ABSTRACT
This study aimed to investigate the impact of alginate (AG) on the retrogradation properties of corn starch (CS) in conjunction with three phenolic compounds, including naringin (NA), rutin (RT), and soy isoflavones (SI). The findings indicated that AG, NA, RT, and SI collectively resulted in a significant reduction in the hardness, retrogradation enthalpy, and relaxation time of CS gel. This effect was more pronounced when compared to NA, RT, and SI individually. The findings suggested that the elemental system comprising AG, phenolic compounds, and CS yielded enhanced water retention capacity and thermal stability. Moreover, a noticeable decrease in the short-range ordered structure and crystallinity was observed, indicating that AG and phenolic compounds effectively inhibited the retrogradation of CS; notably, the synergistic interaction between AG and SI resulted in the most favorable outcome. The results of this study provide new ideas for the design, development, and quality improvement of starch-based food.
Subject(s)
Alginates , Polyphenols , Starch , Zea mays , Starch/chemistry , Alginates/chemistry , Alginates/pharmacology , Polyphenols/chemistry , Polyphenols/pharmacology , Zea mays/chemistry , Water/chemistryABSTRACT
Modification of corn starch using ultrasonic waves to improve its freeze-thaw resistance in frozen model doughs and buns. Analysis was performed by rheometry, low-field-intensity nuclear magnetic resonance imaging, Fourier infrared spectroscopy, and scanning electron microscopy. The results showed that the addition of ultrasonically modified corn starch reduced the migration of water molecules inside the model dough, weakened the decrease of elastic modulus, and enhanced the creep recovery effect; the decrease in α-helical and ß-fold content in the model dough was reduced, the destruction of internal network structure was decreased, the exposed starch granules were reduced, and the internal interaction of the dough was enhanced; the texture of the buns became softer and the moisture content increased. In conclusion, ultrasound as a physical modification means can significantly improve the freeze-thaw properties of corn starch, providing new ideas for the development and quality improvement of corn-starch-based instant frozen pasta products.