Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 313(6): L1069-L1086, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28912382

ABSTRACT

Growing evidence suggests that versican is important in the innate immune response to lung infection. Our goal was to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. We first defined the signaling events that regulate versican expression, using bone marrow-derived macrophages (BMDMs) from mice lacking specific Toll-like receptors (TLRs), TLR adaptor molecules, or the type I interferon receptor (IFNAR1). We show that LPS and polyinosinic-polycytidylic acid [poly(I:C)] trigger a signaling cascade involving TLR3 or TLR4, the Trif adaptor, type I interferons, and IFNAR1, leading to increased expression of versican by macrophages and implicating versican as an interferon-stimulated gene. The signaling events regulating versican are distinct from those for hyaluronan synthase 1 (HAS1) and syndecan-4 in macrophages. HAS1 expression requires TLR2 and MyD88. Syndecan-4 requires TLR2, TLR3, or TLR4 and both MyD88 and Trif. Neither HAS1 nor syndecan-4 is dependent on type I interferons. The importance of macrophage-derived versican in lungs was determined with LysM/Vcan-/- mice. These studies show increased recovery of inflammatory cells in the bronchoalveolar lavage fluid of poly(I:C)-treated LysM/Vcan-/- mice compared with control mice. IFN-ß and IL-10, two important anti-inflammatory molecules, are significantly decreased in both poly(I:C)-treated BMDMs from LysM/Vcan-/- mice and bronchoalveolar lavage fluid from poly(I:C)-treated LysM/Vcan-/- mice compared with control mice. In short, type I interferon signaling regulates versican expression, and versican is necessary for type I interferon production. These findings suggest that macrophage-derived versican is an immunomodulatory molecule with anti-inflammatory properties in acute pulmonary inflammation.


Subject(s)
Adaptor Proteins, Vesicular Transport/immunology , Immunity, Innate , Interferon-beta/immunology , Lung/immunology , Macrophages, Alveolar/immunology , Versicans/immunology , Adaptor Proteins, Vesicular Transport/genetics , Animals , Hyaluronan Synthases/genetics , Hyaluronan Synthases/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Lipopolysaccharides/toxicity , Mice , Mice, Knockout , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/immunology , Syndecan-4/genetics , Syndecan-4/immunology , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Versicans/genetics
2.
Article in English | MEDLINE | ID: mdl-36714285

ABSTRACT

Objectives: To review methodologies and outcomes reporting among these studies and to develop a conceptual framework of outcomes to assist in guiding studies and production of clinical metrics. Data sources: PubMed and Embase from January 1, 2012, thru December 1, 2021. Study eligibility criteria: Studies evaluating highly multiplex molecular respiratory diagnostics and their impact on either clinical or economic outcomes. Methods: A systematic literature review (SLR) of methodologies and outcomes reporting was performed. A qualitative synthesis of identified SLRs and associated primary studies was conducted to develop conceptual framework for outcomes. Results: Ultimately, 4 systemic literature reviews and their 12 associated primary studies were selected for review. Most primary studies included patient outcomes focusing on antimicrobial exposure changes such as antibiotic (80%) and antiviral use (50%) or occupancy changes such as hospital length of stay (60%). Economic outcomes were infrequently reported, and societal outcomes, such as antibiotic resistance impact, were absent from the reviewed literature. Qualitative evidence synthesis of reported outcomes yielded a conceptual framework of outcomes to include operational, patient, economic, and societal domains. Conclusions: Our review highlights the significant heterogeneity in outcomes reporting among clinical impact studies for highly multiplex molecular respiratory diagnostics. Furthermore, we developed a conceptual framework of outcomes domains that may act as a guide to improve considerations in outcomes selection and reporting when evaluating clinical impact of these tests. These improvements may be important in synthesizing the evidence for informing clinical decision making, guidelines, and financial reimbursement.

3.
J Infect ; 86(5): 462-475, 2023 05.
Article in English | MEDLINE | ID: mdl-36906153

ABSTRACT

OBJECTIVES: The clinical impact of rapid sample-to-answer "syndromic" multiplex polymerase chain reaction (PCR) testing for respiratory viruses is not clearly established. We performed a systematic literature review and meta-analysis to evaluate this impact for patients with possible acute respiratory tract infection in the hospital setting. METHODS: We searched EMBASE, MEDLINE, and Cochrane databases from 2012 to present and conference proceedings from 2021 for studies comparing clinical impact outcomes between multiplex PCR testing and standard testing. RESULTS: Twenty-seven studies with 17,321 patient encounters were included in this review. Rapid multiplex PCR testing was associated with a reduction of - 24.22 h (95% CI -28.70 to -19.74 h) in the time to results. Hospital length of stay was decreased by -0.82 days (95% CI -1.52 to -0.11 days). Among influenza positive patients, antivirals were more likely to be given (RR 1.25, 95% CI 1.06-1.48) and appropriate infection control facility use was more common with rapid multiplex PCR testing (RR 1.55, 95% CI 1.16-2.07). CONCLUSIONS: Our systematic review and meta-analysis demonstrates a reduction in time to results and length of stay for patients overall along with improvements in appropriate antiviral and infection control management among influenza-positive patients. This evidence supports the routine use of rapid sample-to-answer multiplex PCR testing for respiratory viruses in the hospital setting.


Subject(s)
Influenza, Human , Respiratory Tract Infections , Viruses , Humans , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Multiplex Polymerase Chain Reaction/methods , Viruses/genetics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , Antiviral Agents/therapeutic use
4.
ACS Appl Bio Mater ; 4(6): 4936-4945, 2021 06 21.
Article in English | MEDLINE | ID: mdl-35007042

ABSTRACT

Infection is the second leading cause of failure of orthopedic implants following incomplete osseointegration. Materials that increase the antimicrobial properties of surfaces while maintaining the ability for bone cells to attach and proliferate could reduce the failure rates of orthopedic implants. In this study, titania nanotubes (Nts) were modified with chitosan/heparin polyelectrolyte multilayers (PEMs) for gentamicin delivery. The antimicrobial activity of the surfaces was tested by coculturing bacteria with mammalian cells. Over 60% of gentamicin remained on the surface after an initial burst release on the first day. Antimicrobial activity of these surfaces was determined by exposure to Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) for up to 24 h. Gentamicin surfaces had less live E. coli and S. aureus by 6 h and less E. coli by 24 h compared to Nt surfaces. S. aureus and human adipose-derived stem cells (hADSCs) were cocultured on surfaces for up to 7 days to characterize the so-called "race to the surface" between bacteria and mammalian cells, which is hypothesized to ultimately determine the outcome of orthopedic implants. By day 7, there was no significant difference in bacteria between surfaces with gentamicin adsorbed on the surface and surfaces with gentamicin in solution. However, gentamicin delivered in solution is toxic to hADSCs. Alternatively, gentamicin presented from PEMs enhances the antimicrobial properties of the surfaces without inhibiting hADSC attachment and cell growth. Delivering gentamicin from the surfaces is therefore superior to delivering gentamicin in solution and represents a strategy that could improve the antimicrobial activity of orthopedic implants and reduce risk of failure due to infection, without reducing mammalian cell attachment.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Escherichia coli/drug effects , Gentamicins/administration & dosage , Mesenchymal Stem Cells/drug effects , Nanotubes , Staphylococcus aureus/drug effects , Titanium/administration & dosage , Anti-Bacterial Agents/chemistry , Cells, Cultured , Coculture Techniques , Drug Liberation , Gentamicins/chemistry , Humans , Nanotubes/chemistry , Titanium/chemistry
5.
J Biomed Mater Res A ; 109(7): 1173-1182, 2021 07.
Article in English | MEDLINE | ID: mdl-32985077

ABSTRACT

Incomplete osseointegration is primary cause of failure for orthopedic implants. New biomaterials that present stable signals promoting osteogenesis could reduce failure rates of orthopedic implants. In this study bone morphogenetic protein-2 (BMP-2) was delivered from titania nanotubes (Nt) modified with chitosan/heparin polyelectrolyte multilayers (PEMs). The surfaces were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. BMP-2 release from the surfaces was measured in vitro for up to 28 days. After an initial burst release of BMP-2 during the first 2 days, most of the BMP-2 remained on the surface. To determine the osteogenic properties of these surfaces, they were seeded with rat bone marrow cells; alkaline phosphatase (ALP) activity, total protein, calcium deposition, and osteocalcin were measured up to 4 weeks in vitro. When compared to Nt surfaces, the surfaces with BMP-2 induce greater osteocalcin and calcium deposition. PEMs provide sustained presentation of BMP-2, from a biomimetic surface. This enhances the osteogenic properties of the surface without requiring supraphysiologic growth factor dose. This growth factor delivery strategy could be used to improve bone healing outcomes and reduce complications for recipients of orthopedic implants.


Subject(s)
Bone Morphogenetic Protein 2/administration & dosage , Nanostructures/chemistry , Osteogenesis/drug effects , Titanium/chemistry , Animals , Biocompatible Materials/chemistry , Bone Morphogenetic Protein 2/pharmacology , Cells, Cultured , Drug Carriers/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL