Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Eur Spine J ; 30(3): 676-685, 2021 03.
Article in English | MEDLINE | ID: mdl-32856177

ABSTRACT

INTRODUCTION AND OBJECTIVE: Although being standard for scoliosis curve size estimation, COBB angle measurement is well known to be inaccurate, due to a high interobserver variance in end vertebra selection and end plate contour delineation. We propose a stepwise improvement by using a spline constructed from vertebra centroids to resemble spinal curve characteristics more closely. To enhance precision even further, a neural net was trained to detect the centroids automatically. MATERIALS & METHODS: Vertebra centroids in AP spinal X-ray images of varying quality from 551 scoliosis patients were manually labeled by 4 investigators. With these inputs, splines were generated and the computed curve sizes were compared to the manually measured COBB angles and to the curve estimation obtained from the neural net. RESULTS: Splines achieved a higher interobserver correlation of 0.92-0.95 compared to manual COBB measurements (0.83-0.92) and showed 1.5-2 times less variance, depending on the anatomic region. This translates into an average of 1° of interobserver measurement deviation for spline-based curve estimation compared to 3°-8° for COBB measurements. The neural net was even more precise and achieved mean deviations below 0.5°. CONCLUSION: In conclusion, our data suggest an advantage of spline-based automated measuring systems, so further investigations are warranted to abandon manual COBB measurements.


Subject(s)
Scoliosis , Humans , Observer Variation , Radiography , Reproducibility of Results , Scoliosis/diagnostic imaging , Spine
2.
Carcinogenesis ; 34(3): 513-21, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23172663

ABSTRACT

DNA methylation is part of the epigenetic gene regulation complex, which is relevant for the pathogenesis of cancer. We performed a genome-wide search for methylated CpG islands in tumors and corresponding non-malignant lung tissue samples of 101 stages I-III non-small cell lung cancer (NSCLC) patients by combining methylated DNA immunoprecipitation and microarray analysis. Overall, we identified 2414 genomic positions differentially methylated between tumor and non-malignant lung tissue samples. Ninety-seven percent of them were found to be tumor-specifically methylated. Annotation of these genomic positions resulted in the identification of 477 tumor-specifically methylated genes of which many are involved in regulation of gene transcription and cell adhesion. Tumor-specific methylation was confirmed by a gene-specific approach. In the majority of tumors, methylation of certain genes was associated with loss of their protein expression determined by immunohistochemistry. Treatment of NSCLC cells with epigenetically active drugs resulted in upregulated expression of many tumor-specifically methylated genes analyzed by gene expression microarrays suggesting that about one-third of these genes are transcriptionally regulated by methylation. Moreover, comparison of methylation results with certain clinicopathological characteristics of the patients suggests that methylation of HOXA2 and HOXA10 may be of prognostic relevance in squamous cell carcinoma (SCC) patients. In conclusion, we identified a large number of tumor-specifically methylated genes in NSCLC patients. Expression of many of them is regulated by methylation. Moreover, HOXA2 and HOXA10 methylation may serve as prognostic parameters in SCC patients. Overall, our findings emphasize the impact of methylation on the pathogenesis of NSCLCs.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/genetics , DNA Methylation , Lung Neoplasms/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Base Sequence , Cadherins/genetics , Cadherins/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/mortality , Chromosome Mapping , CpG Islands , Female , Gene Expression Regulation, Neoplastic , Genes, Neoplasm , Genome-Wide Association Study , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , ROC Curve , Sequence Analysis, DNA , Transcriptome
3.
Clin Cancer Res ; 18(6): 1619-29, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22282464

ABSTRACT

PURPOSE: The major aim of this study was to investigate the role of DNA methylation (referred to as methylation) on miRNA silencing in non-small cell lung cancers (NSCLC). EXPERIMENTAL DESIGN: We conducted microarray expression analyses of 856 miRNAs in NSCLC A549 cells before and after treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (Aza-dC) and with a combination of Aza-dC and the histone deacetylase inhibitor trichostatin A. miRNA methylation was determined in 11 NSCLC cell lines and in primary tumors and corresponding nonmalignant lung tissue samples of 101 patients with stage I-III NSCLC. RESULTS: By comparing microarray data of untreated and drug-treated A549 cells, we identified 33 miRNAs whose expression was upregulated after drug treatment and which are associated with a CpG island. Thirty (91%) of these miRNAs were found to be methylated in at least 1 of 11 NSCLC cell lines analyzed. Moreover, miR-9-3 and miR-193a were found to be tumor specifically methylated in patients with NSCLC. We observed a shorter disease-free survival of patients with miR-9-3 methylated lung squamous cell carcinoma (LSCC) than patients with miR-9-3 unmethylated LSCC by multivariate analysis [HR = 3.8; 95% confidence interval (CI), 1.3-11.2, P = 0.017] and a shorter overall survival of patients with miR-9-3 methylated LSCC than patients with miR-9-3 unmethylated LSCC by univariate analysis (P = 0.013). CONCLUSIONS: Overall, our results suggest that methylation is an important mechanism for inactivation of certain miRNAs in NSCLCs and that miR-9-3 methylation may serve as a prognostic parameter in patients with LSCC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , DNA Methylation , Lung Neoplasms/genetics , MicroRNAs/metabolism , Antineoplastic Agents/pharmacology , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Cell Line, Tumor , Decitabine , Female , Gene Expression Profiling , Gene Silencing , Humans , Hydroxamic Acids/pharmacology , Lung/metabolism , Male , Middle Aged , Molecular Targeted Therapy , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL