Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Int J Plant Sci ; 161(2): 195-201, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10777442

ABSTRACT

The water content of germinating seeds fluctuates in response to water potential changes in the surrounding environment. We tested the hypothesis that the endosperm functions as a water reservoir when imbibed seeds experience drying, and we characterized water uptake and movement within barley (Hordeum vulgare cv. Triumph) caryopses (hereafter referred to as seeds). Water movement into and through germinating barley seeds during imbibition and drying was determined gravimetrically and with the fluorescent dye trisodium 8-hydroxy-1,3,6-pyrenetrisulfonate (PTS). During imbibition, embryo tissues hydrated more rapidly and reached a higher water content (g H20/g dry weight) than did the endosperm, although the endosperm eventually contained nine times as much total water. When barley seeds that had imbibed for 12 h were exposed to moderate (-4 MPa) drying, PTS solution moved from the endosperm into the shoot meristem, radicle, and scutellum, but not vice versa. Radicle emergence and elongation proceeded for up to 8 h. With harsh (-150 MPa) drying, PTS concentrated almost exclusively in the radicle. These data illustrate that the endosperm is at least a temporary water storage compartment external to the embryo itself. We speculate that water supplied by the endosperm may be important in reducing the harmful effects of drying during the critical transition period when a germinating seed changes from a desiccation-tolerant to a desiccation-intolerant organism.

SELECTION OF CITATIONS
SEARCH DETAIL