Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Exp Bot ; 75(4): 1187-1204, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-37948577

ABSTRACT

PHYTOENE SYNTHASE (PSY) is a rate-limiting enzyme catalysing the first committed step of carotenoid biosynthesis, and changes in PSY gene expression and/or protein activity alter carotenoid composition and plastid differentiation in plants. Four genetic variants of PSY (psy-4, psy-90, psy-130, and psy-145) were identified using a forward genetics approach that rescued leaf virescence phenotypes and plastid abnormalities displayed by the Arabidopsis CAROTENOID ISOMERASE (CRTISO) mutant ccr2 (carotenoid and chloroplast regulation 2) when grown under a shorter photoperiod. The four non-lethal mutations affected alternative splicing, enzyme-substrate interactions, and PSY:ORANGE multi-enzyme complex binding, constituting the dynamic post-transcriptional fine-tuning of PSY levels and activity without changing localization to the stroma and protothylakoid membranes. psy genetic variants did not alter total xanthophyll or ß-carotene accumulation in ccr2, yet they reduced specific acyclic linear cis-carotenes linked to the biosynthesis of a currently unidentified apocarotenoid signal regulating plastid biogenesis, chlorophyll biosynthesis, and photomorphogenic regulation. ccr2 psy variants modulated the PHYTOCHROME-INTERACTING FACTOR 3/ELONGATED HYPOCOTYL 5 (PIF3/HY5) ratio, and displayed a normal prolamellar body formation in etioplasts and chlorophyll accumulation during seedling photomorphogenesis. Thus, suppressing PSY activity and impairing PSY:ORANGE protein interactions revealed how cis-carotene abundance can be fine-tuned through holoenzyme-metabolon interactions to control plastid development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Arabidopsis/metabolism , Carotenoids/metabolism , Plastids/genetics , Plastids/metabolism , Chlorophyll/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
2.
Plant Physiol ; 185(2): 331-351, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33721895

ABSTRACT

Carotenoid levels in plant tissues depend on the relative rates of synthesis and degradation of the molecules in the pathway. While plant carotenoid biosynthesis has been extensively characterized, research on carotenoid degradation and catabolism into apocarotenoids is a relatively novel field. To identify apocarotenoid metabolic processes, we characterized the transcriptome of transgenic Arabidopsis (Arabidopsis thaliana) roots accumulating high levels of ß-carotene and, consequently, ß-apocarotenoids. Transcriptome analysis revealed feedback regulation on carotenogenic gene transcripts suitable for reducing ß-carotene levels, suggesting involvement of specific apocarotenoid signaling molecules originating directly from ß-carotene degradation or after secondary enzymatic derivatizations. Enzymes implicated in apocarotenoid modification reactions overlapped with detoxification enzymes of xenobiotics and reactive carbonyl species (RCS), while metabolite analysis excluded lipid stress response, a potential secondary effect of carotenoid accumulation. In agreement with structural similarities between RCS and ß-apocarotenoids, RCS detoxification enzymes also converted apocarotenoids derived from ß-carotene and from xanthophylls into apocarotenols and apocarotenoic acids in vitro. Moreover, glycosylation and glutathionylation-related processes and translocators were induced. In view of similarities to mechanisms found in crocin biosynthesis and cellular deposition in saffron (Crocus sativus), our data suggest apocarotenoid metabolization, derivatization and compartmentalization as key processes in (apo)carotenoid metabolism in plants.


Subject(s)
Arabidopsis/metabolism , Carotenoids/metabolism , Plant Proteins/metabolism , Transcriptome , Xenobiotics/metabolism , Arabidopsis/genetics , Free Radicals/metabolism , Gene Expression Profiling , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/metabolism , Xanthophylls/metabolism
3.
Plant Cell Rep ; 41(4): 961-977, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35064799

ABSTRACT

KEY MESSAGE: Analysis of carotenoid-accumulating roots revealed that oxidative carotenoid degradation yields glyoxal and methylglyoxal. Our data suggest that these compounds are detoxified via the glyoxalase system and re-enter primary metabolic pathways. Carotenoid levels in plant tissues depend on the relative rates of synthesis and degradation. We recently identified redox enzymes previously known to be involved in the detoxification of fatty acid-derived reactive carbonyl species which were able to convert apocarotenoids into corresponding alcohols and carboxylic acids. However, their subsequent metabolization pathways remain unresolved. Interestingly, we found that carotenoid-accumulating roots have increased levels of glutathione, suggesting apocarotenoid glutathionylation to occur. In vitro and in planta investigations did not, however, support the occurrence of non-enzymatic or enzymatic glutathionylation of ß-apocarotenoids. An alternative breakdown pathway is the continued oxidative degradation of primary apocarotenoids or their derivatives into the shortest possible oxidation products, namely glyoxal and methylglyoxal, which also accumulated in carotenoid-accumulating roots. In fact, combined transcriptome and metabolome analysis suggest that the high levels of glutathione are most probably required for detoxifying apocarotenoid-derived glyoxal and methylglyoxal via the glyoxalase pathway, yielding glycolate and D-lactate, respectively. Further transcriptome analysis suggested subsequent reactions involving activities associated with photorespiration and the peroxisome-specific glycolate/glyoxylate transporter. Finally, detoxified primary apocarotenoid degradation products might be converted into pyruvate which is possibly re-used for the synthesis of carotenoid biosynthesis precursors. Our findings allow to envision carbon recycling during carotenoid biosynthesis, degradation and re-synthesis which consumes energy, but partially maintains initially fixed carbon via re-introducing reactive carotenoid degradation products into primary metabolic pathways.


Subject(s)
Carbon , Pyruvaldehyde , Carotenoids/metabolism , Glutathione/metabolism , Metabolic Networks and Pathways
4.
J Exp Bot ; 72(22): 7645-7647, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34865113

ABSTRACT

The fertilized egg is the single totipotent cell from which multicellular organisms arise through the processes of cell division and differentiation. While animals typically lose their capacity to redifferentiate cells that are already fully differentiated, plant cells are thought to remain totipotent (Su et al., 2020). Every gardener knows well that plants can regenerate a full array of plant tissues from already differentiated organs. This also seems to be true for single plant cells such as protoplasts, which, under proper in vitro culture conditions, served as the initial source for generation of transgenic plants (Skoog and Miller, 1957; Birnbaum and Sánchez Alvarado, 2008). However, the mechanisms behind the totipotency of plant cells remain elusive, with the exception of the knowledge that the developmental fate of regenerating tissues can be directed by the ratio of two plant hormones, auxin and cytokinin (Skoog and Miller, 1957).


Subject(s)
Cellular Reprogramming , Indoleacetic Acids , Animals , Cytokinins , Plant Cells , Plant Growth Regulators
5.
Plant Physiol ; 179(3): 1013-1027, 2019 03.
Article in English | MEDLINE | ID: mdl-30309967

ABSTRACT

Geranylgeranyl diphosphate (GGPP), a prenyl diphosphate synthesized by GGPP synthase (GGPS), represents a metabolic hub for the synthesis of key isoprenoids, such as chlorophylls, tocopherols, phylloquinone, gibberellins, and carotenoids. Protein-protein interactions and the amphipathic nature of GGPP suggest metabolite channeling and/or competition for GGPP among enzymes that function in independent branches of the isoprenoid pathway. To investigate substrate conversion efficiency between the plastid-localized GGPS isoform GGPS11 and phytoene synthase (PSY), the first enzyme of the carotenoid pathway, we used recombinant enzymes and determined their in vitro properties. Efficient phytoene biosynthesis via PSY strictly depended on simultaneous GGPP supply via GGPS11. In contrast, PSY could not access freely diffusible GGPP or time-displaced GGPP supply via GGPS11, presumably due to liposomal sequestration. To optimize phytoene biosynthesis, we applied a synthetic biology approach and constructed a chimeric GGPS11-PSY metabolon (PYGG). PYGG converted GGPP to phytoene almost quantitatively in vitro and did not show the GGPP leakage typical of the individual enzymes. PYGG expression in Arabidopsis resulted in orange-colored cotyledons, which are not observed if PSY or GGPS11 are overexpressed individually. This suggests insufficient GGPP substrate availability for chlorophyll biosynthesis achieved through GGPP flux redirection to carotenogenesis. Similarly, carotenoid levels in PYGG-expressing callus exceeded that in PSY- or GGPS11-overexpression lines. The PYGG chimeric protein may assist in provitamin A biofortification of edible plant parts. Moreover, other GGPS fusions may be used to redirect metabolic flux into the synthesis of other isoprenoids of nutritional and industrial interest.


Subject(s)
Arabidopsis/genetics , Carotenoids/biosynthesis , Polyisoprenyl Phosphates/metabolism , Arabidopsis/metabolism , Binding, Competitive , Biofortification , Carotenoids/chemistry , Carotenoids/metabolism , Genetic Engineering , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Synthetic Biology
6.
Plant Physiol ; 180(4): 1988-2003, 2019 08.
Article in English | MEDLINE | ID: mdl-31221734

ABSTRACT

Carotenoids exert multifaceted roles to plants and are critically important to humans. Phytoene synthase (PSY) is a major rate-limiting enzyme in the carotenoid biosynthetic pathway. PSY in plants is normally found as a small enzyme family with up to three members. However, knowledge of PSY isoforms in relation to their respective enzyme activities and amino acid residues that are important for PSY activity is limited. In this study, we focused on two tomato (Solanum lycopersicum) PSY isoforms, PSY1 and PSY2, and investigated their abilities to catalyze carotenogenesis via heterologous expression in transgenic Arabidopsis (Arabidopsis thaliana) and bacterial systems. We found that the fruit-specific PSY1 was less effective in promoting carotenoid biosynthesis than the green tissue-specific PSY2. Examination of the PSY proteins by site-directed mutagenesis analysis and three-dimensional structure modeling revealed two key amino acid residues responsible for this activity difference and identified a neighboring aromatic-aromatic combination in one of the PSY core structures as being crucial for high PSY activity. Remarkably, this neighboring aromatic-aromatic combination is evolutionarily conserved among land plant PSYs except PSY1 of tomato and potato (Solanum tuberosum). Strong transcription of tomato PSY1 likely evolved as compensation for its weak enzyme activity to allow for the massive carotenoid biosynthesis in ripe fruit. This study provides insights into the functional divergence of PSY isoforms and highlights the potential to rationally design PSY for the effective development of carotenoid-enriched crops.


Subject(s)
Fruit/metabolism , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Solanum tuberosum/metabolism , Fruit/enzymology , Fruit/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Solanum lycopersicum/enzymology , Plant Proteins/genetics , Solanum tuberosum/enzymology , Solanum tuberosum/genetics
7.
Metab Eng ; 52: 243-252, 2019 03.
Article in English | MEDLINE | ID: mdl-30578862

ABSTRACT

The high-value ketocarotenoid astaxanthin, a natural red colorant with powerful antioxidant activity, is synthesised from ß-carotene by a hydroxylase and an oxygenase enzyme, which perform the addition of two hydroxyl and keto moieties, respectively. Several routes of intermediates, depending on the sequence of action of these enzymes, lead to the formation of astaxanthin. In the present study, the enzyme activities of 3, 3' ß-carotene hydroxylase (CRTZ) and 4, 4' ß-carotene oxygenase (CRTW) have been combined through the creation of "new to nature" enzyme fusions in order to overcome leakage of non-endogenous intermediates and pleotropic effects associated with their high levels in plants. The utility of flexible linker sequences of varying size has been assessed in the construction of pZ-W enzyme fusions. Frist, in vivo color complementation assays in Escherichia coli have been used to evaluate the potential of the fusion enzymes. Analysis of the carotenoid pigments present in strains generated indicated that the enzyme fusions only possess both catalytic activities when CRTZ is attached as the N-terminal module. Astaxanthin levels in E. coli cells were increased by 1.4-fold when the CRTZ and CRTW enzymes were fused compared to the individual enzymes. Transient expression in Nicotiana benthamiana was then performed in order to assess the potential of the fusions in a plant system. The production of valuable ketocarotenoids was achieved using this plant-based transient expression system. This revealed that CRTZ and CRTW, transiently expressed as a fusion, accumulated similar levels of astaxanthin compared to the expression of the individual enzymes whilst being associated with reduced ketocarotenoid intermediate levels (e.g. phoenicoxanthin, canthaxanthin and 3-OH-echinenone) and a reduced rate of leaf senescence after transformation. Therefore, the quality of the plant material producing the ketocarotenoids was enhanced due to a reduction in the stress induced by the accumulation of high levels of heterologous ketocarotenoid intermediates. The size of the linkers appeared to have no effect upon activity. The potential of the approach to production of valuable plant derived products is discussed.


Subject(s)
Carotenoids/biosynthesis , Ketoses/biosynthesis , Plants/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Fusion , Metabolic Engineering/methods , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Plant Leaves/metabolism , Plants/genetics , Plants, Genetically Modified , Plasmids/genetics , Nicotiana/genetics , Nicotiana/metabolism , Xanthophylls/biosynthesis
8.
Plant Physiol ; 173(1): 376-389, 2017 01.
Article in English | MEDLINE | ID: mdl-27837090

ABSTRACT

ß-Carotene adds nutritious value and determines the color of many fruits, including melon (Cucumis melo). In melon mesocarp, ß-carotene accumulation is governed by the Orange gene (CmOr) golden single-nucleotide polymorphism (SNP) through a yet to be discovered mechanism. In Arabidopsis (Arabidopsis thaliana), OR increases carotenoid levels by posttranscriptionally regulating phytoene synthase (PSY). Here, we identified a CmOr nonsense mutation (Cmor-lowß) that lowered fruit ß-carotene levels with impaired chromoplast biogenesis. Cmor-lowß exerted a minimal effect on PSY transcripts but dramatically decreased PSY protein levels and enzymatic activity, leading to reduced carotenoid metabolic flux and accumulation. However, the golden SNP was discovered to not affect PSY protein levels and carotenoid metabolic flux in melon fruit, as shown by carotenoid and immunoblot analyses of selected melon genotypes and by using chemical pathway inhibitors. The high ß-carotene accumulation in golden SNP melons was found to be due to a reduced further metabolism of ß-carotene. This was revealed by genetic studies with double mutants including carotenoid isomerase (yofi), a carotenoid-isomerase nonsense mutant, which arrests the turnover of prolycopene. The yofi F2 segregants accumulated prolycopene independently of the golden SNP Moreover, Cmor-lowß was found to inhibit chromoplast formation and chloroplast disintegration in fruits from 30 d after anthesis until ripening, suggesting that CmOr regulates the chloroplast-to-chromoplast transition. Taken together, our results demonstrate that CmOr is required to achieve PSY protein levels to maintain carotenoid biosynthesis metabolic flux but that the mechanism of the CmOr golden SNP involves an inhibited metabolism downstream of ß-carotene to dramatically affect both carotenoid content and plastid fate.


Subject(s)
Carotenoids/metabolism , Cucumis melo/metabolism , Metabolic Flux Analysis , Plant Proteins/metabolism , Amino Acid Sequence , Biosynthetic Pathways/genetics , Chloroplasts/metabolism , Cucumis melo/genetics , Ecotype , Epistasis, Genetic , Ethyl Methanesulfonate , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism , Models, Biological , Mutation/genetics , Phenotype , Pigmentation/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Polymorphism, Single Nucleotide/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Proc Natl Acad Sci U S A ; 112(11): 3558-63, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25675505

ABSTRACT

Carotenoids are indispensable natural pigments to plants and humans. Phytoene synthase (PSY), the rate-limiting enzyme in the carotenoid biosynthetic pathway, and ORANGE (OR), a regulator of chromoplast differentiation and enhancer of carotenoid biosynthesis, represent two key proteins that control carotenoid biosynthesis and accumulation in plants. However, little is known about the mechanisms underlying their posttranscriptional regulation. Here we report that PSY and OR family proteins [Arabidopsis thaliana OR (AtOR) and AtOR-like] physically interacted with each other in plastids. We found that alteration of OR expression in Arabidopsis exerted minimal effect on PSY transcript abundance. However, overexpression of AtOR significantly increased the amount of enzymatically active PSY, whereas an ator ator-like double mutant exhibited a dramatically reduced PSY level. The results indicate that the OR proteins serve as the major posttranscriptional regulators of PSY. The ator or ator-like single mutant had little effect on PSY protein levels, which involves a compensatory mechanism and suggests partial functional redundancy. In addition, modification of PSY expression resulted in altered AtOR protein levels, corroborating a mutual regulation of PSY and OR. Carotenoid content showed a correlated change with OR-mediated PSY level, demonstrating the function of OR in controlling carotenoid biosynthesis by regulating PSY. Our findings reveal a novel mechanism by which carotenoid biosynthesis is controlled via posttranscriptional regulation of PSY in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Carotenoids/biosynthesis , Gene Expression Regulation, Plant , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Arabidopsis Proteins/chemistry , Gene Knockout Techniques , Immunoprecipitation , Mass Spectrometry , Plastids/metabolism , Protein Binding , Protein Multimerization , Structure-Activity Relationship
10.
Planta ; 245(4): 737-747, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27999990

ABSTRACT

Main conclusion Variations in gene expression can partially explain the difference of carotenoid accumulation in secondary phloem and xylem of fleshy carrot roots. The carrot root is well divided into two different tissues separated by vascular cambium: the secondary phloem and xylem. The equilibrium between these two tissues represents an important issue for carrot quality, but the knowledge about the respective carotenoid accumulation is sparse. The aim of this work was (i) to investigate if variation in carotenoid biosynthesis gene expression could explain differences in carotenoid content in phloem and xylem tissues and (ii) to investigate if this regulation is differentially modulated in the respective tissues by water-restricted growing conditions. In this work, five carrot genotypes contrasting by their root color were studied in control and water-restricted conditions. Carotenoid content and the relative expression of 13 genes along the carotenoid biosynthesis pathway were measured in the respective tissues. Results showed that in orange genotypes and the purple one, carotenoid content was higher in phloem compared to xylem. For the red one, no differences were observed. Moreover, in control condition, variations in gene expression explained the different carotenoid accumulations in both tissues, while in water-restricted condition, no clear association between gene expression pattern and variations in carotenoid content could be detected except in orange-rooted genotypes. This work shows that the structural aspect of carrot root is more important for carotenoid accumulation in relation with gene expression levels than the consequences of expression changes upon water restriction.


Subject(s)
Carotenoids/physiology , Daucus carota/physiology , Gene Expression Regulation, Plant/physiology , Plant Roots/physiology , Carotenoids/analysis , Carotenoids/metabolism , Daucus carota/growth & development , Immunoblotting , Phloem/physiology , Plant Roots/chemistry , Xylem/physiology
11.
Plant Physiol ; 172(4): 2314-2326, 2016 12.
Article in English | MEDLINE | ID: mdl-27729470

ABSTRACT

Phytoene synthase (PSY) catalyzes the highly regulated, frequently rate-limiting synthesis of the first biosynthetically formed carotene. While PSY constitutes a small gene family in most plant taxa, the Brassicaceae, including Arabidopsis (Arabidopsis thaliana), predominantly possess a single PSY gene. This monogenic situation is compensated by the differential expression of two alternative splice variants (ASV), which differ in length and in the exon/intron retention of their 5'UTRs. ASV1 contains a long 5'UTR (untranslated region) and is involved in developmentally regulated carotenoid formation, such as during deetiolation. ASV2 contains a short 5'UTR and is preferentially induced when an immediate increase in the carotenoid pathway flux is required, such as under salt stress or upon sudden light intensity changes. We show that the long 5'UTR of ASV1 is capable of attenuating the translational activity in response to high carotenoid pathway fluxes. This function resides in a defined 5'UTR stretch with two predicted interconvertible RNA conformations, as known from riboswitches, which might act as a flux sensor. The translation-inhibitory structure is absent from the short 5'UTR of ASV2 allowing to bypass translational inhibition under conditions requiring rapidly increased pathway fluxes. The mechanism is not found in the rice (Oryza sativa) PSY1 5'UTR, consistent with the prevalence of transcriptional control mechanisms in taxa with multiple PSY genes. The translational control mechanism identified is interpreted in terms of flux adjustments needed in response to retrograde signals stemming from intermediates of the plastid-localized carotenoid biosynthesis pathway.


Subject(s)
5' Untranslated Regions/genetics , Alternative Splicing/genetics , Arabidopsis Proteins/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Carotenoids/biosynthesis , Multienzyme Complexes/genetics , Protein Biosynthesis/genetics , Arabidopsis Proteins/metabolism , Carotenoids/genetics , Carotenoids/metabolism , Computational Biology , Gene Expression Regulation, Plant , Genes, Reporter , Glucuronidase/metabolism , Models, Biological , Multienzyme Complexes/metabolism , Plant Leaves/enzymology , Plant Leaves/genetics
12.
Plant Cell ; 26(5): 2223-2233, 2014 May.
Article in English | MEDLINE | ID: mdl-24858934

ABSTRACT

The typically intense carotenoid accumulation in cultivated orange-rooted carrots (Daucus carota) is determined by a high protein abundance of the rate-limiting enzyme for carotenoid biosynthesis, phytoene synthase (PSY), as compared with white-rooted cultivars. However, in contrast to other carotenoid accumulating systems, orange carrots are characterized by unusually high levels of α-carotene in addition to ß-carotene. We found similarly increased α-carotene levels in leaves of orange carrots compared with white-rooted cultivars. This has also been observed in the Arabidopsis thaliana lut5 mutant carrying a defective carotene hydroxylase CYP97A3 gene. In fact, overexpression of CYP97A3 in orange carrots restored leaf carotenoid patterns almost to those found in white-rooted cultivars and strongly reduced α-carotene levels in the roots. Unexpectedly, this was accompanied by a 30 to 50% reduction in total root carotenoids and correlated with reduced PSY protein levels while PSY expression was unchanged. This suggests a negative feedback emerging from carotenoid metabolites determining PSY protein levels and, thus, total carotenoid flux. Furthermore, we identified a deficient CYP97A3 allele containing a frame-shift insertion in orange carrots. Association mapping analysis using a large carrot population revealed a significant association of this polymorphism with both α-carotene content and the α-/ß-carotene ratio and explained a large proportion of the observed variation in carrots.

13.
New Phytol ; 209(1): 252-64, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26224411

ABSTRACT

Most plastid isoprenoids, including photosynthesis-related metabolites such as carotenoids and the side chain of chlorophylls, tocopherols (vitamin E), phylloquinones (vitamin K), and plastoquinones, derive from geranylgeranyl diphosphate (GGPP) synthesized by GGPP synthase (GGPPS) enzymes. Seven out of 10 functional GGPPS isozymes in Arabidopsis thaliana reside in plastids. We aimed to address the function of different GGPPS paralogues for plastid isoprenoid biosynthesis. We constructed a gene co-expression network (GCN) using GGPPS paralogues as guide genes and genes from the upstream and downstream pathways as query genes. Furthermore, knock-out and/or knock-down ggpps mutants were generated and their growth and metabolic phenotypes were analyzed. Also, interacting protein partners of GGPPS11 were searched for. Our data showed that GGPPS11, encoding the only plastid isozyme essential for plant development, functions as a hub gene among GGPPS paralogues and is required for the production of all major groups of plastid isoprenoids. Furthermore, we showed that the GGPPS11 protein physically interacts with enzymes that use GGPP for the production of carotenoids, chlorophylls, tocopherols, phylloquinone, and plastoquinone. GGPPS11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids. Both gene co-expression and protein-protein interaction likely contribute to the channeling of GGPP by GGPPS11.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Terpenes/metabolism , Alkyl and Aryl Transferases/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carotenoids/metabolism , Chlorophyll/metabolism , Isoenzymes , Phenotype , Photosynthesis , Plastids/enzymology , Polyisoprenyl Phosphates/metabolism , Protein Interaction Mapping
14.
Plant Physiol ; 168(4): 1550-62, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26134165

ABSTRACT

Attaining defined steady-state carotenoid levels requires balancing of the rates governing their synthesis and metabolism. Phytoene formation mediated by phytoene synthase (PSY) is rate limiting in the biosynthesis of carotenoids, whereas carotenoid catabolism involves a multitude of nonenzymatic and enzymatic processes. We investigated carotenoid and apocarotenoid formation in Arabidopsis (Arabidopsis thaliana) in response to enhanced pathway flux upon PSY overexpression. This resulted in a dramatic accumulation of mainly ß-carotene in roots and nongreen calli, whereas carotenoids remained unchanged in leaves. We show that, in chloroplasts, surplus PSY was partially soluble, localized in the stroma and, therefore, inactive, whereas the membrane-bound portion mediated a doubling of phytoene synthesis rates. Increased pathway flux was not compensated by enhanced generation of long-chain apocarotenals but resulted in higher levels of C13 apocarotenoid glycosides (AGs). Using mutant lines deficient in carotenoid cleavage dioxygenases (CCDs), we identified CCD4 as being mainly responsible for the majority of AGs formed. Moreover, changed AG patterns in the carotene hydroxylase mutants lutein deficient1 (lut1) and lut5 exhibiting altered leaf carotenoids allowed us to define specific xanthophyll species as precursors for the apocarotenoid aglycons detected. In contrast to leaves, carotenoid hyperaccumulating roots contained higher levels of ß-carotene-derived apocarotenals, whereas AGs were absent. These contrasting responses are associated with tissue-specific capacities to synthesize xanthophylls, which thus determine the modes of carotenoid accumulation and apocarotenoid formation.


Subject(s)
Arabidopsis/metabolism , Carotenoids/metabolism , Homeostasis , Plant Leaves/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carotenoids/biosynthesis , Chloroplasts/genetics , Chloroplasts/metabolism , Chromatography, Liquid , Dioxygenases/genetics , Dioxygenases/metabolism , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism , Glycosides/metabolism , Glycosylation , Immunoblotting , Mass Spectrometry , Mutation , Plant Leaves/genetics , Plant Roots/genetics , Plant Roots/metabolism , Xanthophylls/metabolism , beta Carotene/metabolism
15.
Plant Physiol ; 169(1): 421-31, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26224804

ABSTRACT

Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. Here, we demonstrated that alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote carotenoid accumulation. Whereas overexpression of OR from Arabidopsis (Arabidopsis thaliana; AtOR) or from the agronomically important crop sorghum (Sorghum bicolor; SbOR) increased carotenoid levels up to 2-fold, expression of AtOR(His) (R90H) or SbOR(His) (R104H) variants dramatically enhanced carotenoid accumulation by up to 7-fold in the Arabidopsis calli. Moreover, we found that AtOR(Ala) (R90A) functioned similarly to AtOR(His) to promote carotenoid overproduction. Neither AtOR nor AtOR(His) greatly affected carotenogenic gene expression. AtOR(His) exhibited similar interactions with phytoene synthase (PSY) as AtOR in posttranscriptionally regulating PSY protein abundance. AtOR(His) triggered biogenesis of membranous chromoplasts in the Arabidopsis calli, which shared structures similar to chromoplasts found in the curd of the orange cauliflower (Brassica oleracea) mutant. By contrast, AtOR did not cause plastid-type changes in comparison with the controls, but produced plastids containing larger and electron-dense plastoglobuli. The unique ability of AtOR(His) in mediating chromoplast biogenesis is responsible for its induced carotenoid overproduction. Our study demonstrates OR(His/Ala) as powerful tools for carotenoid enrichment in plants, and provides insights into the mechanisms underlying OR(His)-regulated carotenoid accumulation.


Subject(s)
Amino Acid Substitution , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Carotenoids/metabolism , HSP40 Heat-Shock Proteins/genetics , Amino Acid Sequence , Arabidopsis Proteins/chemistry , Biosynthetic Pathways/genetics , Gene Expression Regulation, Plant , HSP40 Heat-Shock Proteins/chemistry , Molecular Sequence Data , Plants, Genetically Modified , Plastids/metabolism , Plastids/ultrastructure , Protein Transport , Sequence Alignment
16.
Plant Cell ; 22(10): 3348-56, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20889914

ABSTRACT

Cassava (Manihot esculenta) is an important staple crop, especially in the arid tropics. Because roots of commercial cassava cultivars contain a limited amount of provitamin A carotenoids, both conventional breeding and genetic modification are being applied to increase their production and accumulation to fight vitamin A deficiency disorders. We show here that an allelic polymorphism in one of the two expressed phytoene synthase (PSY) genes is capable of enhancing the flux of carbon through carotenogenesis, thus leading to the accumulation of colored provitamin A carotenoids in storage roots. A single nucleotide polymorphism present only in yellow-rooted cultivars cosegregates with colored roots in a breeding pedigree. The resulting amino acid exchange in a highly conserved region of PSY provides increased catalytic activity in vitro and is able to increase carotenoid production in recombinant yeast and Escherichia coli cells. Consequently, cassava plants overexpressing a PSY transgene produce yellow-fleshed, high-carotenoid roots. This newly characterized PSY allele provides means to improve cassava provitamin A content in cassava roots through both breeding and genetic modification.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Manihot/genetics , Plant Roots/enzymology , Vitamin A/biosynthesis , Alkyl and Aryl Transferases/genetics , Alleles , Amino Acid Sequence , Amino Acid Substitution , DNA, Plant/genetics , Gene Expression Regulation, Plant , Geranylgeranyl-Diphosphate Geranylgeranyltransferase , Manihot/enzymology , Molecular Sequence Data , Pigmentation , Plant Roots/genetics , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Polymorphism, Single Nucleotide , Sequence Alignment
17.
Planta ; 236(5): 1585-98, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22843244

ABSTRACT

Carotenoids occur in all photosynthetic organisms where they protect photosystems from auto-oxidation, participate in photosynthetic energy transfer and are secondary metabolites. Of the more than 600 known plant carotenoids, few can be converted into vitamin A by humans and so these pro-vitamin A carotenoids (pVAC) are important in human nutrition. Phytoene synthase (PSY) is a key enzyme in the biosynthetic pathway of pVACs and plays a central role in regulating pVAC accumulation in the edible portion of crop plants. Banana is a major commercial crop and serves as a staple crop for more than 30 million people. There is natural variation in fruit pVAC content across different banana cultivars, but this is not well understood. Therefore, we isolated PSY genes from banana cultivars with relatively high (cv. Asupina) and low (cv. Cavendish) pVAC content. We provide evidence that PSY in banana is encoded by two paralogs (PSY1 and PSY2), each with a similar gene structure to homologous genes in other monocots. Further, we demonstrate that PSY2 is more highly expressed in fruit pulp compared to leaf. Functional analysis of PSY1 and PSY2 in rice callus and E. coli demonstrates that both genes encode functional enzymes, and that Asupina PSYs have approximately twice the enzymatic activity of the corresponding Cavendish PSYs. These results suggest that differences in PSY enzyme activity contribute significantly to the differences in Asupina and Cavendish fruit pVAC content. Importantly, Asupina PSY genes could potentially be used to generate new cisgenic or intragenic banana cultivars with enhanced pVAC content.


Subject(s)
Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Musa/genetics , Carotenoids/metabolism , Cloning, Molecular , Escherichia coli/genetics , Gene Expression Regulation, Plant , Geranylgeranyl-Diphosphate Geranylgeranyltransferase , Organ Specificity , Oryza/genetics , Oryza/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified
18.
J Exp Bot ; 63(14): 5189-202, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22791829

ABSTRACT

An Arabidopsis thaliana mutant, cbd (carotenoid biosynthesis deficient), was recovered from a mutant population based on its yellow cotyledons, yellow-first true leaves, and stunted growth. Seven-day-old seedlings and mature seeds of this mutant had lower chlorophyll and total carotenoids than the wild type (WT). Genetic and molecular characterization revealed that cbd was a recessive mutant caused by a T-DNA insertion in the gene cpSRP54 encoding the 54 kDa subunit of the chloroplast signal recognition particle. Transcript levels of most of the main carotenoid biosynthetic genes in cbd were unchanged relative to WT, but expression increased in carotenoid and abscisic acid catabolic genes. The chloroplasts of cbd also had developmental defects that contributed to decreased carotenoid and chlorophyll contents. Transcription of AtGLK1 (Golden 2-like 1), AtGLK2, and GUN4 appeared to be disrupted in the cbd mutant suggesting that the plastid-to-nucleus retrograde signal may be affected, regulating the changes in chloroplast functional and developmental states and carotenoid content flux. Transformation of A. thaliana and Brassica napus with a gDNA encoding the Arabidopsis cpSRP54 showed the utility of this gene in enhancing levels of seed carotenoids without affecting growth or seed yield.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Brassica napus/genetics , Brassica napus/metabolism , Carotenoids/biosynthesis , Chloroplast Proteins/genetics , Signal Recognition Particle/genetics , Abscisic Acid/metabolism , Arabidopsis/ultrastructure , Arabidopsis Proteins/metabolism , Brassica napus/ultrastructure , Carotenoids/genetics , Chlorophyll/metabolism , Chloroplast Proteins/metabolism , Chloroplasts/ultrastructure , Genes, Chloroplast , Microscopy, Electron, Transmission , Mutation , Real-Time Polymerase Chain Reaction , Signal Recognition Particle/metabolism
19.
Methods Enzymol ; 671: 1-29, 2022.
Article in English | MEDLINE | ID: mdl-35878974

ABSTRACT

Golden Rice is a genetically modified rice variety that accumulates carotenoids with provitamin A activity in its endosperm. This biofortified crop was developed to fight provitamin A deficiency prevailing in countries with a diet based on rice as the major staple. Since its first version in 2000, Golden Rice was continuously developed to increase endosperm carotenoids, to achieve regulatory compliance, and to introgress the trait into regional rice varieties. Golden Rice was recently approved for planting in the Philippines. In this review, we recapitulate major steps leading to the current version of Golden Rice. We examine the knowledge regarding the carotenoid pathway and the technical capabilities to generate transgenic plants at each development stage. Moreover, we discuss whether the scientific approaches taken at the time would be any different today with the increased knowledge and analytical capacities available. We conclude that most decisions for each Golden Rice version would be very similar which is due to the peculiarities and the complexity of the carotenoid biosynthetic pathway. However, each step taken in the development of Golden Rice yielded much insight about regulation of the carotenoid pathway in plants as well as into specific requirements in rice endosperm. The knowledge gained and the recent advances in the field can provide strategies and molecular tools, including synthetic biology approaches, to help develop future versions of Golden Rice with improved provitamin A levels and carotenoid storage capabilities of the rice endosperm.


Subject(s)
Oryza , Carotenoids/metabolism , Metabolic Engineering , Oryza/genetics , Oryza/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Provitamins/metabolism , Synthetic Biology , beta Carotene/metabolism
20.
Front Plant Sci ; 13: 884720, 2022.
Article in English | MEDLINE | ID: mdl-35498681

ABSTRACT

Phytoene synthase (PSY) catalyzes the first committed step in the carotenoid biosynthesis pathway and is a major rate-limiting enzyme of carotenogenesis. PSY is highly regulated by various regulators and factors to modulate carotenoid biosynthesis in response to diverse developmental and environmental cues. Because of its critical role in controlling the total amount of synthesized carotenoids, PSY has been extensively investigated and engineered in plant species. However, much remains to be learned on its multifaceted regulatory control and its catalytic efficiency for carotenoid enrichment in crops. Here, we present current knowledge on the basic biology, the functional evolution, the dynamic regulation, and the metabolic engineering of PSY. We also discuss the open questions and gaps to stimulate additional research on this most studied gene/enzyme in the carotenogenic pathway.

SELECTION OF CITATIONS
SEARCH DETAIL