Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
J Biol Chem ; 300(1): 105529, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043796

ABSTRACT

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea worldwide with significant morbidity and mortality. This organism is naturally resistant to several beta-lactam antibiotics that inhibit the polymerization of peptidoglycan, an essential component of the bacteria cell envelope. Previous work has revealed that C. difficile peptidoglycan has an unusual composition. It mostly contains 3-3 cross-links, catalyzed by enzymes called L,D-transpeptidases (Ldts) that are poorly inhibited by beta-lactams. It was therefore hypothesized that peptidoglycan polymerization by these enzymes could underpin antibiotic resistance. Here, we investigated the catalytic activity of the three canonical Ldts encoded by C. difficile (LdtCd1, LdtCd2, and LdtCd3) in vitro and explored their contribution to growth and antibiotic resistance. We show that two of these enzymes catalyze the formation of novel types of peptidoglycan cross-links using meso-diaminopimelic acid both as a donor and an acceptor, also observed in peptidoglycan sacculi. We demonstrate that the simultaneous deletion of these three genes only has a minor impact on both peptidoglycan structure and resistance to beta-lactams. This unexpected result therefore implies that the formation of 3-3 peptidoglycan cross-links in C. difficile is catalyzed by as yet unidentified noncanonical Ldt enzymes.


Subject(s)
Bacterial Proteins , Clostridioides difficile , Peptidoglycan , Peptidyl Transferases , Bacterial Proteins/chemistry , beta-Lactam Resistance , beta-Lactams/pharmacology , Catalysis , Clostridioides difficile/enzymology , Clostridioides difficile/genetics , Peptidoglycan/chemistry , Peptidyl Transferases/chemistry , Peptidyl Transferases/genetics
2.
Biochem J ; 479(13): 1429-1439, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35726678

ABSTRACT

When the 'CO-releasing molecule-3', CORM-3 (Ru(CO)3Cl(glycinate)), is dissolved in water it forms a range of ruthenium complexes. These are taken up by cells and bind to intracellular ligands, notably thiols such as cysteine and glutathione, where the Ru(II) reaches high intracellular concentrations. Here, we show that the Ru(II) ion also binds to DNA, at exposed guanosine N7 positions. It therefore has a similar cellular target to the anticancer drug cisplatin, but not identical, because Ru(II) shows no evidence of forming intramolecular crossbridges in the DNA. The reaction is slow, and with excess Ru, intermolecular DNA crossbridges are formed. The addition of CORM-3 to human colorectal cancer cells leads to strand breaks in the DNA, as assessed by the alkaline comet assay. DNA damage is inhibited by growth media containing amino acids, which bind to extracellular Ru and prevent its entry into cells. We conclude that the cytotoxicity of Ru(II) is different from that of platinum, making it a promising development target for cancer therapeutics.


Subject(s)
Antineoplastic Agents , Neoplasms , Ruthenium , Antineoplastic Agents/chemistry , DNA , DNA Damage , Humans , Ruthenium/chemistry , Ruthenium/metabolism , Ruthenium/pharmacology
3.
J Biomol NMR ; 76(4): 153-163, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35921001

ABSTRACT

We have carried out chemical shift perturbation titrations on three contrasting proteins. The resulting chemical shifts have been analysed to determine the best way to fit the data, and it is concluded that a simultaneous fitting of all raw shift data to a single dissociation constant is both the most accurate and the most precise method. It is shown that the optimal weighting of 15N chemical shifts to 1H chemical shifts is protein dependent, but is around the consensus value of 0.14. We show that chemical shift changes of individual residues can be fit to give residue-specific affinities. Residues with affinities significantly stronger than average are found in close contact with the ligand and are suggested to form a rigid contact surface, but only when the binding involves little conformational change. This observation may be of value in analysing binding and conformational change.


Subject(s)
Magnetic Resonance Imaging , Proteins , Ligands , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Proteins/chemistry
4.
Nat Chem Biol ; 16(1): 24-30, 2020 01.
Article in English | MEDLINE | ID: mdl-31686030

ABSTRACT

Lysostaphin is a bacteriolytic enzyme targeting peptidoglycan, the essential component of the bacterial cell envelope. It displays a very potent and specific activity toward staphylococci, including methicillin-resistant Staphylococcus aureus. Lysostaphin causes rapid cell lysis and disrupts biofilms, and is therefore a therapeutic agent of choice to eradicate staphylococcal infections. The C-terminal SH3b domain of lysostaphin recognizes peptidoglycans containing a pentaglycine crossbridge and has been proposed to drive the preferential digestion of staphylococcal cell walls. Here we elucidate the molecular mechanism underpinning recognition of staphylococcal peptidoglycan by the lysostaphin SH3b domain. We show that the pentaglycine crossbridge and the peptide stem are recognized by two independent binding sites located on opposite sides of the SH3b domain, thereby inducing a clustering of SH3b domains. We propose that this unusual binding mechanism allows synergistic and structurally dynamic recognition of S. aureus peptidoglycan and underpins the potent bacteriolytic activity of this enzyme.


Subject(s)
Lysostaphin/chemistry , Peptidoglycan/chemistry , Staphylococcus aureus/chemistry , Bacteriolysis/drug effects , Biofilms , Cell Wall/chemistry , Chromatography, High Pressure Liquid , DNA Mutational Analysis , Glycine/chemistry , Ligands , Magnetic Resonance Spectroscopy , Mutagenesis, Site-Directed , Peptides/chemistry , Protein Binding , Protein Domains , Recombinant Proteins/chemistry , src Homology Domains
5.
PLoS Pathog ; 15(5): e1007730, 2019 05.
Article in English | MEDLINE | ID: mdl-31048927

ABSTRACT

Enterococcus faecalis is an opportunistic pathogen with an intrinsically high resistance to lysozyme, a key effector of the innate immune system. This high level of resistance requires a complex network of transcriptional regulators and several genes (oatA, pgdA, dltA and sigV) acting synergistically to inhibit both the enzymatic and cationic antimicrobial peptide activities of lysozyme. We sought to identify novel genes modulating E. faecalis resistance to lysozyme. Random transposon mutagenesis carried out in the quadruple oatA/pgdA/dltA/sigV mutant led to the identification of several independent insertions clustered on the chromosome. These mutations were located in a locus referred to as the enterococcal polysaccharide antigen (EPA) variable region located downstream of the highly conserved epaA-epaR genes proposed to encode a core synthetic machinery. The epa variable region was previously proposed to be responsible for EPA decorations, but the role of this locus remains largely unknown. Here, we show that EPA decoration contributes to resistance towards charged antimicrobials and underpins virulence in the zebrafish model of infection by conferring resistance to phagocytosis. Collectively, our results indicate that the production of the EPA rhamnopolysaccharide backbone is not sufficient to promote E. faecalis infections and reveal an essential role of the modification of this surface polymer for enterococcal pathogenesis.


Subject(s)
Antigens, Surface/immunology , Enterococcus faecalis/pathogenicity , Gram-Positive Bacterial Infections/immunology , Gram-Positive Bacterial Infections/microbiology , Muramidase/immunology , Polysaccharides/immunology , Virulence , Animals , Antigens, Surface/genetics , Antigens, Surface/metabolism , Antimicrobial Cationic Peptides/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enterococcus faecalis/genetics , Enterococcus faecalis/immunology , Gram-Positive Bacterial Infections/metabolism , Muramidase/metabolism , Mutagenesis , Mutation , Polysaccharides/metabolism , Zebrafish/growth & development , Zebrafish/immunology , Zebrafish/microbiology
6.
J Am Chem Soc ; 141(11): 4644-4652, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30799603

ABSTRACT

Herein we report the separation of the three stereoisomers of the DNA light-switch compound [{Ru(bpy)2}2(tpphz)]4+ (tpphz = tetrapyrido[3,2-a:2',3'-c:3″,2″-h:2‴,3‴-j]phenazine) by column chromatography and the characterization of each stereoisomer by X-ray crystallography. The interaction of these compounds with a DNA octanucleotide d(GCATATCG).d(CGATATGC) has been studied using NMR techniques. Selective deuteration of the bipyridyl rings was needed to provide sufficient spectral resolution to characterize structures. NMR-derived structures for these complexes show a threading intercalation binding mode with slow and chirality-dependent rates. This represents the first solution structure of an intercalated bis-ruthenium ligand. Intriguingly, we find that the binding site selectivity is dependent on the nature of the stereoisomer employed, with Λ RuII centers showing a better intercalation fit.


Subject(s)
DNA, B-Form/chemistry , Intercalating Agents/chemistry , Organometallic Compounds/chemistry , Pyridines/chemistry , Ruthenium/chemistry , Base Sequence , DNA, B-Form/genetics , Kinetics , Models, Molecular , Nucleic Acid Conformation , Stereoisomerism
7.
Subcell Biochem ; 72: 109-27, 2015.
Article in English | MEDLINE | ID: mdl-26174379

ABSTRACT

Hydrostatic pressure leads to nonuniform compression of proteins. The structural change is on average only about 0.1 Å kbar(-1), and is therefore within the range of fluctuations at ambient pressure. The largest changes are around cavities and buried water molecules. Sheets distort much more than helices. Hydrogen bonds compress about 0.012 Å kbar(-1), although there is a wide range, including some hydrogen bonds that lengthen. In the presence of ligands and inhibitors, structural changes are smaller. Pressure has little effect on rapid fluctuations, but with larger scale slower motions, pressure increases the population of excited states (if they have smaller overall volume), and slows the fluctuations. In barnase, pressure is shown to be a useful way to characterise fluctuations on the timescale of microseconds, and helps to show that fluctuations in barnase are hierarchical, with the faster fluctuations providing a platform for the slower ones. The excited states populated at high pressure are probably functionally important.


Subject(s)
Hydrostatic Pressure , Protein Conformation , Protein Folding
8.
Biochemistry ; 53(3): 447-9, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24401037

ABSTRACT

We present the nuclear Overhauser effect-based structure determination of the Q41N variant of ubiquitin at 2500 bar, where the alternatively folded N2 state is 97% populated. This allows us to characterize the structure of the "pure" N2 state of ubiquitin. The N2 state shows a substantial change in the orientation of strand ß5 compared to that of the normal folded N1 state, which matches the changes seen upon binding of ubiquitin to ubiquitin-activating enzyme E1. The recognition of E1 by ubiquitin is therefore best explained by conformational selection rather than induced-fit motion.


Subject(s)
Protein Folding , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Ubiquitin/genetics , Ubiquitin/metabolism
9.
Life (Basel) ; 14(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38792611

ABSTRACT

Darwin's theory of evolution by natural selection was revolutionary because it provided a mechanism by which variation could be selected. This mechanism can only operate on living systems and thus cannot be applied to the origin of life. Here, we propose a viable alternative mechanism for prebiotic systems: autocatalytic selection, in which molecules catalyze reactions and processes that lead to increases in their concentration. Crucially, this provides a driver for increases in concentrations of molecules to a level that permits prebiotic metabolism. We show how this can produce high levels of amino acids, sugar phosphates, nucleotides and lipids and then lead on to polymers. Our outline is supported by a set of guidelines to support the identification of the most likely prebiotic routes. Most of the steps in this pathway are already supported by experimental results. These proposals generate a coherent and viable set of pathways that run from established Hadean geochemistry to the beginning of life.

10.
Commun Chem ; 7(1): 44, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418894

ABSTRACT

Protein solubility and stability depend on the co-solutes present. There is little theoretical basis for selection of suitable co-solutes. Some guidance is provided by the Hofmeister series, an empirical ordering of anions according to their effect on solubility and stability; and by osmolytes, which are small organic molecules produced by cells to allow them to function in stressful environments. Here, NMR titrations of the protein barnase with Hofmeister anions and osmolytes are used to measure and locate binding, and thus to separate binding and bulk solvent effects. We describe a rationalisation of Hofmeister (and inverse Hofmeister) effects, which is similar to the traditional chaotrope/kosmotrope idea but based on solvent fluctuation rather than water withdrawal, and characterise how co-solutes affect protein stability and solubility, based on solvent fluctuations. This provides a coherent explanation for solute effects, and points towards a more rational basis for choice of excipients.

11.
Life (Basel) ; 13(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37109384

ABSTRACT

Our understanding of protein binding interactions has matured significantly over the last few years, largely as a result of trying to make sense of the binding interactions of intrinsically disordered proteins. Here, we bring together some disparate ideas that have largely developed independently, and show that they can be linked into a coherent picture that provides insight into quantitative aspects of protein interactions, in particular that transient protein interactions are often optimised for speed, rather than tight binding.

12.
Int J Biol Macromol ; 245: 125537, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37379946

ABSTRACT

Silk fibroin (SF) fiber from the silkworm Bombyx mori in the Silk II form has been used as an excellent textile fiber for over 5000 years. Recently it has been developed for a range of biomedical applications. Further expansion of these uses builds on the excellent mechanical strength of SF fiber, which derives from its structure. This relationship between strength and SF structure has been studied for over 50 years, but it is still not well understood. In this review, we report the use of solid-state NMR to study stable-isotope labeled SF fiber and stable-isotope labeled peptides including (Ala-Gly)15 and (Ala-Gly-Ser-Gly-Ala-Gly)5 as models of the crystalline fraction. We show that the crystalline fraction is a lamellar structure with a repetitive folding using ß-turns every eighth amino acid, and that the sidechains adopt an antipolar arrangement rather than the more well-known polar structure described by Marsh, Corey and Pauling (that is, the Ala methyls in each layer point in opposite directions in alternate strands). The amino acids Ser, Tyr and Val are the next most common in B. mori SF after Gly and Ala, and occur in the crystalline and semi-crystalline regions, probably defining the edges of the crystalline region. Thus, we now have an understanding of the main features of Silk II but there is still a long way to go.


Subject(s)
Bombyx , Fibroins , Animals , Fibroins/chemistry , Bombyx/chemistry , Amino Acid Sequence , Silk/chemistry , Magnetic Resonance Spectroscopy , Amino Acids
13.
Saudi J Biol Sci ; 30(2): 103526, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36568411

ABSTRACT

The WxL domain is found on the cell surface of many bacteria, most of which are commensal gut bacteria. Its functions are generally identified as being related to virulence and/or peptidoglycan attachment, but there is so far no clear function or structure for this domain. Here, a range of bioinformatics tools were used to clarify the structure and function. These indicate that WxL domains occur in cell surface-associated gene clusters that always contain a small WxL, large WxL and DUF916 domain; and that the small and large WxL proteins have distinct structure despite sharing two conserved WxL motifs. The two WxL motifs form a hydrophobic surface buried inside the protein. The likely function of the WxL domain is to attach to bacterial peptidoglycan, forming a platform to allow associated domains in the cluster to interact with host proteins.

14.
Protein Sci ; 32(11): e4806, 2023 11.
Article in English | MEDLINE | ID: mdl-37833244

ABSTRACT

Bacterial WxL proteins contain peptidoglycan-binding WxL domains, which have a dual Trp-x-Leu motif and are involved in virulence. It was recently shown that WxL proteins occur in gene clusters, containing typically a small WxL protein (which in the mature protein consists only of a WxL domain), a large WxL protein (which contains a C-terminal WxL domain with N-terminal host-binding domains), and a conserved protein annotated as a Domain of Unknown Function (DUF). Here we analyze this DUF and show that it contains two tandem domains-DUF916 and DUF3324-which both have an IgG-like fold and together form a single functional unit, connected to a C-terminal transmembrane helix. DUF3324 is a stable domain, while DUF916 is less stable and is likely to require a stabilizing interaction with WxL. The protein is suggested to have an important role to bind and stabilize WxL on the peptidoglycan surface, via the DUF916 domain, and to bind to host cells via the DUF3324 domain. AlphaFold2 predicts that a ß-hairpin strand from DUF916 inserts into WxL adjacent to its N-terminus. We therefore propose to rename the DUF916-DUF3324 pair as WxL Interacting Protein (WxLIP), with DUF916, DUF3324 and the transmembrane helix forming the first, second and third domains of WxLIP, which we characterize as peptidoglycan binding domain (PGBD), host binding domain (HBD), and transmembrane helix (TMH) respectively.


Subject(s)
Bacterial Proteins , Peptidoglycan , Peptidoglycan/metabolism , Bacterial Proteins/chemistry , Protein Binding , Virulence
15.
Structure ; 31(8): 975-986.e3, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37311460

ABSTRACT

Protein structures calculated using NMR data are less accurate and less well-defined than they could be. Here we use the program ANSURR to show that this deficiency is at least in part due to a lack of hydrogen bond restraints. We describe a protocol to introduce hydrogen bond restraints into the structure calculation of the SH2 domain from SH2B1 in a systematic and transparent way and show that the structures generated are more accurate and better defined as a result. We also show that ANSURR can be used as a guide to know when the structure calculation is good enough to stop.


Subject(s)
src Homology Domains , Protein Conformation , Hydrogen Bonding , Models, Molecular , Magnetic Resonance Spectroscopy
16.
J Biomol NMR ; 52(1): 57-64, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22076570

ABSTRACT

Temperature coefficients have been measured for backbone amide (1)H and (15)N nuclei in the B1 domain of protein G (GB1), using temperatures in the range 283-313 K, and pH values from 2.0 to 9.0. Many nuclei display pH-dependent coefficients, which were fitted to one or two pK(a) values. (1)H coefficients showed the expected behaviour, in that hydrogen-bonded amides have less negative values, but for those amides involved in strong hydrogen bonds in regular secondary structure there is a negative correlation between strength of hydrogen bond and size of temperature coefficient. The best correlation to temperature coefficient is with secondary shift, indicative of a very approximately uniform thermal expansion. The largest pH-dependent changes in coefficient are for amides in loops adjacent to sidechain hydrogen bonds rather than the amides involved directly in hydrogen bonds, indicating that the biggest determinant of the temperature coefficient is temperature-dependent loss of structure, not hydrogen bonding. Amide (15)N coefficients have no clear relationship with structure.


Subject(s)
Bacterial Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Hydrogen-Ion Concentration , Models, Molecular , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Staphylococcus/cytology , Temperature
17.
Biochem Soc Trans ; 40(5): 945-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22988845

ABSTRACT

IDPs (intrinsically disordered proteins) are common in eukaryotic genomes and have regulatory roles. In the cell, they are disordered, although not completely random. They bind weakly, but specifically, often remaining partially disordered even when bound. Whereas folded globular proteins have 'executive' roles in the cell, IDPs have an essential administrative function, making sure that the executive functions are properly co-ordinated. This makes them a good target for pharmaceutical intervention.


Subject(s)
Proteins/chemistry , Proteins/metabolism , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Folding
18.
Structure ; 30(7): 925-933.e2, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35537451

ABSTRACT

In the recent Critical Assessment of Structure Prediction (CASP) competition, AlphaFold2 performed outstandingly. Its worst predictions were for nuclear magnetic resonance (NMR) structures, which has two alternative explanations: either the NMR structures were poor, implying that Alpha-Fold may be more accurate than NMR, or there is a genuine difference between crystal and solution structures. Here, we use the program Accuracy of NMR Structures Using RCI and Rigidity (ANSURR), which measures the accuracy of solution structures, and show that one of the NMR structures was indeed poor. We then compare Alpha-Fold predictions to NMR structures and show that Alpha-Fold tends to be more accurate than NMR ensembles. There are, however, some cases where the NMR ensembles are more accurate. These tend to be dynamic structures, where Alpha-Fold had low confidence. We suggest that Alpha-Fold could be used as the model for NMR-structure refinements and that Alpha-Fold structures validated by ANSURR may require no further refinement.


Subject(s)
Proteins , Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Proteins/chemistry
19.
Access Microbiol ; 4(5): acmi000359, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36003353

ABSTRACT

When grown in high salt concentrations, halophilic bacteria often accumulate compatible solutes, which have major applications in biotechnology because they stabilize cells and proteins. Four Gram-negative bacterial strains, belonging to the family Halomonadaceae, were isolated from Qaberoun and Um-Alma lakes in South Libya using high-salinity medium. The strains were identified using 16S rRNA gene sequencing as belonging to Halomonas pacifica (strain ABQ1), Halomonas venusta (ABQ2), Halomonas elongata (ABU1) and Halomonas salifodinae (ABU2). H. pacifica ABQ1 is a moderate halophile (salinity range 0.05 to 2.5 M NaCl), with a broad tolerance to pH (7 to 9) and temperature (25-37 °C). Addition of the compatible solutes glycine betaine (betaine) and ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid) to the medium had a positive effect on growth of H. pacifica at 2 M NaCl. In rich LB medium, betaine was the major compatible solute accumulated, with ectoine only being accumulated at salinities in excess of 1 M NaCl. In minimal M9 medium, betaine was not produced, but increasing amounts of ectoine were synthesized with increasing salinity, and hydroxyectoine [(4S,5S)-5-hydroxy-2-methyl-1,4,5,6-tetrahydropyrimidine-4-carboxylic acid] was also synthesized when the cells were grown in very high salt. We have thus identified H. pacifica as a producer of ectoine and hydroxyectoine, with more being produced at higher salinities. As industrial demand for these compatible solutes continues to increase, this system has biotechnological potential.

20.
Biomol NMR Assign ; 16(2): 247-251, 2022 10.
Article in English | MEDLINE | ID: mdl-35665899

ABSTRACT

Enterococcus faecalis is a major causative agent of hospital acquired infections. The ability of E. faecalis to evade the host immune system is essential during pathogenesis, which has been shown to be dependent on the complete separation of daughter cells by peptidoglycan hydrolases. AtlE is a peptidoglycan hydrolase which is predicted to bind to the cell wall of E. faecalis, via six C-terminal repeat sequences. Here, we report the near complete assignment of one of these six repeats, as well as the predicted backbone structure and dynamics. This data will provide a platform for future NMR studies to explore the ligand recognition motif of AtlE and help to uncover its potential role in E. faecalis virulence.


Subject(s)
Enterococcus faecalis , N-Acetylmuramoyl-L-alanine Amidase , Bacterial Proteins/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Enterococcus faecalis/chemistry , Enterococcus faecalis/metabolism , Ligands , N-Acetylmuramoyl-L-alanine Amidase/analysis , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Nuclear Magnetic Resonance, Biomolecular , Peptidoglycan/analysis , Peptidoglycan/chemistry , Peptidoglycan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL