Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Genes Dev ; 35(11-12): 847-869, 2021 06.
Article in English | MEDLINE | ID: mdl-34016693

ABSTRACT

ASCL1 is a neuroendocrine lineage-specific oncogenic driver of small cell lung cancer (SCLC), highly expressed in a significant fraction of tumors. However, ∼25% of human SCLC are ASCL1-low and associated with low neuroendocrine fate and high MYC expression. Using genetically engineered mouse models (GEMMs), we show that alterations in Rb1/Trp53/Myc in the mouse lung induce an ASCL1+ state of SCLC in multiple cells of origin. Genetic depletion of ASCL1 in MYC-driven SCLC dramatically inhibits tumor initiation and progression to the NEUROD1+ subtype of SCLC. Surprisingly, ASCL1 loss promotes a SOX9+ mesenchymal/neural crest stem-like state and the emergence of osteosarcoma and chondroid tumors, whose propensity is impacted by cell of origin. ASCL1 is critical for expression of key lineage-related transcription factors NKX2-1, FOXA2, and INSM1 and represses genes involved in the Hippo/Wnt/Notch developmental pathways in vivo. Importantly, ASCL1 represses a SOX9/RUNX1/RUNX2 program in vivo and SOX9 expression in human SCLC cells, suggesting a conserved function for ASCL1. Together, in a MYC-driven SCLC model, ASCL1 promotes neuroendocrine fate and represses the emergence of a SOX9+ nonendodermal stem-like fate that resembles neural crest.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , SOX9 Transcription Factor/genetics , Small Cell Lung Carcinoma/genetics , Animals , Animals, Genetically Modified , Disease Models, Animal , Gene Expression Regulation, Neoplastic/genetics , Humans , Mice , Neural Crest/cytology , Small Cell Lung Carcinoma/physiopathology , Stem Cells/cytology
2.
Nat Commun ; 10(1): 3485, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375684

ABSTRACT

MYC paralogs are frequently activated in small cell lung cancer (SCLC) but represent poor drug targets. Thus, a detailed mapping of MYC-paralog-specific vulnerabilities may help to develop effective therapies for SCLC patients. Using a unique cellular CRISPR activation model, we uncover that, in contrast to MYCN and MYCL, MYC represses BCL2 transcription via interaction with MIZ1 and DNMT3a. The resulting lack of BCL2 expression promotes sensitivity to cell cycle control inhibition and dependency on MCL1. Furthermore, MYC activation leads to heightened apoptotic priming, intrinsic genotoxic stress and susceptibility to DNA damage checkpoint inhibitors. Finally, combined AURK and CHK1 inhibition substantially prolongs the survival of mice bearing MYC-driven SCLC beyond that of combination chemotherapy. These analyses uncover MYC-paralog-specific regulation of the apoptotic machinery with implications for genotype-based selection of targeted therapeutics in SCLC patients.


Subject(s)
Apoptosis/genetics , Gene Expression Regulation, Neoplastic/genetics , Lung Neoplasms/genetics , Proto-Oncogene Proteins c-myc/metabolism , Small Cell Lung Carcinoma/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , CRISPR-Cas Systems/genetics , Cell Line, Tumor , DNA Damage/drug effects , DNA Damage/genetics , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Lung Neoplasms/drug therapy , Mice , Molecular Targeted Therapy/methods , Proto-Oncogene Proteins c-myc/genetics , RNA, Small Interfering/metabolism , Small Cell Lung Carcinoma/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL