, which rely heavily on manual annotation and pathologist expertise to delineate regions of interest for accurate gene expression modeling. Our framework not only streamlines the alignment of multiple ST samples, but also demonstrates robustness in modeling gene expression transitions across specific regions. Additionally, we highlight the ability of ATAT to traverse complex tissue topologies in real-world cases from various individuals and conditions. Our method successfully elucidates differences in immune infiltration patterns across the intestinal wall, enabling the modeling of transcriptional changes across histological layers. We show that ATAT achieves comparable performance to the state-of-the-art method, while alleviating the burden of manual annotation and enabling alignment of tissue samples with complex morphologies.

SELECTION OF CITATIONS
SEARCH DETAIL