Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Immunity ; 56(3): 531-546.e6, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36773607

ABSTRACT

Tissue health is dictated by the capacity to respond to perturbations and then return to homeostasis. Mechanisms that initiate, maintain, and regulate immune responses in tissues are therefore essential. Adaptive immunity plays a key role in these responses, with memory and tissue residency being cardinal features. A corresponding role for innate cells is unknown. Here, we have identified a population of innate lymphocytes that we term tissue-resident memory-like natural killer (NKRM) cells. In response to murine cytomegalovirus infection, we show that circulating NK cells were recruited in a CX3CR1-dependent manner to the salivary glands where they formed NKRM cells, a long-lived, tissue-resident population that prevented autoimmunity via TRAIL-dependent elimination of CD4+ T cells. Thus, NK cells develop adaptive-like features, including long-term residency in non-lymphoid tissues, to modulate inflammation, restore immune equilibrium, and preserve tissue health. Modulating the functions of NKRM cells may provide additional strategies to treat inflammatory and autoimmune diseases.


Subject(s)
Cytomegalovirus Infections , Muromegalovirus , Humans , Animals , Mice , Killer Cells, Natural , Adaptive Immunity , T-Lymphocytes , Immunity, Innate
2.
Cell ; 171(4): 795-808.e12, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29056343

ABSTRACT

Infection is restrained by the concerted activation of tissue-resident and circulating immune cells. Whether tissue-resident lymphocytes confer early antiviral immunity at local sites of primary infection prior to the initiation of circulating responses is not well understood. Furthermore, the kinetics of initial antiviral responses at sites of infection remain unclear. Here, we show that tissue-resident type 1 innate lymphoid cells (ILC1) serve an essential early role in host immunity through rapid production of interferon (IFN)-γ following viral infection. Ablation of Zfp683-dependent liver ILC1 lead to increased viral load in the presence of intact adaptive and innate immune cells critical for mouse cytomegalovirus (MCMV) clearance. Swift production of interleukin (IL)-12 by tissue-resident XCR1+ conventional dendritic cells (cDC1) promoted ILC1 production of IFN-γ in a STAT4-dependent manner to limit early viral burden. Thus, ILC1 contribute an essential role in viral immunosurveillance at sites of initial infection in response to local cDC1-derived proinflammatory cytokines.


Subject(s)
Herpesviridae Infections/immunology , Lymphocytes/immunology , Muromegalovirus/physiology , Animals , Herpesviridae Infections/pathology , Immunity, Innate , Immunologic Surveillance , Inflammation/immunology , Interferon-gamma/immunology , Killer Cells, Natural/immunology , Liver/cytology , Liver/immunology , Mice, Inbred C57BL , Peritoneal Cavity/cytology , Virus Replication
3.
Nat Immunol ; 20(8): 1004-1011, 2019 08.
Article in English | MEDLINE | ID: mdl-31263280

ABSTRACT

Innate lymphoid cells (ILCs) are tissue-resident sentinels that are essential for early host protection from pathogens at initial sites of infection. However, whether pathogen-derived antigens directly modulate the responses of tissue-resident ILCs has remained unclear. In the present study, it was found that liver-resident type 1 ILCs (ILC1s) expanded locally and persisted after the resolution of infection with mouse cytomegalovirus (MCMV). ILC1s acquired stable transcriptional, epigenetic and phenotypic changes a month after the resolution of MCMV infection, and showed an enhanced protective effector response to secondary challenge with MCMV consistent with a memory lymphocyte response. Memory ILC1 responses were dependent on the MCMV-encoded glycoprotein m12, and were independent of bystander activation by proinflammatory cytokines after heterologous infection. Thus, liver ILC1s acquire adaptive features in an MCMV-specific manner.


Subject(s)
Immunologic Memory/immunology , Liver/immunology , Lymphocytes/immunology , Membrane Glycoproteins/immunology , Muromegalovirus/immunology , Viral Envelope Proteins/immunology , Animals , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Immunity, Innate/immunology , Interleukin-18 Receptor alpha Subunit/metabolism , Liver/cytology , Mice
4.
Nat Immunol ; 19(9): 963-972, 2018 09.
Article in English | MEDLINE | ID: mdl-30082830

ABSTRACT

Clonal expansion and immunological memory are hallmark features of the mammalian adaptive immune response and essential for prolonged host control of pathogens. Recent work demonstrates that natural killer (NK) cells of the innate immune system also exhibit these adaptive traits during infection. Here we demonstrate that differentiating and 'memory' NK cells possess distinct chromatin accessibility states and that their epigenetic profiles reveal a 'poised' regulatory program at the memory stage. Furthermore, we elucidate how individual STAT transcription factors differentially control epigenetic and transcriptional states early during infection. Finally, concurrent chromatin profiling of the canonical CD8+ T cell response against the same infection demonstrated parallel and distinct epigenetic signatures defining NK cells and CD8+ T cells. Overall, our study reveals the dynamic nature of epigenetic modifications during the generation of innate and adaptive lymphocyte memory.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chromatin/metabolism , Herpesviridae Infections/immunology , Killer Cells, Natural/physiology , Muromegalovirus/physiology , STAT1 Transcription Factor/metabolism , STAT4 Transcription Factor/metabolism , Adaptive Immunity , Animals , Cells, Cultured , Chromatin/genetics , Clonal Selection, Antigen-Mediated , Epigenesis, Genetic , Gene Expression Profiling , Immunity, Innate , Immunologic Memory , Mice , Mice, Inbred C57BL , Mice, Knockout , STAT1 Transcription Factor/genetics , STAT4 Transcription Factor/genetics
5.
Immunity ; 50(6): 1381-1390.e5, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31103381

ABSTRACT

The process of affinity maturation, whereby T and B cells bearing antigen receptors with optimal affinity to the relevant antigen undergo preferential expansion, is a key feature of adaptive immunity. Natural killer (NK) cells are innate lymphocytes capable of "adaptive" responses after cytomegalovirus (CMV) infection. However, whether NK cells are similarly selected on the basis of their avidity for cognate ligand is unknown. Here, we showed that NK cells with the highest avidity for the mouse CMV glycoprotein m157 were preferentially selected to expand and comprise the memory NK cell pool, whereas low-avidity NK cells possessed greater capacity for interferon-γ (IFN-γ) production. Moreover, we provide evidence for avidity selection occurring in human NK cells during human CMV infection. These results delineate how heterogeneity in NK cell avidity diversifies NK cell effector function during antiviral immunity, and how avidity selection might serve to produce the most potent memory NK cells.


Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Cytomegalovirus/immunology , Host-Pathogen Interactions/immunology , Killer Cells, Natural/immunology , Animals , Cytomegalovirus Infections/metabolism , Cytotoxicity, Immunologic , Gene Expression Regulation , Herpesviridae Infections/immunology , Herpesviridae Infections/metabolism , Herpesviridae Infections/virology , Host-Pathogen Interactions/genetics , Humans , Immunologic Memory , Killer Cells, Natural/metabolism , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Muromegalovirus/immunology , NK Cell Lectin-Like Receptor Subfamily A/genetics , NK Cell Lectin-Like Receptor Subfamily A/metabolism , T-Cell Antigen Receptor Specificity
6.
Immunity ; 48(6): 1172-1182.e6, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29858012

ABSTRACT

Natural killer (NK) cells are innate lymphocytes that display features of adaptive immunity during viral infection. Biallelic mutations in IRF8 have been reported to cause familial NK cell deficiency and susceptibility to severe viral infection in humans; however, the precise role of this transcription factor in regulating NK cell function remains unknown. Here, we show that cell-intrinsic IRF8 was required for NK-cell-mediated protection against mouse cytomegalovirus infection. During viral exposure, NK cells upregulated IRF8 through interleukin-12 (IL-12) signaling and the transcription factor STAT4, which promoted epigenetic remodeling of the Irf8 locus. Moreover, IRF8 facilitated the proliferative burst of virus-specific NK cells by promoting expression of cell-cycle genes and directly controlling Zbtb32, a master regulator of virus-driven NK cell proliferation. These findings identify the function and cell-type-specific regulation of IRF8 in NK-cell-mediated antiviral immunity and provide a mechanistic understanding of viral susceptibility in patients with IRF8 mutations.


Subject(s)
Adaptive Immunity/immunology , Interferon Regulatory Factors/immunology , Killer Cells, Natural/immunology , Lymphocyte Activation/immunology , Animals , Herpesviridae Infections/immunology , Mice , Muromegalovirus/immunology
8.
Nature ; 583(7817): 609-614, 2020 07.
Article in English | MEDLINE | ID: mdl-32581358

ABSTRACT

Cytokines were the first modern immunotherapies to produce durable responses in patients with advanced cancer, but they have only modest efficacy and limited tolerability1,2. In an effort to identify alternative cytokine pathways for immunotherapy, we found that components of the interleukin-18 (IL-18) pathway are upregulated on tumour-infiltrating lymphocytes, suggesting that IL-18 therapy could enhance anti-tumour immunity. However, recombinant IL-18 previously did not demonstrate efficacy in clinical trials3. Here we show that IL-18BP, a high-affinity IL-18 decoy receptor, is frequently upregulated in diverse human and mouse tumours and limits the anti-tumour activity of IL-18 in mice. Using directed evolution, we engineered a 'decoy-resistant' IL-18 (DR-18) that maintains signalling potential but is impervious to inhibition by IL-18BP. Unlike wild-type IL-18, DR-18 exerted potent anti-tumour effects in mouse tumour models by promoting the development of poly-functional effector CD8+ T cells, decreasing the prevalence of exhausted CD8+ T cells that express the transcriptional regulator of exhaustion TOX, and expanding the pool of stem-like TCF1+ precursor CD8+ T cells. DR-18 also enhanced the activity and maturation of natural killer cells to effectively treat anti-PD-1 resistant tumours that have lost surface expression of major histocompatibility complex class I molecules. These results highlight the potential of the IL-18 pathway for immunotherapeutic intervention and implicate IL-18BP as a major therapeutic barrier.


Subject(s)
Immunotherapy , Intercellular Signaling Peptides and Proteins/immunology , Intercellular Signaling Peptides and Proteins/metabolism , Interleukin-18/immunology , Neoplasms/immunology , Neoplasms/therapy , Animals , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Female , Hepatocyte Nuclear Factor 1-alpha/metabolism , Histocompatibility Antigens Class I/immunology , Humans , Kaplan-Meier Estimate , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Receptors, Interleukin-18/metabolism , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
9.
Proc Natl Acad Sci U S A ; 120(44): e2306632120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37871202

ABSTRACT

The ability of immune cells to directly interact with transformed cells is an essential component of immune surveillance and critical for optimal tissue function. The tumor-immune interactome (the collective cellular interactions between oncogenic cells and immune cells) is distinct and varied based on the tissue location and immunogenicity of tumor subtypes. However, comprehensive landscape and the consequences of tumor-interacting immune cells in the tumor microenvironment are not well understood. Current tools are limited in their ability to identify and record interactors in vivo or be utilized for downstream analysis. Here, we describe the development and validation of a technology leveraging synthetic Notch receptors reporting physical tumor cell-immune cell contact in vivo in order to decipher the tumor-immune interactome. We call this approach, Tumor-Immune Interactome Non-biased Discovery Retroviral Reporter or TIINDRR. Using TIINDRR, we identify the tumor-immune interactomes that define immunological refractory and sensitive tumors and how different immunotherapies alter these interactions. Thus, TIINDRR provides a flexible and versatile tool for studying in-vivo tumor-immune cell interactions, aiding in the identification of biologically relevant information needed for the rational design of immune-based therapies.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Cell Communication , Hydrolases , Immunologic Surveillance , Immunotherapy , Tumor Microenvironment
10.
Immunity ; 45(2): 428-41, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27496734

ABSTRACT

Innate lymphoid cells (ILCs) function to protect epithelial barriers against pathogens and maintain tissue homeostasis in both barrier and non-barrier tissues. Here, utilizing Eomes reporter mice, we identify a subset of adipose group 1 ILC (ILC1) and demonstrate a role for these cells in metabolic disease. Adipose ILC1s were dependent on the transcription factors Nfil3 and T-bet but phenotypically and functionally distinct from adipose mature natural killer (NK) and immature NK cells. Analysis of parabiotic mice revealed that adipose ILC1s maintained long-term tissue residency. Diet-induced obesity drove early production of interleukin (IL)-12 in adipose tissue depots and led to the selective proliferation and accumulation of adipose-resident ILC1s in a manner dependent on the IL-12 receptor and STAT4. ILC1-derived interferon-γ was necessary and sufficient to drive proinflammatory macrophage polarization to promote obesity-associated insulin resistance. Thus, adipose-resident ILC1s contribute to obesity-related pathology in response to dysregulated local proinflammatory cytokine production.


Subject(s)
Adipose Tissue/immunology , Insulin Resistance/immunology , Lymphocytes/immunology , Macrophages/immunology , Obesity/immunology , T-Box Domain Proteins/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation , Cells, Cultured , Cytokines/metabolism , Humans , Immunity, Innate , Inflammation Mediators/metabolism , Interferon-gamma/metabolism , Interleukin-12/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/metabolism , T-Box Domain Proteins/genetics
11.
J Immunol ; 210(8): 1146-1155, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36881866

ABSTRACT

The progression of transformed primary tumors to metastatic colonization is a lethal determinant of disease outcome. Although circulating adaptive and innate lymphocyte effector responses are required for effective antimetastatic immunity, whether tissue-resident immune circuits confer initial immunity at sites of metastatic dissemination remains ill defined. Here we examine the nature of local immune cell responses during early metastatic seeding in the lung using intracardiac injection to mimic monodispersed metastatic spread. Using syngeneic murine melanoma and colon cancer models, we demonstrate that lung-resident conventional type 2 dendritic cells (DC2) orchestrate a local immune circuit to confer host antimetastatic immunity. Tissue-specific ablation of lung DC2, and not peripheral DC populations, led to increased metastatic burden in the presence of an intact T cell and NK cell compartment. We demonstrate that DC nucleic acid sensing and transcription factors IRF3 and IRF7 signaling are required for early metastatic control and that DC2 serve as a robust source of proinflammatory cytokines in the lung. Critically, DC2 direct the local production of IFN-γ by lung-resident NK cells, which limits the initial metastatic burden. Collectively, our results highlight, to our knowledge, a novel DC2-NK cell axis that colocalizes around pioneering metastatic cells to orchestrate an early innate immune response program to limit initial metastatic burden in the lung.


Subject(s)
Immunity, Innate , Killer Cells, Natural , Animals , Mice , Cytokines/metabolism , Signal Transduction , Dendritic Cells
13.
Proc Natl Acad Sci U S A ; 110(36): E3408-16, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23959892

ABSTRACT

Telomeres repress the DNA damage response at the natural chromosome ends to prevent cell-cycle arrest and maintain genome stability. Telomeres are elongated by telomerase in a tightly regulated manner to ensure a sufficient number of cell divisions throughout life, yet prevent unlimited cell division and cancer development. Hoyeraal-Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and a broad range of pathologies, including bone marrow failure, immunodeficiency, and developmental defects. HHS-causing mutations have previously been found in telomerase and the shelterin component telomeric repeat binding factor 1 (TRF1)-interacting nuclear factor 2 (TIN2). We identified by whole-genome exome sequencing compound heterozygous mutations in four siblings affected with HHS, in the gene encoding the regulator of telomere elongation helicase 1 (RTEL1). Rtel1 was identified in mouse by its genetic association with telomere length. However, its mechanism of action and whether it regulates telomere length in human remained unknown. Lymphoblastoid cell lines obtained from a patient and from the healthy parents carrying heterozygous RTEL1 mutations displayed telomere shortening, fragility and fusion, and growth defects in culture. Ectopic expression of WT RTEL1 suppressed the telomere shortening and growth defect, confirming the causal role of the RTEL1 mutations in HHS and demonstrating the essential function of human RTEL1 in telomere protection and elongation. Finally, we show that human RTEL1 interacts with the shelterin protein TRF1, providing a potential recruitment mechanism of RTEL1 to telomeres.


Subject(s)
DNA Helicases/genetics , Dyskeratosis Congenita/genetics , Fetal Growth Retardation/genetics , Intellectual Disability/genetics , Microcephaly/genetics , Mutation , Telomere/genetics , Animals , Base Sequence , Blotting, Western , Cell Proliferation , Cells, Cultured , DNA Helicases/metabolism , Dyskeratosis Congenita/metabolism , Dyskeratosis Congenita/pathology , Family Health , Female , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/pathology , Gene Expression , Genomic Instability/genetics , HeLa Cells , Humans , In Situ Hybridization, Fluorescence , Intellectual Disability/metabolism , Intellectual Disability/pathology , Male , Mice , Microcephaly/metabolism , Microcephaly/pathology , Pedigree , Reverse Transcriptase Polymerase Chain Reaction , Telomere Shortening/genetics , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism
14.
Cell Rep ; 42(3): 112147, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36827187

ABSTRACT

Interleukin-18 (IL-18) promotes natural killer (NK) and T cell production of interferon (IFN)-γ, a key factor in resistance to Toxoplasma gondii, but previous work has shown a limited role for endogenous IL-18 in control of this parasite. Although infection with T. gondii results in release of IL-18, the production of IFN-γ induces high levels of the IL-18 binding protein (IL-18BP). Antagonism of IL-18BP with a "decoy-to-the-decoy" (D2D) IL-18 construct that does not signal but rather binds IL-18BP results in enhanced innate lymphoid cell (ILC) and T cell responses and improved parasite control. In addition, the use of IL-18 resistant to IL-18BP ("decoy-resistant" IL-18 [DR-18]) is more effective than exogenous IL-18 at promoting innate resistance to infection. DR-18 enhances CD4+ T cell production of IFN-γ but results in CD4+ T cell-mediated pathology. Thus, endogenous IL-18BP restrains aberrant immune pathology, and this study highlights strategies that can be used to tune this regulatory pathway for optimal anti-pathogen responses.


Subject(s)
Toxoplasma , Toxoplasmosis, Animal , Humans , Animals , Interleukin-18/metabolism , Killer Cells, Natural , Interleukin-12/metabolism , Immunity, Innate
15.
J Exp Med ; 218(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33433624

ABSTRACT

Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus on the consequences of CNS infections. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain organoids, we observed clear evidence of infection with accompanying metabolic changes in infected and neighboring neurons. However, no evidence for type I interferon responses was detected. We demonstrate that neuronal infection can be prevented by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Second, using mice overexpressing human ACE2, we demonstrate SARS-CoV-2 neuroinvasion in vivo. Finally, in autopsies from patients who died of COVID-19, we detect SARS-CoV-2 in cortical neurons and note pathological features associated with infection with minimal immune cell infiltrates. These results provide evidence for the neuroinvasive capacity of SARS-CoV-2 and an unexpected consequence of direct infection of neurons by SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Blocking/chemistry , COVID-19 , Cerebral Cortex , Neurons , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cerebral Cortex/virology , Disease Models, Animal , Female , Humans , Male , Mice , Middle Aged , Neurons/metabolism , Neurons/pathology , Neurons/virology , Organoids/metabolism , Organoids/pathology , Organoids/virology
16.
bioRxiv ; 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32935108

ABSTRACT

Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus whether the virus can infect the brain, or what the consequences of CNS infection are. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain organoids, we observed clear evidence of infection with accompanying metabolic changes in the infected and neighboring neurons. However, no evidence for the type I interferon responses was detected. We demonstrate that neuronal infection can be prevented either by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Second, using mice overexpressing human ACE2, we demonstrate in vivo that SARS-CoV-2 neuroinvasion, but not respiratory infection, is associated with mortality. Finally, in brain autopsy from patients who died of COVID-19, we detect SARS-CoV-2 in the cortical neurons, and note pathologic features associated with infection with minimal immune cell infiltrates. These results provide evidence for the neuroinvasive capacity of SARS-CoV2, and an unexpected consequence of direct infection of neurons by SARS-CoV-2.

17.
Nat Microbiol ; 5(10): 1299-1305, 2020 10.
Article in English | MEDLINE | ID: mdl-32651556

ABSTRACT

The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to prompt clinical and public health interventions. Currently, several quantitative reverse transcription-PCR (RT-qPCR) assays are being used by clinical, research and public health laboratories. However, it is currently unclear whether results from different tests are comparable. Our goal was to make independent evaluations of primer-probe sets used in four common SARS-CoV-2 diagnostic assays. From our comparisons of RT-qPCR analytical efficiency and sensitivity, we show that all primer-probe sets can be used to detect SARS-CoV-2 at 500 viral RNA copies per reaction. The exception for this is the RdRp-SARSr (Charité) confirmatory primer-probe set which has low sensitivity, probably due to a mismatch to circulating SARS-CoV-2 in the reverse primer. We did not find evidence for background amplification with pre-COVID-19 samples or recent SARS-CoV-2 evolution decreasing sensitivity. Our recommendation for SARS-CoV-2 diagnostic testing is to select an assay with high sensitivity and that is regionally used, to ease comparability between outcomes.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , RNA, Viral/analysis , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/epidemiology , Genetic Variation , Genome, Viral , Humans , Molecular Probe Techniques/statistics & numerical data , Pandemics , Pneumonia, Viral/epidemiology , RNA/genetics , RNA Probes/genetics , Reverse Transcriptase Polymerase Chain Reaction/statistics & numerical data , SARS-CoV-2 , Sensitivity and Specificity
18.
Sci Immunol ; 2(18)2017 12 08.
Article in English | MEDLINE | ID: mdl-29222089

ABSTRACT

Natural killer (NK) cells are innate lymphocytes that have features of adaptive immunity such as clonal expansion and generation of long-lived memory. Interleukin-12 (IL-12) signaling through its downstream transcription factor signal transducer and activator of transcription 4 (STAT4) is required for the generation of memory NK cells after expansion. We identify gene loci that are highly enriched for STAT4 binding using chromatin immunoprecipitation sequencing for STAT4 and the permissive histone mark H3K4me3 in activated NK cells. We found that promoter regions of Runx1 and Runx3 are targets of STAT4 and that STAT4 binding during NK cell activation induces epigenetic modifications of Runx gene loci resulting in increased expression. Furthermore, specific ablation of Runx1, Runx3, or their binding partner Cbfb in NK cells resulted in defective clonal expansion and memory formation during viral infection, with evidence for Runx1-mediated control of a cell cycle program. Thus, our study reveals a mechanism whereby STAT4-mediated epigenetic control of individual Runx transcription factors promotes the adaptive behavior of antiviral NK cells.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 3 Subunit/metabolism , Core Binding Factor beta Subunit/metabolism , Killer Cells, Natural/immunology , Animals , Core Binding Factor Alpha 2 Subunit/deficiency , Core Binding Factor Alpha 3 Subunit/deficiency , Core Binding Factor beta Subunit/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , STAT4 Transcription Factor/metabolism
19.
Cell Rep ; 17(3): 636-644, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27732841

ABSTRACT

Despite robust secondary T cell expansion primed by vaccination, the impact on primary immune responses to heterotypic antigens remains undefined. Here we show that secondary expansion of epitope-specific memory CD8+ T cells primed by prior infection with recombinant pathogens limits the primary expansion of naive CD8+ T cells with specificity to new heterologous antigens, dampening protective immunity against subsequent pathogen challenge. The degree of naive T cell repression directly paralleled the magnitude of the recall response. Suppressed primary T cell priming reflects competition for antigen accessibility, since clonal expansion was not inhibited if the primary and secondary epitopes were expressed on different dendritic cells. Interestingly, robust recall responses did not impact antigen-specific NK cells, suggesting that adaptive and innate lymphocyte responses possess different activation requirements or occur in distinct anatomical locations. These findings have important implications in pathogen vaccination strategies that depend on the targeting of multiple T cell epitopes.


Subject(s)
Epitopes, T-Lymphocyte/immunology , Muromegalovirus/physiology , T-Lymphocytes/immunology , Vaccination , Animals , Antigen-Presenting Cells/metabolism , Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Clone Cells , Listeria/physiology , Mice , Recombination, Genetic/genetics
20.
Cell Rep ; 15(9): 1910-9, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27210760

ABSTRACT

Autophagy is an essential cellular survival mechanism that is required for adaptive lymphocyte development; however, its role in innate lymphoid cell (ILC) development remains unknown. Furthermore, the conditions that promote lymphocyte autophagy during homeostasis are poorly understood. Here, we demonstrate that Atg5, an essential component of the autophagy machinery, is required for the development of mature natural killer (NK) cells and group 1, 2, and 3 innate ILCs. Although inducible ablation of Atg5 was dispensable for the homeostasis of lymphocyte precursors and mature lymphocytes in lymphoreplete mice, we found that autophagy is induced in both adaptive and innate lymphocytes during homeostatic proliferation in lymphopenic hosts to promote their survival by limiting cell-intrinsic apoptosis. Induction of autophagy through metformin treatment following homeostatic proliferation increased lymphocyte numbers through an Atg5-dependent mechanism. These findings highlight the essential role for autophagy in ILC development and lymphocyte survival during lymphopenia.


Subject(s)
Autophagy-Related Protein 5/metabolism , Immunity, Innate , Lymphocytes/cytology , Animals , Autophagy , Cell Proliferation , Cell Survival , Homeostasis , Lymphopenia/immunology , Lymphopenia/pathology , Metformin/pharmacology , Mice, Inbred C57BL , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL