Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Plant Biotechnol J ; 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520342

ABSTRACT

High-throughput genotyping arrays have provided a cost-effective, reliable and interoperable system for genotyping hexaploid wheat and its relatives. Existing, highly cited arrays including our 35K Wheat Breeder's array and the Illumina 90K array were designed based on a limited amount of varietal sequence diversity and with imperfect knowledge of SNP positions. Recent progress in wheat sequencing has given us access to a vast pool of SNP diversity, whilst technological improvements have allowed us to fit significantly more probes onto a 384-well format Axiom array than previously possible. Here we describe a novel Axiom genotyping array, the 'Triticum aestivum Next Generation' array (TaNG), largely derived from whole genome skim sequencing of 204 elite wheat lines and 111 wheat landraces taken from the Watkins 'Core Collection'. We used a novel haplotype optimization approach to select SNPs with the highest combined varietal discrimination and a design iteration step to test and replace SNPs which failed to convert to reliable markers. The final design with 43 372 SNPs contains a combination of haplotype-optimized novel SNPs and legacy cross-platform markers. We show that this design has an improved distribution of SNPs compared to previous arrays and can be used to generate genetic maps with a significantly higher number of distinct bins than our previous array. We also demonstrate the improved performance of TaNGv1.1 for Genome-wide association studies (GWAS) and its utility for Copy Number Variation (CNV) analysis. The array is commercially available with supporting marker annotations and initial genotyping results freely available.

2.
Plant Biotechnol J ; 21(2): 405-418, 2023 02.
Article in English | MEDLINE | ID: mdl-36373224

ABSTRACT

Increasing crop yields through plant breeding is time consuming and laborious, with the generation of novel combinations of alleles being limited by chromosomal linkage blocks and linkage-drag. Meiotic recombination is essential to create novel genetic variation via the reshuffling of parental alleles. The exchange of genetic information between homologous chromosomes occurs at crossover (CO) sites but CO frequency is often low and unevenly distributed. This bias creates the problem of linkage-drag in recombination 'cold' regions, where undesirable variation remains linked to useful traits. In plants, programmed meiosis-specific DNA double-strand breaks, catalysed by the SPO11 complex, initiate the recombination pathway, although only ~5% result in the formation of COs. To study the role of SPO11-1 in wheat meiosis, and as a prelude to manipulation, we used CRISPR/Cas9 to generate edits in all three SPO11-1 homoeologues of hexaploid wheat. Characterization of progeny lines shows plants deficient in all six SPO11-1 copies fail to undergo chromosome synapsis, lack COs and are sterile. In contrast, lines carrying a single copy of any one of the three wild-type homoeologues are phenotypically indistinguishable from unedited plants both in terms of vegetative growth and fertility. However, cytogenetic analysis of the edited plants suggests that homoeologues differ in their ability to generate COs and in the dynamics of synapsis. In addition, we show that the transformation of wheat mutants carrying six edited copies of SPO11-1 with the TaSPO11-1B gene, restores synapsis, CO formation, and fertility and hence opens a route to modifying recombination in this agronomically important crop.


Subject(s)
CRISPR-Cas Systems , Triticum , Triticum/genetics , CRISPR-Cas Systems/genetics , Plant Breeding , Chromosomes , Meiosis/genetics
3.
Plant Biotechnol J ; 16(4): 867-876, 2018 04.
Article in English | MEDLINE | ID: mdl-28913866

ABSTRACT

Wheat breeders and academics alike use single nucleotide polymorphisms (SNPs) as molecular markers to characterize regions of interest within the hexaploid wheat genome. A number of SNP-based genotyping platforms are available, and their utility depends upon factors such as the available technologies, number of data points required, budgets and the technical expertise required. Unfortunately, markers can rarely be exchanged between existing and newly developed platforms, meaning that previously generated data cannot be compared, or combined, with more recently generated data sets. We predict that genotyping by sequencing will become the predominant genotyping technology within the next 5-10 years. With this in mind, to ensure that data generated from current genotyping platforms continues to be of use, we have designed and utilized SNP-based capture probes from several thousand existing and publicly available probes from Axiom® and KASP™ genotyping platforms. We have validated our capture probes in a targeted genotyping by sequencing protocol using 31 previously genotyped UK elite hexaploid wheat accessions. Data comparisons between targeted genotyping by sequencing, Axiom® array genotyping and KASP™ genotyping assays, identified a set of 3256 probes which reliably bring together targeted genotyping by sequencing data with the previously available marker data set. As such, these probes are likely to be of considerable value to the wheat community. The probe details, full probe sequences and a custom built analysis pipeline may be freely downloaded from the CerealsDB website (http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/sequence_capture.php).


Subject(s)
Genotyping Techniques/methods , Polymorphism, Single Nucleotide , Triticum/genetics , DNA Probes , Oligonucleotide Array Sequence Analysis , Polyploidy
4.
Plant Biotechnol J ; 16(1): 165-175, 2018 01.
Article in English | MEDLINE | ID: mdl-28500796

ABSTRACT

The importance of wheat as a food crop makes it a major target for agricultural improvements. As one of the most widely grown cereal grains, together with maize and rice, wheat is the leading provider of calories in the global diet, constituting 29% of global cereal production in 2015. In the last few decades, however, yields have plateaued, suggesting that the green revolution, at least for wheat, might have run its course and that new sources of genetic variation are urgently required. The overall aim of our work was to identify novel variation that may then be used to enable the breeding process. As landraces are a potential source of such diversity, here we have characterized the A.E. Watkins Collection alongside a collection of elite accessions using two complementary high-density and high-throughput genotyping platforms. While our results show the importance of using the appropriate SNP collection to compare diverse accessions, they also show that the Watkins Collection contains a substantial amount of novel genetic diversity which has either not been captured in current breeding programmes or which has been lost through previous selection pressures. As a consequence of our analysis, we have identified a number of accessions which carry an array of novel alleles along with a number of interesting chromosome rearrangements which confirm the variable nature of the wheat genome.


Subject(s)
Triticum/genetics , Genome, Plant/genetics , Genotype , Polymorphism, Single Nucleotide/genetics
5.
Biofouling ; 34(4): 464-477, 2018 04.
Article in English | MEDLINE | ID: mdl-29745769

ABSTRACT

The bacterial and eukaryotic communities forming biofilms on six different antifouling coatings, three biocidal and three fouling-release, on boards statically submerged in a marine environment were studied using next-generation sequencing. Sequenced amplicons of bacterial 16S ribosomal DNA and eukaryotic ribosomal DNA internal transcribed spacer were assigned taxonomy by comparison to reference databases and relative abundances were calculated. Differences in species composition, bacterial and eukaryotic, and relative abundance were observed between the biofilms on the various coatings; the main difference was between coating type, biocidal compared to fouling-release. Species composition and relative abundance also changed through time. Thus, it was possible to group replicate samples by coating and time point, indicating that there are fundamental and reproducible differences in biofilms assemblages. The routine use of next-generation sequencing to assess biofilm formation will allow evaluation of the efficacy of various commercial coatings and the identification of targets for novel formulations.


Subject(s)
Bacteria/isolation & purification , Biofilms , Biofouling , Eukaryota/isolation & purification , Bacterial Physiological Phenomena , Eukaryota/physiology , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA
6.
Plant Biotechnol J ; 15(3): 390-401, 2017 03.
Article in English | MEDLINE | ID: mdl-27627182

ABSTRACT

Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism-based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high-density Affymetrix Axiom® genotyping array (the Wheat Breeders' Array), in a high-throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders' Array is also suitable for generating high-density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site 'CerealsDB'.


Subject(s)
Polymorphism, Single Nucleotide/genetics , Triticum/genetics , Genetic Variation/genetics , Genome, Plant/genetics , Genotype
7.
BMC Bioinformatics ; 17: 256, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27342803

ABSTRACT

BACKGROUND: The increase in human populations around the world has put pressure on resources, and as a consequence food security has become an important challenge for the 21st century. Wheat (Triticum aestivum) is one of the most important crops in human and livestock diets, and the development of wheat varieties that produce higher yields, combined with increased resistance to pests and resilience to changes in climate, has meant that wheat breeding has become an important focus of scientific research. In an attempt to facilitate these improvements in wheat, plant breeders have employed molecular tools to help them identify genes for important agronomic traits that can be bred into new varieties. Modern molecular techniques have ensured that the rapid and inexpensive characterisation of SNP markers and their validation with modern genotyping methods has produced a valuable resource that can be used in marker assisted selection. CerealsDB was created as a means of quickly disseminating this information to breeders and researchers around the globe. DESCRIPTION: CerealsDB version 3.0 is an online resource that contains a wide range of genomic datasets for wheat that will assist plant breeders and scientists to select the most appropriate markers for use in marker assisted selection. CerealsDB includes a database which currently contains in excess of a million putative varietal SNPs, of which several hundreds of thousands have been experimentally validated. In addition, CerealsDB also contains new data on functional SNPs predicted to have a major effect on protein function and we have constructed a web service to encourage data integration and high-throughput programmatic access. CONCLUSION: CerealsDB is an open access website that hosts information on SNPs that are considered useful for both plant breeders and research scientists. The recent inclusion of web services designed to federate genomic data resources allows the information on CerealsDB to be more fully integrated with the WheatIS network and other biological databases.


Subject(s)
Polymorphism, Single Nucleotide , Triticum/genetics , Breeding , Crops, Agricultural/genetics , Database Management Systems , Genomics , Genotyping Techniques , Humans , Internet , User-Computer Interface
8.
Plant Biotechnol J ; 14(5): 1195-206, 2016 May.
Article in English | MEDLINE | ID: mdl-26466852

ABSTRACT

In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra-high-density Axiom(®) genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site.


Subject(s)
Genome, Plant/genetics , Oligonucleotide Array Sequence Analysis/methods , Polymorphism, Single Nucleotide , Triticum/genetics , Breeding , Gene Pool , Genetic Markers , Genetic Variation , Genotype , Genotyping Techniques , Polyploidy
9.
Plant Biotechnol J ; 11(3): 279-95, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23279710

ABSTRACT

Globally, wheat is the most widely grown crop and one of the three most important crops for human and livestock feed. However, the complex nature of the wheat genome has, until recently, resulted in a lack of single nucleotide polymorphism (SNP)-based molecular markers of practical use to wheat breeders. Recently, large numbers of SNP-based wheat markers have been made available via the use of next-generation sequencing combined with a variety of genotyping platforms. However, many of these markers and platforms have difficulty distinguishing between heterozygote and homozygote individuals and are therefore of limited use to wheat breeders carrying out commercial-scale breeding programmes. To identify exome-based co-dominant SNP-based assays, which are capable of distinguishing between heterozygotes and homozygotes, we have used targeted re-sequencing of the wheat exome to generate large amounts of genomic sequences from eight varieties. Using a bioinformatics approach, these sequences have been used to identify 95 266 putative single nucleotide polymorphisms, of which 10 251 were classified as being putatively co-dominant. Validation of a subset of these putative co-dominant markers confirmed that 96% were true polymorphisms and 65% were co-dominant SNP assays. The new co-dominant markers described here are capable of genotypic classification of a segregating locus in polyploid wheat and can be used on a variety of genotyping platforms; as such, they represent a powerful tool for wheat breeders. These markers and related information have been made publically available on an interactive web-based database to facilitate their use on genotyping programmes worldwide.


Subject(s)
Exome/genetics , Polymorphism, Single Nucleotide , Triticum/genetics , Chromosome Mapping , Polyploidy
10.
Plants (Basel) ; 12(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37375859

ABSTRACT

Despite the importance of winter wheat in Central Asian countries, there are limited reports describing their diversity within this region. In this study, the population structures of 115 modern winter wheat cultivars from four Central Asian countries were compared to germplasms from six other geographic origins using 10,746 polymorphic single-nucleotide polymorphism (SNP) markers. After applying the STRUCTURE package, we found that in terms of the most optimal K steps, samples from Kazakhstan and Kyrgyzstan were grouped together with samples from Russia, while samples from Tajikistan and Uzbekistan were grouped with samples from Afghanistan. The mean value of Nei's genetic diversity index for the germplasm from four groups from Central Asia was 0.261, which is comparable to that of the six other groups studied: Europe, Australia, the USA, Afghanistan, Turkey, and Russia. The Principal Coordinate Analysis (PCoA) showed that samples from Kyrgyzstan, Tajikistan, and Uzbekistan were close to samples from Turkey, while Kazakh accessions were located near samples from Russia. The evaluation of 10,746 SNPs in Central Asian wheat suggested that 1006 markers had opposing allele frequencies. Further assessment of the physical positions of these 1006 SNPs in the Wheat Ensembl database indicated that most of these markers are constituents of genes associated with plant stress tolerance and adaptability. Therefore, the SNP markers identified can be effectively used in regional winter wheat breeding projects for facilitating plant adaptation and stress resistance.

11.
BMC Bioinformatics ; 13: 219, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-22943283

ABSTRACT

BACKGROUND: Food security is an issue that has come under renewed scrutiny amidst concerns that substantial yield increases in cereal crops are required to feed the world's booming population. Wheat is of fundamental importance in this regard being one of the three most important crops for both human consumption and livestock feed; however, increase in crop yields have not kept pace with the demands of a growing world population. In order to address this issue, plant breeders require new molecular tools to help them identify genes for important agronomic traits that can be introduced into elite varieties. Studies of the genome using next-generation sequencing enable the identification of molecular markers such as single nucleotide polymorphisms that may be used by breeders to identify and follow genes when breeding new varieties. The development and application of next-generation sequencing technologies has made the characterisation of SNP markers in wheat relatively cheap and straightforward. There is a growing need for the widespread dissemination of this information to plant breeders. DESCRIPTION: CerealsDB is an online resource containing a range of genomic datasets for wheat (Triticum aestivum) that will assist plant breeders and scientists to select the most appropriate markers for marker assisted selection. CerealsDB includes a database which currently contains in excess of 100,000 putative varietal SNPs, of which several thousand have been experimentally validated. In addition, CerealsDB contains databases for DArT markers and EST sequences, and links to a draft genome sequence for the wheat variety Chinese Spring. CONCLUSION: CerealsDB is an open access website that is rapidly becoming an invaluable resource within the wheat research and plant breeding communities.


Subject(s)
Breeding , Databases, Nucleic Acid , Polymorphism, Single Nucleotide , Triticum/genetics , Expressed Sequence Tags , Genomics , Humans , Internet , Software , User-Computer Interface
12.
Plant Biotechnol J ; 10(6): 733-42, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22703335

ABSTRACT

Bread wheat, Triticum aestivum, is an allohexaploid composed of the three distinct ancestral genomes, A, B and D. The polyploid nature of the wheat genome together with its large size has limited our ability to generate the significant amount of sequence data required for whole genome studies. Even with the advent of next-generation sequencing technology, it is still relatively expensive to generate whole genome sequences for more than a few wheat genomes at any one time. To overcome this problem, we have developed a targeted-capture re-sequencing protocol based upon NimbleGen array technology to capture and characterize 56.5 Mb of genomic DNA with sequence similarity to over 100 000 transcripts from eight different UK allohexaploid wheat varieties. Using this procedure in conjunction with a carefully designed bioinformatic procedure, we have identified more than 500 000 putative single-nucleotide polymorphisms (SNPs). While 80% of these were variants between the homoeologous genomes, A, B and D, a significant number (20%) were putative varietal SNPs between the eight varieties studied. A small number of these latter polymorphisms were experimentally validated using KASPar technology and 94% proved to be genuine. The procedures described here to sequence a large proportion of the wheat genome, and the various SNPs identified should be of considerable use to the wider wheat community.


Subject(s)
Exome , Genome, Plant , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Triticum/genetics , Alleles , Polyploidy , Species Specificity
13.
Methods Mol Biol ; 2443: 133-146, 2022.
Article in English | MEDLINE | ID: mdl-35037203

ABSTRACT

The CerealsDB website, created by members of the Functional Genomics Group at the University of Bristol, provides access to a database containing SNP and genotyping data for hexaploid wheat and, to a lesser extent, its progenitors and several of its relatives. The site is principally aimed at plant breeders and research scientists who wish to obtain information regarding SNP markers; for example, obtain primers used for their identification or the sequences upon which they are based. The database underpinning the website contains circa one million putative varietal SNPs of which several hundreds of thousands have been experimentally validated on a range of common genotyping platforms. For each SNP marker, the site also hosts the allelic scores for thousands of elite wheat varieties, landrace cultivars, and wheat relatives. Tools are available to help negotiate and visualize the datasets. The website has been designed to be simple and straightforward to use and is completely open access.


Subject(s)
Polymorphism, Single Nucleotide , Genome, Plant , Genomics , Triticum/genetics
14.
Front Plant Sci ; 13: 841855, 2022.
Article in English | MEDLINE | ID: mdl-35498663

ABSTRACT

The bread wheat (Triticum aestivum) pangenome is a patchwork of variable regions, including translocations and introgressions from progenitors and wild relatives. Although a large number of these have been documented, it is likely that many more remain unknown. To map these variable regions and make them more traceable in breeding programs, wheat accessions need to be genotyped or sequenced. The wheat genome is large and complex and consequently, sequencing efforts are often targeted through exome capture. In this study, we employed exome capture prior to sequencing 12 wheat varieties; 10 elite T. aestivum cultivars and two T. aestivum landrace accessions. Sequence coverage across chromosomes was greater toward distal regions of chromosome arms and lower in centromeric regions, reflecting the capture probe distribution which itself is determined by the known telomere to centromere gene gradient. Superimposed on this general pattern, numerous drops in sequence coverage were observed. Several of these corresponded with reported introgressions. Other drops in coverage could not be readily explained and may point to introgressions that have not, to date, been documented.

15.
PLoS One ; 16(2): e0243185, 2021.
Article in English | MEDLINE | ID: mdl-33626040

ABSTRACT

Tracking genetic variations from positive SARS-CoV-2 samples yields crucial information about the number of variants circulating in an outbreak and the possible lines of transmission but sequencing every positive SARS-CoV-2 sample would be prohibitively costly for population-scale test and trace operations. Genotyping is a rapid, high-throughput and low-cost alternative for screening positive SARS-CoV-2 samples in many settings. We have designed a SNP identification pipeline to identify genetic variation using sequenced SARS-CoV-2 samples. Our pipeline identifies a minimal marker panel that can define distinct genotypes. To evaluate the system, we developed a genotyping panel to detect variants-identified from SARS-CoV-2 sequences surveyed between March and May 2020 and tested this on 50 stored qRT-PCR positive SARS-CoV-2 clinical samples that had been collected across the South West of the UK in April 2020. The 50 samples split into 15 distinct genotypes and there was a 61.9% probability that any two randomly chosen samples from our set of 50 would have a distinct genotype. In a high throughput laboratory, qRT-PCR positive samples pooled into 384-well plates could be screened with a marker panel at a cost of < £1.50 per sample. Our results demonstrate the usefulness of a SNP genotyping panel to provide a rapid, cost-effective, and reliable way to monitor SARS-CoV-2 variants circulating in an outbreak. Our analysis pipeline is publicly available and will allow for marker panels to be updated periodically as viral genotypes arise or disappear from circulation.


Subject(s)
COVID-19/virology , Genotyping Techniques/methods , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/epidemiology , Genetic Variation , Humans , Pandemics , Polymorphism, Single Nucleotide , United Kingdom/epidemiology
16.
Nat Plants ; 7(2): 172-183, 2021 02.
Article in English | MEDLINE | ID: mdl-33526912

ABSTRACT

Bread wheat (Triticum aestivum) is one of the world's most important crops; however, a low level of genetic diversity within commercial breeding accessions can significantly limit breeding potential. In contrast, wheat relatives exhibit considerable genetic variation and so potentially provide a valuable source of novel alleles for use in breeding new cultivars. Historically, gene flow between wheat and its relatives may have contributed novel alleles to the bread wheat pangenome. To assess the contribution made by wheat relatives to genetic diversity in bread wheat, we used markers based on single nucleotide polymorphisms to compare bread wheat accessions, created in the past 150 years, with 45 related species. We show that many bread wheat accessions share near-identical haplotype blocks with close relatives of wheat's diploid and tetraploid progenitors, while some show evidence of introgressions from more distant species and structural variation between accessions. Hence, introgressions and chromosomal rearrangements appear to have made a major contribution to genetic diversity in cultivar collections. As gene flow from relatives to bread wheat is an ongoing process, we assess the impact that introgressions might have on future breeding strategies.


Subject(s)
Bread , Chromosomal Instability , Gene Flow , Genome, Plant , Plant Breeding/methods , Triticum/genetics , Genetic Variation , Genotype , Polymorphism, Single Nucleotide
17.
Plant Biotechnol J ; 8(7): 749-71, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20561247

ABSTRACT

Temperature and light are important environmental stimuli that have a profound influence on the growth and development of plants. Wheat varieties can be divided on the basis of whether they require an extended period of cold to flower (vernalization). Varieties that have a requirement for vernalization also tend to be winter hardy and are able to withstand quite extreme subzero temperatures. This capacity, however, is not constitutive and plants require a period of exposure to low, non-freezing temperatures to acquire freezing tolerance: this process is referred to as cold acclimation. Cold acclimation and the acquisition of freezing tolerance require the orchestration of many different, seemingly disparate physiological and biochemical changes. These changes are, at least in part, mediated through the differential expression of many genes. Some of these genes code for effector molecules that participate directly to alleviate stress. Others code for proteins involved in signal transduction or transcription factors that control the expression of further banks of genes. In this review, we provide an overview of some of the main features of cold acclimation with particular focus on transcriptome reprogramming. In doing so, we highlight some of the important differences between cold-hardy and cold-sensitive varieties. An understanding of these processes is of great potential importance because cold and freezing stress are major limiting factors for growing crop plants and periodically account for significant losses in plant productivity.


Subject(s)
Cold Temperature , Gene Expression Profiling , Triticum/genetics , Acclimatization , Calcium Signaling , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/metabolism , Triticum/physiology
18.
PLoS One ; 15(11): e0242940, 2020.
Article in English | MEDLINE | ID: mdl-33253289

ABSTRACT

Accurate identification of named accessions in germplasm collections is extremely important, especially for vegetatively propagated crops which are expensive to maintain. Thus, an inexpensive, reliable, and rapid genotyping method is essential because it avoids the need for laborious and time-consuming morphological comparisons. Single Nucleotide Polymorphism (SNP) marker panels containing large numbers of SNPs have been developed for many crop species, but such panels are much too large for basic cultivar identification. Here, we have identified a minimum set of SNP markers sufficient to distinguish apple cultivars held in the English and Welsh national collections providing a cheaper and automatable alternative to the markers currently used by the community. We show that SNP genotyping with a small set of well selected markers is equally efficient as microsatellites for the identification of apple cultivars and has the added advantage of automation and reduced cost when screening large numbers of samples.


Subject(s)
Genome, Plant/genetics , Malus/genetics , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide/genetics , Alleles , Breeding , Crops, Agricultural/genetics , Genotype , Humans , Malus/classification , Seed Bank/classification
19.
Database (Oxford) ; 20202020 01 01.
Article in English | MEDLINE | ID: mdl-32754757

ABSTRACT

CerealsDB (www.cerealsdb.uk.net) is an online repository of mainly hexaploid wheat (Triticum aestivum) single nucleotide polymorphisms (SNPs) and genotyping data. The CerealsDB website has been designed to enable wheat breeders and scientists to select the appropriate markers for research breeding tasks, such as marker-assisted selection. We report a large update of genotyping information for over 6000 wheat accessions and describe new webtools for exploring and visualizing the data. We also describe a new database of quantitative trait loci that links phenotypic traits to CerealsDB SNP markers and allelic scores for each of those markers. CerealsDB is an open-access website that hosts information on wheat SNPs considered useful for both plant breeders and research scientists. The latest CerealsDB database is available at https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/indexNEW.php.


Subject(s)
Databases, Genetic , Edible Grain/genetics , Genome, Plant/genetics , Software , Triticum/genetics , Breeding , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
20.
BMC Plant Biol ; 9: 55, 2009 May 11.
Article in English | MEDLINE | ID: mdl-19432994

ABSTRACT

BACKGROUND: For plants to flower at the appropriate time, they must be able to perceive and respond to various internal and external cues. Wheat is generally a long-day plant that will go through phase transition from vegetative to floral growth as days are lengthening in spring and early summer. In addition to this response to day-length, wheat cultivars may be classified as either winter or spring varieties depending on whether they require to be exposed to an extended period of cold in order to become competent to flower. Using a growth regime to mimic the conditions that occur during a typical winter in Britain, and a microarray approach to determine changes in gene expression over time, we have surveyed the genes of the major pathways involved in floral transition. We have paid particular attention to wheat orthologues and functional equivalents of genes involved in the phase transition in Arabidopsis. We also surveyed all the MADS-box genes that could be identified as such on the Affymetrix genechip wheat genome array. RESULTS: We observed novel responses of several genes thought to be of major importance in vernalisation-induced phase transition, and identified several MADS-box genes that might play an important role in the onset of flowering. In addition, we saw responses in genes of the Gibberellin pathway that would indicate that this pathway also has some role to play in phase transition. CONCLUSION: Phase transition in wheat is more complex than previously reported, and there is evidence that day-length has an influence on genes that were once thought to respond exclusively to an extended period of cold.


Subject(s)
Cold Temperature , Gene Expression Profiling , Light , Triticum/growth & development , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/radiation effects , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Photoperiod , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Plant/genetics , Triticum/genetics , Triticum/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL