Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nature ; 556(7701): 332-338, 2018 04.
Article in English | MEDLINE | ID: mdl-29643512

ABSTRACT

Innate immune memory is a vital mechanism of myeloid cell plasticity that occurs in response to environmental stimuli and alters subsequent immune responses. Two types of immunological imprinting can be distinguished-training and tolerance. These are epigenetically mediated and enhance or suppress subsequent inflammation, respectively. Whether immune memory occurs in tissue-resident macrophages in vivo and how it may affect pathology remains largely unknown. Here we demonstrate that peripherally applied inflammatory stimuli induce acute immune training and tolerance in the brain and lead to differential epigenetic reprogramming of brain-resident macrophages (microglia) that persists for at least six months. Strikingly, in a mouse model of Alzheimer's pathology, immune training exacerbates cerebral ß-amyloidosis and immune tolerance alleviates it; similarly, peripheral immune stimulation modifies pathological features after stroke. Our results identify immune memory in the brain as an important modifier of neuropathology.


Subject(s)
Brain/immunology , Brain/pathology , Immunity, Innate , Immunologic Memory , Nervous System Diseases/immunology , Nervous System Diseases/pathology , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Amyloidosis/immunology , Amyloidosis/pathology , Animals , Disease Models, Animal , Epigenesis, Genetic , Female , Gene Expression Regulation/immunology , Humans , Immune Tolerance , Inflammation/genetics , Inflammation/immunology , Male , Mice , Microglia/immunology , Microglia/metabolism , Stroke/immunology , Stroke/pathology
2.
J Neurochem ; 149(5): 562-581, 2019 06.
Article in English | MEDLINE | ID: mdl-30702751

ABSTRACT

This review discusses the profound connection between microglia, neuroinflammation, and Alzheimer's disease (AD). Theories have been postulated, tested, and modified over several decades. The findings have further bolstered the belief that microglia-mediated inflammation is both a product and contributor to AD pathology and progression. Distinct microglia phenotypes and their function, microglial recognition and response to protein aggregates in AD, and the overall role of microglia in AD are areas that have received considerable research attention and yielded significant results. The following article provides a historical perspective of microglia, a detailed discussion of multiple microglia phenotypes including dark microglia, and a review of a number of areas where microglia intersect with AD and other pathological neurological processes. The overall breadth of important discoveries achieved in these areas significantly strengthens the hypothesis that neuroinflammation plays a key role in AD. Future determination of the exact mechanisms by which microglia respond to, and attempt to mitigate, protein aggregation in AD may lead to new therapeutic strategies.


Subject(s)
Alzheimer Disease/immunology , Inflammation/immunology , Microglia/immunology , Nerve Degeneration/immunology , Alzheimer Disease/pathology , Animals , Humans , Microglia/metabolism , Nerve Degeneration/pathology
3.
Blood ; 122(15): 2743-50, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-23982176

ABSTRACT

Since the discovery of warfarin-sensitive vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1), 26 human VKORC1 (hVKORC1) missense mutations have been associated with oral anticoagulant resistance (OACR). Assessment of warfarin resistance using the "classical" dithiothreitol-driven vitamin K 2,3-epoxide reductase (VKOR) assay has not reflected clinical resistance phenotypes for most mutations. Here, we present half maximal inhibitory concentrations (IC50) results for 21 further hVKORC1 mutations obtained using a recently validated cell-based assay (J Thromb Haemost 11(5):872). In contrast to results from the dithiothreitol-driven VKOR assay, all mutations exhibited basal VKOR activity and warfarin IC50 values that correspond well to patient OACR phenotypes. Thus, the present assay is useful for functional investigations of VKORC1 and oral anticoagulant inhibition of the vitamin K cycle. Additionally, we modeled hVKORC1 on the previously solved structure of a homologous bacterial enzyme and performed in silico docking of warfarin on this model. We identified one binding site delineated by 3 putative binding interfaces. These interfaces comprise linear sequences of the endoplasmic reticulum-lumenal loop (Ser52-Phe55) and the first (Leu22-Lys30) and fourth (Phe131-Thr137) transmembrane helices. All known OACR-associated hVKORC1 mutations are located in or around these putative interfaces, supporting our model.


Subject(s)
4-Hydroxycoumarins/pharmacology , Drug Resistance/genetics , Models, Chemical , Vitamin K Epoxide Reductases/genetics , Warfarin/pharmacology , Anticoagulants/pharmacology , Binding Sites/genetics , HEK293 Cells , Humans , Inhibitory Concentration 50 , Mutation, Missense , Protein Binding/genetics , Vitamin K Epoxide Reductases/chemistry , Vitamin K Epoxide Reductases/metabolism
4.
Mol Neurodegener ; 19(1): 64, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238030

ABSTRACT

BACKGROUND: Microglial activation is one hallmark of Alzheimer disease (AD) neuropathology but the impact of the regional interplay of microglia cells in the brain is poorly understood. We hypothesized that microglial activation is regionally synchronized in the healthy brain but experiences regional desynchronization with ongoing neurodegenerative disease. We addressed the existence of a microglia connectome and investigated microglial desynchronization as an AD biomarker. METHODS: To validate the concept, we performed microglia depletion in mice to test whether interregional correlation coefficients (ICCs) of 18 kDa translocator protein (TSPO)-PET change when microglia are cleared. Next, we evaluated the influence of dysfunctional microglia and AD pathophysiology on TSPO-PET ICCs in the mouse brain, followed by translation to a human AD-continuum dataset. We correlated a personalized microglia desynchronization index with cognitive performance. Finally, we performed single-cell radiotracing (scRadiotracing) in mice to ensure the microglial source of the measured desynchronization. RESULTS: Microglia-depleted mice showed a strong ICC reduction in all brain compartments, indicating microglia-specific desynchronization. AD mouse models demonstrated significant reductions of microglial synchronicity, associated with increasing variability of cellular radiotracer uptake in pathologically altered brain regions. Humans within the AD-continuum indicated a stage-depended reduction of microglia synchronicity associated with cognitive decline. scRadiotracing in mice showed that the increased TSPO signal was attributed to microglia. CONCLUSION: Using TSPO-PET imaging of mice with depleted microglia and scRadiotracing in an amyloid model, we provide first evidence that a microglia connectome can be assessed in the mouse brain. Microglia synchronicity is closely associated with cognitive decline in AD and could serve as an independent personalized biomarker for disease progression.


Subject(s)
Alzheimer Disease , Brain , Cognitive Dysfunction , Microglia , Animals , Microglia/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Cognitive Dysfunction/metabolism , Humans , Brain/metabolism , Brain/pathology , Disease Models, Animal , Positron-Emission Tomography , Receptors, GABA/metabolism , Male , Mice, Transgenic , Connectome/methods , Female
5.
Nat Neurosci ; 20(10): 1371-1376, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28846081

ABSTRACT

To clarify the role of microglia in brain homeostasis and disease, an understanding of their maintenance, proliferation and turnover is essential. The lifespan of brain microglia, however, remains uncertain, and reflects confounding factors in earlier assessments that were largely indirect. We genetically labeled single resident microglia in living mice and then used multiphoton microscopy to monitor these cells over time. Under homeostatic conditions, we found that neocortical resident microglia were long-lived, with a median lifetime of well over 15 months; thus, approximately half of these cells survive the entire mouse lifespan. While proliferation of resident neocortical microglia under homeostatic conditions was low, microglial proliferation in a mouse model of Alzheimer's ß-amyloidosis was increased threefold. The persistence of individual microglia throughout the mouse lifespan provides an explanation for how microglial priming early in life can induce lasting functional changes and how microglial senescence may contribute to age-related neurodegenerative diseases.


Subject(s)
Aging/physiology , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Microglia/cytology , Microglia/physiology , Single-Cell Analysis , Animals , Cell Death , Cell Proliferation , Kaplan-Meier Estimate , Mice , Mice, Transgenic , Microglia/pathology , Microscopy, Fluorescence, Multiphoton , Neocortex/physiology , Plaque, Amyloid/pathology
SELECTION OF CITATIONS
SEARCH DETAIL