Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nature ; 630(8017): 728-735, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778101

ABSTRACT

Haematopoietic stem cell (HSC) transplantation (HSCT) is the only curative treatment for a broad range of haematological malignancies, but the standard of care relies on untargeted chemotherapies and limited possibilities to treat malignant cells after HSCT without affecting the transplanted healthy cells1. Antigen-specific cell-depleting therapies hold the promise of much more targeted elimination of diseased cells, as witnessed in the past decade by the revolution of clinical practice for B cell malignancies2. However, target selection is complex and limited to antigens expressed on subsets of haematopoietic cells, resulting in a fragmented therapy landscape with high development costs2-5. Here we demonstrate that an antibody-drug conjugate (ADC) targeting the pan-haematopoietic marker CD45 enables the antigen-specific depletion of the entire haematopoietic system, including HSCs. Pairing this ADC with the transplantation of human HSCs engineered to be shielded from the CD45-targeting ADC enables the selective eradication of leukaemic cells with preserved haematopoiesis. The combination of CD45-targeting ADCs and engineered HSCs creates an almost universal strategy to replace a diseased haematopoietic system, irrespective of disease aetiology or originating cell type. We propose that this approach could have broad implications beyond haematological malignancies.


Subject(s)
Hematologic Neoplasms , Hematopoiesis , Immunoconjugates , Leukocyte Common Antigens , Animals , Female , Humans , Male , Mice , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/therapy , Hematologic Neoplasms/immunology , Hematopoiesis/drug effects , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Leukocyte Common Antigens/immunology , Leukocyte Common Antigens/metabolism , Cell Line, Tumor , Antibody Specificity
2.
Life Sci Alliance ; 5(9)2022 09.
Article in English | MEDLINE | ID: mdl-35580987

ABSTRACT

MAPK inhibitors (MAPKi) remain an important component of the standard of care for metastatic melanoma. However, acquired resistance to these drugs limits their therapeutic benefit. Tumor cells can become refractory to MAPKi by reactivation of ERK. When this happens, tumors often become sensitive to drug withdrawal. This drug addiction phenotype results from the hyperactivation of the oncogenic pathway, a phenomenon commonly referred to as oncogene overdose. Several feedback mechanisms are involved in regulating ERK signaling. However, the genes that serve as gatekeepers of oncogene overdose in mutant melanoma remain unknown. Here, we demonstrate that depletion of the ERK phosphatase, DUSP4, leads to toxic levels of MAPK activation in both drug-naive and drug-resistant mutant melanoma cells. Importantly, ERK hyperactivation is associated with down-regulation of lineage-defining genes including MITF Our results offer an alternative therapeutic strategy to treat mutant melanoma patients with acquired MAPKi resistance and those unable to tolerate MAPKi.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Dual-Specificity Phosphatases/genetics , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Melanoma/genetics , Melanoma/pathology , Membrane Proteins/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Mitogen-Activated Protein Kinase Phosphatases/genetics , Oncogenes , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics
3.
Cancer Immunol Res ; 10(1): 87-107, 2022 01.
Article in English | MEDLINE | ID: mdl-34782346

ABSTRACT

Targeting chromatin binding proteins and modifying enzymes can concomitantly affect tumor cell proliferation and survival, as well as enhance antitumor immunity and augment cancer immunotherapies. By screening a small-molecule library of epigenetics-based therapeutics, BET (bromo- and extra-terminal domain) inhibitors (BETi) were identified as agents that sensitize tumor cells to the antitumor activity of CD8+ T cells. BETi modulated tumor cells to be sensitized to the cytotoxic effects of the proinflammatory cytokine TNF. By preventing the recruitment of BRD4 to p65-bound cis-regulatory elements, BETi suppressed the induction of inflammatory gene expression, including the key NF-κB target genes BIRC2 (cIAP1) and BIRC3 (cIAP2). Disruption of prosurvival NF-κB signaling by BETi led to unrestrained TNF-mediated activation of the extrinsic apoptotic cascade and tumor cell death. Administration of BETi in combination with T-cell bispecific antibodies (TCB) or immune-checkpoint blockade increased bystander killing of tumor cells and enhanced tumor growth inhibition in vivo in a TNF-dependent manner. This novel epigenetic mechanism of immunomodulation may guide future use of BETi as adjuvants for immune-oncology agents.


Subject(s)
Antineoplastic Agents/administration & dosage , Colorectal Neoplasms/drug therapy , Inhibitor of Apoptosis Proteins/genetics , Nuclear Proteins/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics , Animals , Apoptosis/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitor of Apoptosis Proteins/metabolism , NF-kappa B/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Signal Transduction/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL