Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Lancet ; 398(10295): 131-142, 2021 07 10.
Article in English | MEDLINE | ID: mdl-34246347

ABSTRACT

BACKGROUND: The PI3K/AKT and androgen-receptor pathways are dysregulated in metastatic castration-resistant prostate cancers (mCRPCs); tumours with functional PTEN-loss status have hyperactivated AKT signalling. Dual pathway inhibition with AKT inhibitor ipatasertib plus abiraterone might have greater benefit than abiraterone alone. We aimed to compare ipatasertib plus abiraterone with placebo plus abiraterone in patients with previously untreated mCRPC with or without tumour PTEN loss. METHODS: We did a randomised, double-blind, phase 3 trial at 200 sites across 26 countries or regions. Patients aged 18 years or older with previously untreated asymptomatic or mildly symptomatic mCRPC who had progressive disease and Eastern Collaborative Oncology Group performance status of 0 or 1 were randomly assigned (1:1; permuted block method) to receive ipatasertib (400 mg once daily orally) plus abiraterone (1000 mg once daily orally) and prednisolone (5 mg twice a day orally) or placebo plus abiraterone and prednisolone (with the same dosing schedule). Patients received study treatment until disease progression, intolerable toxicity, withdrawal from the study, or study completion. Stratification factors were previous taxane-based therapy for hormone-sensitive prostate cancer, type of progression, presence of visceral metastasis, and tumour PTEN-loss status by immunohistochemistry. Patients, investigators, and the study sponsor were masked to the treatment allocation. The coprimary endpoints were investigator-assessed radiographical progression-free survival in the PTEN-loss-by-immunohistochemistry population and in the intention-to-treat population. This study is ongoing and is registered with ClinicalTrials.gov, NCT03072238. FINDINGS: Between June 30, 2017, and Jan 17, 2019, 1611 patients were screened for eligibility and 1101 (68%) were enrolled; 554 (50%) were assigned to the placebo-abiraterone group and 547 (50%) to the ipatasertib-abiraterone group. At data cutoff (March 16, 2020), median follow-up duration was 19 months (range 0-33). In the 521 (47%) patients who had tumours with PTEN loss by immunohistochemistry (261 in the placebo-abiraterone group and 260 in the ipatasertib-abiraterone group), median radiographical progression-free survival was 16·5 months (95% CI 13·9-17·0) in the placebo-abiraterone group and 18·5 months (16·3-22·1) in the ipatasertib-abiraterone group (hazard ratio [HR] 0·77 [95% CI 0·61-0·98]; p=0·034; significant at α=0·04). In the intention-to-treat population, median progression-free survival was 16·6 months (95% CI 15·6-19·1) in the placebo-abiraterone group and 19·2 months (16·5-22·3) in the ipatasertib-abiraterone group (HR 0·84 [95% CI 0·71-0·99]; p=0·043; not significant at α=0·01). Grade 3 or higher adverse events occurred in 213 (39%) of 546 patients in the placebo-abiraterone group and in 386 (70%) of 551 patients in the ipatasertib-abiraterone group; adverse events leading to discontinuation of placebo or ipatasertib occurred in 28 (5%) in the placebo-abiraterone group and 116 (21%) in the ipatasertib-abiraterone group. Deaths due to adverse events deemed related to treatment occurred in two patients (<1%; acute myocardial infarction [n=1] and lower respiratory tract infection [n=1]) in the placebo-abiraterone group and in two patients (<1%; hyperglycaemia [n=1] and chemical pneumonitis [n=1]) in the ipastasertb-abiraterone group. INTERPRETATION: Ipatasertib plus abiraterone significantly improved radiographical progression-free survival compared with placebo plus abiraterone among patients with mCRPC with PTEN-loss tumours, but there was no significant difference between the groups in the intention-to-treat population. Adverse events were consistent with the known safety profiles of each agent. These data suggest that combined AKT and androgen-receptor signalling pathway inhibition with ipatasertib and abiraterone is a potential treatment for men with PTEN-loss mCRPC, a population with a poor prognosis. FUNDING: F Hoffmann-La Roche and Genentech.


Subject(s)
Androstenes/therapeutic use , Antineoplastic Agents, Hormonal/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Piperazines/therapeutic use , Prednisolone/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Pyrimidines/therapeutic use , Aged , Double-Blind Method , Humans , Male , Progression-Free Survival , Prostatic Neoplasms, Castration-Resistant/physiopathology
2.
Breast Cancer Res Treat ; 191(3): 565-576, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34860318

ABSTRACT

PURPOSE: PI3K/AKT pathway alterations are frequent in hormone receptor-positive (HR+) breast cancers. IPATunity130 Cohort B investigated ipatasertib-paclitaxel in PI3K pathway-mutant HR+ unresectable locally advanced/metastatic breast cancer (aBC). METHODS: Cohort B of the randomized, double-blind, placebo-controlled, phase 3 IPATunity130 trial enrolled patients with HR+ HER2-negative PIK3CA/AKT1/PTEN-altered measurable aBC who were considered inappropriate for endocrine-based therapy (demonstrated insensitivity to endocrine therapy or visceral crisis) and were candidates for taxane monotherapy. Patients with prior chemotherapy for aBC or relapse < 1 year since (neo)adjuvant chemotherapy were ineligible. Patients were randomized 2:1 to ipatasertib (400 mg, days 1-21) or placebo, plus paclitaxel (80 mg/m2, days 1, 8, 15), every 28 days until disease progression or unacceptable toxicity. The primary endpoint was investigator-assessed progression-free survival (PFS). RESULTS: Overall, 146 patients were randomized to ipatasertib-paclitaxel and 76 to placebo-paclitaxel. In both arms, median investigator-assessed PFS was 9.3 months (hazard ratio, 1.00, 95% CI 0.71-1.40) and the objective response rate was 47%. Median paclitaxel duration was 6.9 versus 8.8 months in the ipatasertib-paclitaxel versus placebo-paclitaxel arms, respectively; median ipatasertib/placebo duration was 8.0 versus 9.1 months, respectively. The most common grade ≥ 3 adverse events were diarrhea (12% with ipatasertib-paclitaxel vs 1% with placebo-paclitaxel), neutrophil count decreased (9% vs 7%), neutropenia (8% vs 9%), peripheral neuropathy (7% vs 3%), peripheral sensory neuropathy (3% vs 5%) and hypertension (1% vs 5%). CONCLUSION: Adding ipatasertib to paclitaxel did not improve efficacy in PIK3CA/AKT1/PTEN-altered HR+ HER2-negative aBC. The ipatasertib-paclitaxel safety profile was consistent with each agent's known adverse effects. Trial registration NCT03337724.


Subject(s)
Breast Neoplasms , Paclitaxel , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Double-Blind Method , Female , Hormones , Humans , Neoplasm Recurrence, Local , PTEN Phosphohydrolase/genetics , Paclitaxel/adverse effects , Phosphatidylinositol 3-Kinases , Piperazines , Proto-Oncogene Proteins c-akt , Pyrimidines , Receptor, ErbB-2/genetics
3.
Breast Cancer Res Treat ; 189(2): 377-386, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34264439

ABSTRACT

PURPOSE: In LOTUS (NCT02162719), adding the oral AKT inhibitor ipatasertib to first-line paclitaxel for locally advanced/metastatic triple-negative breast cancer (aTNBC) improved progression-free survival (PFS; primary endpoint), with an enhanced effect in patients with PIK3CA/AKT1/PTEN-altered tumors (FoundationOne next-generation sequencing [NGS] assay). We report final overall survival (OS) results. METHODS: Eligible patients had measurable previously untreated aTNBC. Patients were stratified by prior (neo)adjuvant therapy, chemotherapy-free interval, and tumor immunohistochemistry PTEN status, and were randomized 1:1 to paclitaxel 80 mg/m2 (days 1, 8, 15) plus ipatasertib 400 mg or placebo (days 1-21) every 28 days until disease progression or unacceptable toxicity. OS (intent-to-treat [ITT], immunohistochemistry PTEN-low, and PI3K/AKT pathway-activated [NGS PIK3CA/AKT1/PTEN-altered] populations) was a secondary endpoint. RESULTS: Median follow-up was 19.0 versus 16.0 months in the ipatasertib-paclitaxel versus placebo-paclitaxel arms, respectively. In the ITT population (n = 124), median OS was numerically longer with ipatasertib-paclitaxel than placebo-paclitaxel (hazard ratio 0.80, 95% CI 0.50-1.28; median 25.8 vs 16.9 months, respectively; 1-year OS 83% vs 68%). Likewise, median OS favored ipatasertib-paclitaxel in the PTEN-low (n = 48; 23.1 vs 15.8 months; hazard ratio 0.83) and PIK3CA/AKT1/PTEN-altered (n = 42; 25.8 vs 22.1 months; hazard ratio 1.13) subgroups. The ipatasertib-paclitaxel safety profile was unchanged. CONCLUSIONS: Final OS results show a numerical trend favoring ipatasertib-paclitaxel and median OS exceeding 2 years with ipatasertib-paclitaxel. Overall, results are consistent with the reported PFS benefit; interpretation within biomarker-defined subgroups is complicated by small sample sizes and TNBC heterogeneity.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Breast Neoplasms/drug therapy , Disease-Free Survival , Double-Blind Method , Female , Humans , Paclitaxel/adverse effects , Phosphatidylinositol 3-Kinases , Piperazines , Pyrimidines , Triple Negative Breast Neoplasms/drug therapy
4.
Invest New Drugs ; 39(1): 163-174, 2021 02.
Article in English | MEDLINE | ID: mdl-32737717

ABSTRACT

BACKGROUND: This Phase Ib study explored combination dosing of the allosteric MEK1/2 inhibitor cobimetinib and the ATP-competitive pan-AKT inhibitor ipatasertib. METHODS: Patients with advanced solid tumors were enrolled to two dose escalation arms, each using a 3 + 3 design in 28-day cycles. In Arm A, patients received concurrent cobimetinib and ipatasertib on days 1-21. In Arm B, cobimetinib was administered intermittently with ipatasertib for 21 days. Primary objectives evaluated dose-limiting toxicities (DLTs), maximum tolerated doses (MTD), and the recommended Phase II dose (RP2D). Secondary objectives included analysis of pharmacokinetic parameters, MAPK and PI3K pathway alterations, changes in tissue biomarkers, and preliminary anti-tumor efficacy. Expansion cohorts included patients with PTEN-deficient triple-negative breast cancer and endometrial cancer. RESULTS: Among 66 patients who received ≥1 dose of study drug, all experienced an adverse event (AE). Although no DLTs were reported, 6 patients experienced Cycle 1 DLT-equivalent AEs. The most common treatment-related AEs were diarrhea, nausea, vomiting, dermatitis acneiform, and fatigue. Thirty-five (53%) patients experienced drug-related AEs of ≥ grade 3 severity. Cobimetinb/ipatasertib MTDs were 60/200 mg on Arm A and 150/300 mg on Arm B; the latter was chosen as the RP2D. No pharmacokinetic interactions were identified. Biomarker analyses indicated pathway blockade and increases in IFNγ and PD-L1 gene expression following the combination. Three patients with endometrial or ovarian cancer achieved partial response, all with PTEN-low disease and two with tumor also harboring KRAS mutation. CONCLUSION: There was limited tolerability and efficacy for this MEK and AKT inhibitor combination. Nonetheless, pharmacodynamic analyses indicated target engagement and suggest rationale for further exploration of cobimetinib or ipatasertib in combination with other anticancer agents. ClinicalTrials.gov identifier: NCT01562275.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Azetidines/pharmacology , Azetidines/therapeutic use , Piperazines/pharmacology , Piperazines/therapeutic use , Piperidines/pharmacology , Piperidines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Aged , Aged, 80 and over , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Azetidines/adverse effects , Azetidines/pharmacokinetics , Dose-Response Relationship, Drug , Female , Humans , Male , Maximum Tolerated Dose , Middle Aged , Mitogen-Activated Protein Kinases/drug effects , Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases/drug effects , Piperazines/adverse effects , Piperazines/pharmacokinetics , Piperidines/adverse effects , Piperidines/pharmacokinetics , Pyrimidines/adverse effects , Pyrimidines/pharmacokinetics
5.
Bioinformatics ; 35(14): i634-i642, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31510692

ABSTRACT

MOTIVATION: A major challenge in molecular and cellular biology is to map out the regulatory networks of cells. As regulatory interactions can typically not be directly observed experimentally, various computational methods have been proposed to disentangling direct and indirect effects. Most of these rely on assumptions that are rarely met or cannot be adapted to a given context. RESULTS: We present a network inference method that is based on a simple response logic with minimal presumptions. It requires that we can experimentally observe whether or not some of the system's components respond to perturbations of some other components, and then identifies the directed networks that most accurately account for the observed propagation of the signal. To cope with the intractable number of possible networks, we developed a logic programming approach that can infer networks of hundreds of nodes, while being robust to noisy, heterogeneous or missing data. This allows to directly integrate prior network knowledge and additional constraints such as sparsity. We systematically benchmark our method on KEGG pathways, and show that it outperforms existing approaches in DREAM3 and DREAM4 challenges. Applied to a novel perturbation dataset on PI3K and MAPK pathways in isogenic models of a colon cancer cell line, it generates plausible network hypotheses that explain distinct sensitivities toward various targeted inhibitors due to different PI3K mutants. AVAILABILITY AND IMPLEMENTATION: A Python/Answer Set Programming implementation can be accessed at github.com/GrossTor/response-logic. Data and analysis scripts are available at github.com/GrossTor/response-logic-projects. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Logic , Algorithms , Computational Biology
6.
Bioinformatics ; 35(8): 1350-1357, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30215668

ABSTRACT

MOTIVATION: Gene annotation and pathway databases such as Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes are important tools in Gene-Set Test (GST) that describe gene biological functions and associated pathways. GST aims to establish an association relationship between a gene-set of interest and an annotation. Importantly, GST tests for over-representation of genes in an annotation term. One implicit assumption of GST is that the gene expression platform captures the complete or a very large proportion of the genome. However, this assumption is neither satisfied for the increasingly popular boutique array nor the custom designed gene expression profiling platform. Specifically, conventional GST is no longer appropriate due to the gene-set selection bias induced during the construction of these platforms. RESULTS: We propose bcGST, a bias-corrected GST by introducing bias-correction terms in the contingency table needed for calculating the Fisher's Exact Test. The adjustment method works by estimating the proportion of genes captured on the array with respect to the genome in order to assist filtration of annotation terms that would otherwise be falsely included or excluded. We illustrate the practicality of bcGST and its stability through multiple differential gene expression analyses in melanoma and the Cancer Genome Atlas cancer studies. AVAILABILITY AND IMPLEMENTATION: The bcGST method is made available as a Shiny web application at http://shiny.maths.usyd.edu.au/bcGST/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Gene Expression Profiling , Software , Computational Biology , Gene Ontology , Genome , Molecular Sequence Annotation
7.
Invest New Drugs ; 38(2): 419-432, 2020 04.
Article in English | MEDLINE | ID: mdl-31020608

ABSTRACT

Purpose We investigated the combination of the MEK inhibitor, cobimetinib, and the pan-PI3K inhibitor, pictilisib, in an open-label, phase Ib study. Experimental Design Patients with advanced solid tumors were enrolled in 3 dose escalation schedules: (1) both agents once-daily for 21-days-on 7-days-off ("21/7"); (2) intermittent cobimetinib and 21/7 pictilisib ("intermittent"); or (3) both agents once-daily for 7-days-on 7-days-off ("7/7"). Starting doses for the 21/7, intermittent, and 7/7 schedules were 20/80, 100/130, and 40/130 mg of cobimetinib/pictilisib, respectively. Nine indication-specific expansion cohorts interrogated the recommended phase II dose and schedule. Results Of 178 enrollees (dose escalation: n = 98), 177 patients were dosed. The maximum tolerated doses for cobimetinib/pictilisib (mg) were 40/100, 125/180, and not reached, for the 21/7, intermittent, and 7/7 schedules, respectively. Six dose-limiting toxicities included grade 3 (G3) elevated lipase, G4 elevated creatine phosphokinase, and G3 events including fatigue concurrent with a serious adverse event (SAE) of diarrhea, decreased appetite, and SAEs of hypersensitivity and dehydration. Common drug-related adverse events included nausea, fatigue, vomiting, decreased appetite, dysgeusia, rash, and stomatitis. Pharmacokinetic parameters of the drugs used in combination were unaltered compared to monotherapy exposures. Confirmed partial responses were observed in patients with BRAF-mutant melanoma (n = 1) and KRAS-mutant endometrioid adenocarcinoma (n = 1). Eighteen patients remained on study ≥6 months. Biomarker data established successful blockade of MAP kinase (MAPK) and PI3K pathways. The metabolic response rate documented by FDG-PET was similar to that observed with cobimetinib monotherapy. Conclusions Cobimetinib and pictilisib combination therapy in patients with solid tumors had limited tolerability and efficacy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Azetidines/administration & dosage , Indazoles/administration & dosage , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors/administration & dosage , Piperidines/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Sulfonamides/administration & dosage , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Azetidines/adverse effects , Azetidines/pharmacokinetics , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/genetics , Female , GTP Phosphohydrolases/genetics , Humans , Indazoles/adverse effects , Indazoles/pharmacokinetics , Male , Membrane Proteins/genetics , Middle Aged , Mitogen-Activated Protein Kinase Kinases/genetics , Neoplasms/genetics , Neoplasms/metabolism , Phosphoinositide-3 Kinase Inhibitors/adverse effects , Phosphoinositide-3 Kinase Inhibitors/pharmacokinetics , Piperidines/adverse effects , Piperidines/pharmacokinetics , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins p21(ras)/genetics , Sulfonamides/adverse effects , Sulfonamides/pharmacokinetics , Treatment Outcome , Young Adult
8.
Br J Cancer ; 121(7): 522-528, 2019 10.
Article in English | MEDLINE | ID: mdl-31417188

ABSTRACT

BACKGROUND: This pooled analysis investigated the prognostic value of depth of response in two cohorts of patients with BRAFV600-mutated metastatic melanoma treated with vemurafenib or cobimetinib plus vemurafenib. METHODS: The data were pooled from BRIM-2, BRIM-3, BRIM-7 and coBRIM. Association of depth of response with survival was estimated by Cox proportional hazards regression, adjusted for clinically relevant covariates. Depth of response was analysed in previously identified prognostic subgroups based on disease characteristics and gene signatures. RESULTS: Greater tumour reduction and longer time to maximal response were significantly associated with longer progression-free survival (PFS) and overall survival (OS) when evaluated as continuous variables. Patients with the deepest responses had long-lasting survival outcomes (median PFS: 14 months; OS: 32 months with vemurafenib; not estimable with cobimetinib plus vemurafenib). Cobimetinib plus vemurafenib improved depth of response versus vemurafenib monotherapy regardless of other prognostic factors, including gene signatures. CONCLUSIONS: Greater depth of response was associated with improved survival, supporting its utility as a measure of treatment efficacy in melanoma and further evaluation of its incorporation into existing prognostic models. Cobimetinib plus vemurafenib improved outcomes across quartiles of response regardless of prognostic factors or gene signatures and provided durable survival benefits in patients with deep responses.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Azetidines/administration & dosage , Melanoma/drug therapy , Piperidines/administration & dosage , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Vemurafenib/administration & dosage , Administration, Oral , Clinical Trials as Topic , Gene Expression , Humans , Injections, Intravenous , Kaplan-Meier Estimate , Melanoma/genetics , Melanoma/mortality , Melanoma/pathology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Multicenter Studies as Topic , Placebos/administration & dosage , Progression-Free Survival , Proto-Oncogene Proteins B-raf/genetics , Randomized Controlled Trials as Topic , Time Factors , Treatment Outcome , Tumor Burden/drug effects
9.
Lancet Oncol ; 19(3): 310-322, 2018 03.
Article in English | MEDLINE | ID: mdl-29449192

ABSTRACT

BACKGROUND: Obesity has been linked to increased mortality in several cancer types; however, the relation between obesity and survival outcomes in metastatic melanoma is unknown. The aim of this study was to examine the association between body-mass index (BMI) and progression-free survival or overall survival in patients with metastatic melanoma who received targeted therapy, immunotherapy, or chemotherapy. METHODS: This retrospective study analysed independent cohorts of patients with metastatic melanoma assigned to treatment with targeted therapy, immunotherapy, or chemotherapy in randomised clinical trials and one retrospective study of patients treated with immunotherapy. Patients were classified according to BMI, following the WHO definitions, as underweight, normal, overweight, or obese. Patients without BMI and underweight patients were excluded. The primary outcomes were the associations between BMI and progression-free survival or overall survival, stratified by treatment type and sex. We did multivariable analyses in the independent cohorts, and combined adjusted hazard ratios in a mixed-effects meta-analysis to provide a precise estimate of the association between BMI and survival outcomes; heterogeneity was assessed with meta-regression analyses. Analyses were done on the predefined intention-to-treat population in the randomised controlled trials and on all patients included in the retrospective study. FINDINGS: The six cohorts consisted of a total of 2046 patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy between Aug 8, 2006, and Jan 15, 2016. 1918 patients were included in the analysis. Two cohorts containing patients from randomised controlled trials treated with targeted therapy (dabrafenib plus trametinib [n=599] and vemurafenib plus cobimetinib [n=240]), two cohorts containing patients treated with immunotherapy (one randomised controlled trial of ipilimumab plus dacarbazine [n=207] and a retrospective cohort treated with pembrolizumab, nivolumab, or atezolizumab [n=331]), and two cohorts containing patients treated with chemotherapy (two randomised controlled trials of dacarbazine [n=320 and n=221]) were classified according to BMI as normal (694 [36%] patients), overweight (711 [37%]), or obese (513 [27%]). In the pooled analysis, obesity, compared with normal BMI, was associated with improved survival in patients with metastatic melanoma (average adjusted hazard ratio [HR] 0·77 [95% CI 0·66-0·90] for progression-free survival and 0·74 [0·58-0·95] for overall survival). The survival benefit associated with obesity was restricted to patients treated with targeted therapy (HR 0·72 [0·57-0·91] for progression-free survival and 0·60 [0·45-0·79] for overall survival) and immunotherapy (HR 0·75 [0·56-1·00] and 0·64 [0·47-0·86]). No associations were observed with chemotherapy (HR 0·87 [0·65-1·17, pinteraction=0·61] for progression-free survival and 1·03 [0·80-1·34, pinteraction=0·01] for overall survival). The association of BMI with overall survival for patients treated with targeted and immune therapies differed by sex, with inverse associations in men (HR 0·53 [0·40-0·70]), but no associations observed in women (HR 0·85 [0·61-1·18, pinteraction=0·03]). INTERPRETATION: Our results suggest that in patients with metastatic melanoma, obesity is associated with improved progression-free survival and overall survival compared with those outcomes in patients with normal BMI, and that this association is mainly seen in male patients treated with targeted or immune therapy. These results have implications for the design of future clinical trials for patients with metastatic melanoma and the magnitude of the benefit found supports further investigation of the underlying mechanism of these associations. FUNDING: ASCO/CCF Young Investigator Award, ASCO/CCF Career Development Award, MD Anderson Cancer Center (MDACC) Melanoma Moonshot Program, MDACC Melanoma SPORE, and the Dr Miriam and Sheldon G Adelson Medical Research Foundation.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Body Mass Index , Melanoma/drug therapy , Molecular Targeted Therapy , Obesity/epidemiology , Skin Neoplasms/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Female , Humans , Male , Melanoma/immunology , Melanoma/mortality , Melanoma/secondary , Middle Aged , Molecular Targeted Therapy/adverse effects , Molecular Targeted Therapy/mortality , Obesity/diagnosis , Obesity/mortality , Progression-Free Survival , Protective Factors , Randomized Controlled Trials as Topic , Retrospective Studies , Risk Assessment , Risk Factors , Skin Neoplasms/immunology , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Time Factors , Treatment Outcome , Young Adult
10.
Nat Chem Biol ; 12(7): 531-8, 2016 07.
Article in English | MEDLINE | ID: mdl-27214401

ABSTRACT

The KDM5 family of histone demethylases catalyzes the demethylation of histone H3 on lysine 4 (H3K4) and is required for the survival of drug-tolerant persister cancer cells (DTPs). Here we report the discovery and characterization of the specific KDM5 inhibitor CPI-455. The crystal structure of KDM5A revealed the mechanism of inhibition of CPI-455 as well as the topological arrangements of protein domains that influence substrate binding. CPI-455 mediated KDM5 inhibition, elevated global levels of H3K4 trimethylation (H3K4me3) and decreased the number of DTPs in multiple cancer cell line models treated with standard chemotherapy or targeted agents. These findings show that pretreatment of cancer cells with a KDM5-specific inhibitor results in the ablation of a subpopulation of cancer cells that can serve as the founders for therapeutic relapse.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Enzyme Inhibitors/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Retinoblastoma-Binding Protein 2/antagonists & inhibitors , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Retinoblastoma-Binding Protein 2/metabolism , Structure-Activity Relationship
11.
Lancet Oncol ; 18(10): 1360-1372, 2017 10.
Article in English | MEDLINE | ID: mdl-28800861

ABSTRACT

BACKGROUND: The oral AKT inhibitor ipatasertib is being investigated in cancers with a high prevalence of PI3K/AKT pathway activation, including triple-negative breast cancer. The LOTUS trial investigated the addition of ipatasertib to paclitaxel as first-line therapy for triple-negative breast cancer. METHODS: In this randomised, placebo-controlled, double-blind, phase 2 trial, women aged 18 years or older with measurable, inoperable, locally advanced or metastatic triple-negative breast cancer previously untreated with systemic therapy were recruited from 44 hospitals in South Korea, the USA, France, Spain, Taiwan, Singapore, Italy, and Belgium. Enrolled patients were randomly assigned (1:1) to receive intravenous paclitaxel 80 mg/m2 (days 1, 8, 15) with either ipatasertib 400 mg or placebo once per day (days 1-21) every 28 days until disease progression or unacceptable toxicity. Randomisation was by stratified permuted blocks (block size of four) using an interactive web-response system with three stratification criteria: previous (neo)adjuvant therapy, chemotherapy-free interval, and tumour PTEN status. The co-primary endpoints were progression-free survival in the intention-to-treat population and progression-free survival in the PTEN-low (by immunohistochemistry) population. This ongoing trial is registered with ClinicalTrials.gov (NCT02162719). FINDINGS: Between Sept 2, 2014, and Feb 4, 2016, 166 patients were assessed for eligibility and 124 patients were enrolled and randomly assigned to paclitaxel plus ipatasertib (n=62) or paclitaxel plus placebo (n=62). Median follow-up was 10·4 months (IQR 6·5-14·1) in the ipatasertib group and 10·2 months (6·0-13·6) in the placebo group. Median progression-free survival in the intention-to-treat population was 6·2 months (95% CI 3·8-9·0) with ipatasertib versus 4·9 months (3·6-5·4) with placebo (stratified hazard ratio [HR] 0·60, 95% CI 0·37-0·98; p=0·037) and in the 48 patients with PTEN-low tumours, median progression-free survival was 6·2 months (95% CI 3·6-9·1) with ipatasertib versus 3·7 months (1·9-7·3) with placebo (stratified HR 0·59, 95% CI 0·26-1·32, p=0·18). The most common grade 3 or worse adverse events were diarrhoea (14 [23%] of 61 ipatasertib-treated patients vs none of 62 placebo-treated patients), neutrophil count decreased (five [8%] vs four [6%]), and neutropenia (six [10%] vs one [2%]). No colitis, grade 4 diarrhoea, or treatment-related deaths were reported with ipatasertib. One treatment-related death occurred in the placebo group. Serious adverse events were reported in 17 (28%) of 61 patients in the ipatasertib group and nine (15%) of 62 patients in the placebo group. INTERPRETATION: Progression-free survival was longer in patients who received ipatasertib than in those who received placebo. To our knowledge, these are the first results supporting AKT-targeted therapy for triple-negative breast cancer. Ipatasertib warrants further investigation for the treatment of triple-negative breast cancer. FUNDING: F Hoffmann-La Roche.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Paclitaxel/administration & dosage , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/mortality , Administration, Oral , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Confidence Intervals , Disease-Free Survival , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Female , Humans , Maximum Tolerated Dose , Middle Aged , Neoplasm Invasiveness/pathology , Neoplasm Staging , Paclitaxel/adverse effects , Patient Selection , Placebos/administration & dosage , Prognosis , Proportional Hazards Models , Proto-Oncogene Proteins c-akt/administration & dosage , Risk Assessment , Survival Analysis , Treatment Outcome , Triple Negative Breast Neoplasms/pathology
12.
Lancet Oncol ; 17(9): 1248-60, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27480103

ABSTRACT

BACKGROUND: The combination of cobimetinib with vemurafenib improves progression-free survival compared with placebo and vemurafenib in previously untreated patients with BRAF(V600)-mutant advanced melanoma, as previously reported in the coBRIM study. In this Article, we report updated efficacy results, including overall survival and safety after longer follow-up, and selected biomarker correlative studies. METHODS: In this double-blind, randomised, placebo-controlled, multicentre study, adult patients (aged ≥18 years) with histologically confirmed BRAF(V600) mutation-positive unresectable stage IIIC or stage IV melanoma were randomly assigned (1:1) using an interactive response system to receive cobimetinib (60 mg once daily for 21 days followed by a 7-day rest period in each 28-day cycle) or placebo, in combination with oral vemurafenib (960 mg twice daily). Progression-free and overall survival were primary and secondary endpoints, respectively; all analyses were done on the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT01689519, and is ongoing but no longer recruiting participants. FINDINGS: Between Jan 8, 2013, and Jan 31, 2014, 495 eligible adult patients were enrolled and randomly assigned to the cobimetinib plus vemurafenib group (n=247) or placebo plus vemurafenib group (n=248). At a median follow-up of 14·2 months (IQR 8·5-17·3), the updated investigator-assessed median progression-free survival was 12·3 months (95% CI 9·5-13·4) for cobimetinib and vemurafenib versus 7·2 months (5·6-7·5) for placebo and vemurafenib (HR 0·58 [95% CI 0·46-0·72], p<0·0001). The final analysis for overall survival occurred when 255 (52%) patients had died (Aug 28, 2015). Median overall survival was 22·3 months (95% CI 20·3-not estimable) for cobimetinib and vemurafenib versus 17·4 months (95% CI 15·0-19·8) for placebo and vemurafenib (HR 0·70, 95% CI 0·55-0·90; p=0·005). The safety profile for cobimetinib and vemurafenib was tolerable and manageable, and no new safety signals were observed with longer follow-up. The most common grade 3-4 adverse events occurring at a higher frequency in patients in the cobimetinib and vemurafenib group compared with the vemurafenib group were γ-glutamyl transferase increase (36 [15%] in the cobimetinib and vemurafenib group vs 25 [10%] in the placebo and vemurafenib group), blood creatine phosphokinase increase (30 [12%] vs one [<1%]), and alanine transaminase increase (28 [11%] vs 15 [6%]). Serious adverse events occurred in 92 patients (37%) in the cobimetinib and vemurafenib group and 69 patients (28%) in the vemurafenib group. Pyrexia (six patients [2%]) and dehydration (five patients [2%]) were the most common serious adverse events reported in the cobimetinib and vemurafenib group. A total of 259 patients have died: 117 (47%) in the cobimetinib and vemurafenib group and 142 (58%) in the vemurafenib group. The primary cause of death was disease progression in most patients: 109 (93%) of 117 in the cobimetinib and vemurafenib group and 133 (94%) of 142 in the vemurafenib group. INTERPRETATION: These data confirm the clinical benefit of cobimetinib combined with vemurafenib and support the use of the combination as a standard first-line approach to improve survival in patients with advanced BRAF(V600)-mutant melanoma. FUNDING: F Hoffmann-La Roche-Genentech.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Melanoma/drug therapy , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Azetidines/administration & dosage , Biomarkers, Tumor/genetics , Double-Blind Method , Female , Follow-Up Studies , Humans , Indoles/administration & dosage , Male , Melanoma/genetics , Melanoma/pathology , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Piperidines/administration & dosage , Prognosis , Skin Neoplasms/genetics , Skin Neoplasms/secondary , Sulfonamides/administration & dosage , Survival Rate , Vemurafenib , Young Adult
14.
Nat Commun ; 14(1): 5945, 2023 09 23.
Article in English | MEDLINE | ID: mdl-37741832

ABSTRACT

Microsatellite-stable colorectal cancer (MSS-CRC) is highly refractory to immunotherapy. Understanding tumor-intrinsic determinants of immunotherapy resistance is critical to improve MSS-CRC patient outcomes. Here, we demonstrate that high tumor expression of the core autophagy gene ATG16L1 is associated with poor clinical response to anti-PD-L1 therapy in KRAS-mutant tumors from IMblaze370 (NCT02788279), a large phase III clinical trial of atezolizumab (anti-PD-L1) in advanced metastatic MSS-CRC. Deletion of Atg16l1 in engineered murine colon cancer organoids inhibits tumor growth in primary (colon) and metastatic (liver and lung) niches in syngeneic female hosts, primarily due to increased sensitivity to IFN-γ-mediated immune pressure. ATG16L1 deficiency enhances programmed cell death of colon cancer organoids induced by IFN-γ and TNF, thus increasing their sensitivity to host immunity. In parallel, ATG16L1 deficiency reduces tumor stem-like populations in vivo independently of adaptive immune pressure. This work reveals autophagy as a clinically relevant mechanism of immune evasion and tumor fitness in MSS-CRC and provides a rationale for autophagy inhibition to boost immunotherapy responses in the clinic.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Animals , Female , Humans , Mice , Autophagy/genetics , Autophagy-Related Proteins/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Genes, Regulator , Liver , Clinical Trials, Phase III as Topic
15.
Clin Cancer Res ; 28(5): 993-1003, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34907082

ABSTRACT

PURPOSE: Despite extensive genomic and transcriptomic profiling, it remains unknown how signaling pathways are differentially activated and how tumors are differentially sensitized to certain perturbations. Here, we aim to characterize AKT signaling activity and its association with other genomic or IHC-based PI3K/AKT pathway biomarkers as well as the clinical activity of ipatasertib (AKT inhibitor) in the FAIRLANE trial. EXPERIMENTAL DESIGN: In FAIRLANE, 151 patients with early triple-negative breast cancer (TNBC) were randomized 1:1 to receive paclitaxel with ipatasertib or placebo for 12 weeks prior to surgery. Adding ipatasertib did not increase pathologic complete response rate and numerically improved overall response rate by MRI. We used reverse-phase protein microarrays (RPPA) to examine the total level and/or phosphorylation states of over 100 proteins in various signaling or cell processes including PI3K/AKT and mTOR signaling. One hundred and twenty-five baseline and 127 on-treatment samples were evaluable by RPPA, with 110 paired samples at both time points. RESULTS: Tumors with genomic/protein alterations in PIK3CA/AKT1/PTEN were associated with higher levels of AKT phosphorylation. In addition, phosphorylated AKT (pAKT) levels exhibited a significant association with enriched clinical benefit of ipatasertib, and identified patients who received benefit in the absence of PIK3CA/AKT1/PTEN alterations. Ipatasertib treatment led to a downregulation of AKT/mTORC1 signaling, which was more pronounced among the tumors with PIK3CA/AKT1/PTEN alterations or among the responders to the treatment. CONCLUSIONS: We showed that the high baseline pAKT levels are associated with the alterations of PI3K/AKT pathway components and enriched benefit of ipatasertib in TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers , Class I Phosphatidylinositol 3-Kinases/genetics , Humans , Neoadjuvant Therapy , Paclitaxel , Phosphatidylinositol 3-Kinases/genetics , Piperazines , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines , Triple Negative Breast Neoplasms/pathology
16.
Clin Cancer Res ; 27(4): 1162-1173, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33023953

ABSTRACT

PURPOSE: Lung adenocarcinomas comprise the largest fraction of non-small cell lung cancer, which is the leading cause of cancer-related deaths. Seventy-five percent of adenocarcinomas lack targeted therapies because of scarcity of druggable drivers. Here, we classified tumors on the basis of signaling similarities and discovered subgroups within this unmet patient population. EXPERIMENTAL DESIGN: We leveraged transcriptional data from >800 early- and advanced-stage patients. RESULTS: We identified three robust subtypes dubbed mucinous, proliferative, and mesenchymal with respective pathway phenotypes. These transcriptional states lack discrete and causative mutational etiology as evidenced by similarly distributed oncogenic drivers, including KRAS and EGFR. The subtypes capture heterogeneity even among tumors lacking known oncogenic drivers. Paired multi-regional intratumoral biopsies demonstrated unified subtypes despite divergently evolved prooncogenic mutations, indicating subtype stability during selective pressure. Heterogeneity among in vitro and in vivo preclinical models is expounded by the human lung adenocarcinoma subtypes and can be leveraged to discover subtype-specific vulnerabilities. As proof of concept, we identified differential subtype response to MEK pathway inhibition in a chemical library screen of 89 lung cancer cell lines, which reproduces across model systems and a clinical trial. CONCLUSIONS: Our findings support forward translational relevance of transcriptional subtypes, where further exploration therein may improve lung adenocarcinoma treatment.See related commentary by Skoulidis, p. 913.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Biomarkers, Tumor/genetics , Lung Neoplasms/drug therapy , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Animals , Cell Line, Tumor , Clinical Trials as Topic , Datasets as Topic , Female , Genetic Heterogeneity , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Mice , Neoplasm Staging , Protein Kinase Inhibitors/pharmacology , RNA-Seq , Transcriptome/genetics , Xenograft Model Antitumor Assays
17.
Nat Commun ; 12(1): 1137, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602918

ABSTRACT

Adjuvant systemic therapies are now routinely used following resection of stage III melanoma, however accurate prognostic information is needed to better stratify patients. We use differential expression analyses of primary tumours from 204 RNA-sequenced melanomas within a large adjuvant trial, identifying a 121 metastasis-associated gene signature. This signature strongly associated with progression-free (HR = 1.63, p = 5.24 × 10-5) and overall survival (HR = 1.61, p = 1.67 × 10-4), was validated in 175 regional lymph nodes metastasis as well as two externally ascertained datasets. The machine learning classification models trained using the signature genes performed significantly better in predicting metastases than models trained with clinical covariates (pAUROC = 7.03 × 10-4), or published prognostic signatures (pAUROC < 0.05). The signature score negatively correlated with measures of immune cell infiltration (ρ = -0.75, p < 2.2 × 10-16), with a higher score representing reduced lymphocyte infiltration and a higher 5-year risk of death in stage II melanoma. Our expression signature identifies melanoma patients at higher risk of metastases and warrants further evaluation in adjuvant clinical trials.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Melanoma/genetics , Databases, Genetic , Humans , Machine Learning , Multivariate Analysis , Neoplasm Staging , Prognosis , Progression-Free Survival , Proportional Hazards Models , Reproducibility of Results , Time Factors , Treatment Outcome
18.
JCO Precis Oncol ; 4: 1012-1024, 2020 Nov.
Article in English | MEDLINE | ID: mdl-35050767

ABSTRACT

PURPOSE: Combining the oral AKT inhibitor ipatasertib with paclitaxel as first-line therapy for metastatic triple-negative breast cancer significantly improved progression-free survival (PFS) in the placebo-controlled, randomized, phase II LOTUS trial, with a more pronounced effect in patients with PIK3CA/AKT1/PTEN-altered tumors. We report findings from the extensive translational research program. PATIENTS AND METHODS: Pretreatment plasma and tumor samples were evaluated for genetic alterations using FoundationACT and FoundationOne (Foundation Medicine, Cambridge, MA) hybrid capture next-generation sequencing assays, respectively. Prevalences of the most common mutations and PIK3CA/AKT1 mutation status were determined using both assays, and concordance was assessed. In longitudinal analyses, circulating tumor DNA (ctDNA) mutations were quantified in baseline and on-treatment (cycle 3, day 1 [C3D1]) samples. The relationship between outcomes and ctDNA fraction (CTF; highest variant allele frequency) and CTF ratio (C3D1 CTF to baseline CTF) was explored. RESULTS: Among 89 patients evaluable for ctDNA sequencing, 81 patients (91%) had 149 detectable mutations. There was high agreement between plasma- and tissue-based sequencing for known or likely short variant mutations but not amplifications. There was 100% concordance between ctDNA and tissue sequencing in patients with activating PIK3CA or AKT1 mutations. High baseline CTF was associated with shorter PFS in both treatment arms. Longitudinal analyses showed more favorable outcomes with lower absolute CTF at C3D1 and, to a lesser extent, greater CTF decreases. CONCLUSION: These results suggest that plasma ctDNA sequencing may allow reliable and convenient assessment of prognosis and identification of genetic markers associated with increased benefit from ipatasertib. On-treatment CTF showed a meaningful association with objective response and PFS.

19.
Clin Cancer Res ; 26(1): 46-53, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31732523

ABSTRACT

PURPOSE: To report the 5-year overall survival (OS) landmark and the long-term safety profile of vemurafenib plus cobimetinib (BRAF plus MEK inhibition, respectively) in the BRIM7 study. PATIENTS AND METHODS: This phase Ib, dose-finding, and expansion study evaluated combination treatment with vemurafenib and cobimetinib in two cohorts of patients with advanced BRAF V600-mutated melanoma: patients who were BRAF inhibitor (BRAFi)-naïve (n = 63) or patients who had progressed on prior treatment with BRAFi monotherapy [vemurafenib monotherapy-progressive disease (PD); n = 66]. Patients in the dose-escalation phase received vemurafenib at 720 or 960 mg twice daily in combination with cobimetinib at 60, 80, or 100 mg/d for 14 days on/14 days off, 21 days on/7 days off, or continuously. Two regimens were selected for expansion: vemurafenib (720 and 960 mg twice daily) and cobimetinib (60 mg/d 21/7). RESULTS: Median OS was 31.8 months [95% confidence interval (CI), 24.5-not estimable] in the BRAFi-naïve cohort. The landmark OS rate plateaued at 39.2% at years 4 and 5 of follow-up. In the vemurafenib monotherapy-PD cohort, the median OS was 8.5 months (95% CI, 6.7-11.1), and the landmark OS rate plateaued at 14.0% from 3 years of follow-up. No increase was observed in the frequency and severity of adverse events with long-term follow-up. No new toxicities were detected, and there was no increase in the frequency of symptomatic MEK inhibitor class-effect adverse events. CONCLUSIONS: A subset of patients with advanced BRAF V600-mutated melanoma treated with a combination regimen of vemurafenib and cobimetinib achieve favorable long-term outcomes.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Melanoma/drug therapy , Mutation , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Azetidines/administration & dosage , Cohort Studies , Disease-Free Survival , Female , Follow-Up Studies , Humans , Male , Maximum Tolerated Dose , Melanoma/genetics , Melanoma/pathology , Middle Aged , Patient Safety , Piperidines/administration & dosage , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Treatment Outcome , Vemurafenib/administration & dosage , Young Adult
20.
Life Sci Alliance ; 2(4)2019 08.
Article in English | MEDLINE | ID: mdl-31253656

ABSTRACT

Tumors of different molecular subtypes can show strongly deviating responses to drug treatment, making stratification of patients based on molecular markers an important part of cancer therapy. Pharmacogenomic studies have led to the discovery of selected genomic markers (e.g., BRAFV600E), whereas transcriptomic and proteomic markers so far have been largely absent in clinical use, thus constituting a potentially valuable resource for further substratification of patients. To systematically assess the explanatory power of different -omics data types, we assembled a panel of 49 melanoma cell lines, including genomic, transcriptomic, proteomic, and pharmacological data, showing that drug sensitivity models trained on transcriptomic or proteomic data outperform genomic-based models for most drugs. These results were confirmed in eight additional tumor types using published datasets. Furthermore, we show that drug sensitivity models can be transferred between tumor types, although after correcting for training sample size, transferred models perform worse than within-tumor-type predictions. Our results suggest that transcriptomic/proteomic signals may be alternative biomarker candidates for the stratification of patients without known genomic markers.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Proteome/drug effects , Transcriptome/drug effects , Biomarkers, Tumor/genetics , Cell Line, Tumor , Computer Simulation , Endometrial Neoplasms/metabolism , Female , Humans , Melanoma/genetics , Melanoma/metabolism , Models, Biological , PTEN Phosphohydrolase/metabolism , Proteome/genetics , Proteomics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Transcriptome/genetics , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL