Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Transl Med ; 15(1): 174, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28800741

ABSTRACT

BACKGROUND: Red blood cell (RBC) depletion is a standard graft manipulation technique for ABO-incompatible bone marrow (BM) transplants. The BM processing module for Spectra Optia, "BMC", was previously introduced. We here report the largest series to date of routine quality data after performing 50 clinical-scale RBC-depletions. METHODS: Fifty successive RBC-depletions from autologous (n = 5) and allogeneic (n = 45) BM transplants were performed with the Spectra Optia BMC apheresis suite. Product quality was assessed before and after processing for volume, RBC and leukocyte content; RBC-depletion and stem cell (CD34+ cells) recovery was calculated there from. Clinical engraftment data were collected from 26/45 allogeneic recipients. RESULTS: Median RBC removal was 98.2% (range 90.8-99.1%), median CD34+ cell recovery was 93.6%, minimum recovery being 72%, total product volume was reduced to 7.5% (range 4.7-23.0%). Products engrafted with expected probability and kinetics. Performance indicators were stable over time. DISCUSSION: Spectra Optia BMC is a robust and efficient technology for RBC-depletion and volume reduction of BM, providing near-complete RBC removal and excellent CD34+ cell recovery.


Subject(s)
Blood Component Removal/methods , Bone Marrow/metabolism , Erythrocytes/metabolism , Antigens, CD34/metabolism , Bone Marrow Transplantation , Cell Lineage , Feasibility Studies , Hematopoiesis , Humans , Transplantation, Homologous
2.
J Transl Med ; 14: 76, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26983643

ABSTRACT

BACKGROUND: Automation of cell therapy manufacturing promises higher productivity of cell factories, more economical use of highly-trained (and costly) manufacturing staff, facilitation of processes requiring manufacturing steps at inconvenient hours, improved consistency of processing steps and other benefits. One of the most broadly disseminated engineered cell therapy products is immunomagnetically selected CD34+ hematopoietic "stem" cells (HSCs). METHODS: As the clinical GMP-compliant automat CliniMACS Prodigy is being programmed to perform ever more complex sequential manufacturing steps, we developed a CD34+ selection module for comparison with the standard semi-automatic CD34 "normal scale" selection process on CliniMACS Plus, applicable for 600 × 10(6) target cells out of 60 × 10(9) total cells. Three split-validation processings with healthy donor G-CSF-mobilized apheresis products were performed; feasibility, time consumption and product quality were assessed. RESULTS: All processes proceeded uneventfully. Prodigy runs took about 1 h longer than CliniMACS Plus runs, albeit with markedly less hands-on operator time and therefore also suitable for less experienced operators. Recovery of target cells was the same for both technologies. Although impurities, specifically T- and B-cells, were 5 ± 1.6-fold and 4 ± 0.4-fold higher in the Prodigy products (p = ns and p = 0.013 for T and B cell depletion, respectively), T cell contents per kg of a virtual recipient receiving 4 × 10(6) CD34+ cells/kg was below 10 × 10(3)/kg even in the worst Prodigy product and thus more than fivefold below the specification of CD34+ selected mismatched-donor stem cell products. The products' theoretical clinical usability is thus confirmed. CONCLUSIONS: This split validation exercise of a relatively short and simple process exemplifies the potential of automatic cell manufacturing. Automation will further gain in attractiveness when applied to more complex processes, requiring frequent interventions or handling at unfavourable working hours, such as re-targeting of T-cells.


Subject(s)
Antigens, CD34/metabolism , Automation , Blood Component Removal/methods , Cell- and Tissue-Based Therapy , Hematopoietic Stem Cells/cytology , Flow Cytometry , Humans , Reproducibility of Results
3.
Cytotherapy ; 17(10): 1465-71, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25981397

ABSTRACT

BACKGROUND AIMS: Immunomagnetic enrichment of CD34+ hematopoietic "stem" cells (HSCs) using paramagnetic nanobead coupled CD34 antibody and immunomagnetic extraction with the CliniMACS plus system is the standard approach to generating T-cell-depleted stem cell grafts. Their clinical beneficence in selected indications is established. Even though CD34+ selected grafts are typically given in the context of a severely immunosuppressive conditioning with anti-thymocyte globulin or similar, the degree of T-cell depletion appears to affect clinical outcomes and thus in addition to CD34 cell recovery, the degree of T-cell depletion critically describes process quality. An automatic immunomagnetic cell processing system, CliniMACS Prodigy, including a protocol for fully automatic CD34+ cell selection from apheresis products, was recently developed. We performed a formal process validation to support submission of the protocol for CE release, a prerequisite for clinical use of Prodigy CD34+ products. METHODS: Granulocyte-colony stimulating factor-mobilized healthy-donor apheresis products were subjected to CD34+ cell selection using Prodigy with clinical reagents and consumables and advanced beta versions of the CD34 selection software. Target and non-target cells were enumerated using sensitive flow cytometry platforms. RESULTS: Nine successful clinical-scale CD34+ cell selections were performed. Beyond setup, no operator intervention was required. Prodigy recovered 74 ± 13% of target cells with a viability of 99.9 ± 0.05%. Per 5 × 10E6 CD34+ cells, which we consider a per-kilogram dose of HSCs, products contained 17 ± 3 × 10E3 T cells and 78 ± 22 × 10E3 B cells. CONCLUSIONS: The process for CD34 selection with Prodigy is robust and labor-saving but not time-saving. Compared with clinical CD34+ selected products concurrently generated with the predecessor technology, product properties, importantly including CD34+ cell recovery and T-cell contents, were not significantly different. The automatic system is suitable for routine clinical application.


Subject(s)
Antigens, CD34/immunology , Blood Component Removal/methods , Cell Separation/methods , Hematopoietic Stem Cells/cytology , Immunomagnetic Separation/methods , Antilymphocyte Serum/immunology , Automation, Laboratory , B-Lymphocytes/immunology , Cells, Cultured , Flow Cytometry , Granulocyte Colony-Stimulating Factor/immunology , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/immunology , Humans , Lymphocyte Depletion/methods , T-Lymphocytes/immunology
4.
Cytotherapy ; 17(10): 1396-405, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26188965

ABSTRACT

BACKGROUND AIMS: Evidence of the criticality of the adaptive immune response for controlling invasive aspergillosis has been provided. This observation is supported by the fact that invasive aspergillosis, a grave complication of allogeneic stem cell transplantation, occurs long after myeloid reconstitution in patients with low T-cell engraftment and/or on immunosuppressants. Adoptive T-cell transfer might be beneficial, but idiosyncrasies of Aspergillus fumigatus and the anti-Aspergillus immune response render established selection technologies ineffective. METHODS: We developed a Good Manufacturing Practice (GMP)-compliant protocol for preparation of A. fumigatus-specific CD4+ cells by sequentially depleting regulatory and cytotoxic T cells, activating A. fumigatus-specific T-helper cells with GMP-grade A. fumigatus lysate, and immuno-magnetically isolating them via the transiently up-regulated activation marker, CD137. RESULTS: In 13 full-scale runs, we demonstrate robustness and feasibility of the approach. From 2 × 10(9) peripheral blood mononuclear cells, we isolated 27 × 10(3)-318 × 10(3)Aspergillus-specific T-helper cells. Frequency among total T cells was increased, on average, by 200-fold. Specific studies indicate specificity and functionality: After non-specific in vitro expansion and re-stimulation with different antigens, we observed strong cytokine responses to A. fumigatus and some other fungi including Candida albicans, but none to unrelated antigens. DISCUSSION: Our technology isolates naturally occurring Aspergillus-specific T-helper cells within 2 days of identifying the clinical indication. Rapid adoptive transfer of Aspergillus-specific T cells may be quite feasible; the clinical benefit remains to be demonstrated. A manufacturing license as an advanced-therapy medicinal product was received and a clinical trial in post-transplantation invasive aspergillosis patients approved. The product is dosed at 5 × 10E3/kg T cells (single intravenous injection), of which at least 10% must be A. fumigatus-specific.


Subject(s)
Aspergillosis/therapy , Aspergillus fumigatus/immunology , Cell Separation/methods , Immunotherapy, Adoptive/methods , Lymphocyte Activation/immunology , T-Lymphocytes, Helper-Inducer/transplantation , Antigens, Fungal/immunology , Aspergillosis/immunology , Candida albicans/immunology , Cytokines/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Leukocytes, Mononuclear/immunology , Lymphocyte Depletion/methods , T-Lymphocytes, Helper-Inducer/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
5.
Transfusion ; 55(6): 1275-82, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25647556

ABSTRACT

BACKGROUND: Red blood cell (RBC) depletion is a standard technique for preparation of ABO-incompatible bone marrow transplants (BMTs). Density centrifugation or apheresis are used successfully at clinical scale. The advent of a bone marrow (BM) processing module for the Spectra Optia (Terumo BCT) provided the initiative to formally compare our standard technology, the COBE2991 (Ficoll, manual, "C") with the Spectra Optia BMP (apheresis, semiautomatic, "O"), the Sepax II NeatCell (Ficoll, automatic, "S"), the Miltenyi CliniMACS Prodigy density gradient separation system (Ficoll, automatic, "P"), and manual Ficoll ("M"). C and O handle larger product volumes than S, P, and M. STUDY DESIGN AND METHODS: Technologies were assessed for RBC depletion, target cell (mononuclear cells [MNCs] for buffy coats [BCs], CD34+ cells for BM) recovery, and cost/labor. BC pools were simultaneously purged with C, O, S, and P; five to 18 BM samples were sequentially processed with C, O, S, and M. RESULTS: Mean RBC removal with C was 97% (BCs) or 92% (BM). From both products, O removed 97%, and P, S, and M removed 99% of RBCs. MNC recovery from BC (98% C, 97% O, 65% P, 74% S) or CD34+ cell recovery from BM (92% C, 90% O, 67% S, 70% M) were best with C and O. Polymorphonuclear cells (PMNs) were depleted from BCs by P, S, and C, while O recovered 50% of PMNs. Time savings compared to C or M for all tested technologies are considerable. CONCLUSION: All methods are in principle suitable and can be selected based on sample volume, available technology, and desired product specifications beyond RBC depletion and MNC and/or CD34+ cell recovery.


Subject(s)
Blood Buffy Coat/cytology , Blood Component Removal/methods , Cell Separation/methods , Centrifugation, Density Gradient/methods , Erythrocytes , Blood Cells , Blood Component Removal/economics , Blood Component Removal/instrumentation , Blood Group Incompatibility/prevention & control , Bone Marrow Cells , Cell Separation/economics , Cell Separation/instrumentation , Centrifugation, Density Gradient/economics , Centrifugation, Density Gradient/instrumentation , Equipment Design , Erythrocyte Volume , Ficoll , Hematocrit , Humans
SELECTION OF CITATIONS
SEARCH DETAIL