Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Br J Cancer ; 116(9): 1166-1176, 2017 Apr 25.
Article in English | MEDLINE | ID: mdl-28334731

ABSTRACT

BACKGROUND: The main role of the cell cycle is to enable error-free DNA replication, chromosome segregation and cytokinesis. One of the best characterised checkpoint pathways is the spindle assembly checkpoint, which prevents anaphase onset until the appropriate attachment and tension across kinetochores is achieved. MPS1 kinase activity is essential for the activation of the spindle assembly checkpoint and has been shown to be deregulated in human tumours with chromosomal instability and aneuploidy. Therefore, MPS1 inhibition represents an attractive strategy to target cancers. METHODS: To evaluate CCT271850 cellular potency, two specific antibodies that recognise the activation sites of MPS1 were used and its antiproliferative activity was determined in 91 human cancer cell lines. DLD1 cells with induced GFP-MPS1 and HCT116 cells were used in in vivo studies to directly measure MPS1 inhibition and efficacy of CCT271850 treatment. RESULTS: CCT271850 selectively and potently inhibits MPS1 kinase activity in biochemical and cellular assays and in in vivo models. Mechanistically, tumour cells treated with CCT271850 acquire aberrant numbers of chromosomes and the majority of cells divide their chromosomes without proper alignment because of abrogation of the mitotic checkpoint, leading to cell death. We demonstrated a moderate level of efficacy of CCT271850 as a single agent in a human colorectal carcinoma xenograft model. CONCLUSIONS: CCT271850 is a potent, selective and orally bioavailable MPS1 kinase inhibitor. On the basis of in vivo pharmacodynamic vs efficacy relationships, we predict that more than 80% inhibition of MPS1 activity for at least 24 h is required to achieve tumour stasis or regression by CCT271850.


Subject(s)
Cell Cycle Proteins/genetics , Heterocyclic Compounds, 4 or More Rings/administration & dosage , M Phase Cell Cycle Checkpoints/drug effects , Neoplasms/drug therapy , Protein Kinase Inhibitors/administration & dosage , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Animals , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , HCT116 Cells , Humans , Mice , Neoplasms/genetics , Neoplasms/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays
2.
Org Biomol Chem ; 15(46): 9794-9799, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29159344

ABSTRACT

A new efficient chiral synthesis of enantiopure arimoclomol (2) is reported from (R)-(-)-glycidyl nosylate (11) with complete retention of chiral integrity. Off-target pharmacology of arimoclomol (2) was evaluated against a representative set of drug targets and showed modest binding to a few kinases. Pharmacokinetic data was generated in vivo in mouse and showed a low brain : plasma ratio. These studies will be helpful towards a better understanding of the PK-PD relationship of 2 in disease models.


Subject(s)
Epoxy Compounds/chemistry , Heat-Shock Proteins/chemistry , Hydroxylamines/chemical synthesis , Animals , Hydroxylamines/chemistry , Male , Mice , Molecular Structure , Stereoisomerism
3.
J Med Chem ; 65(10): 7212-7230, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35536179

ABSTRACT

Notum is a carboxylesterase that suppresses Wnt signaling through deacylation of an essential palmitoleate group on Wnt proteins. There is a growing understanding of the role Notum plays in human diseases such as colorectal cancer and Alzheimer's disease, supporting the need to discover improved inhibitors, especially for use in models of neurodegeneration. Here, we have described the discovery and profile of 8l (ARUK3001185) as a potent, selective, and brain-penetrant inhibitor of Notum activity suitable for oral dosing in rodent models of disease. Crystallographic fragment screening of the Diamond-SGC Poised Library for binding to Notum, supported by a biochemical enzyme assay to rank inhibition activity, identified 6a and 6b as a pair of outstanding hits. Fragment development of 6 delivered 8l that restored Wnt signaling in the presence of Notum in a cell-based reporter assay. Assessment in pharmacology screens showed 8l to be selective against serine hydrolases, kinases, and drug targets.


Subject(s)
Enzyme Inhibitors , Esterases , Brain/metabolism , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Esterases/metabolism , Wnt Signaling Pathway
4.
ACS Chem Neurosci ; 13(13): 2060-2077, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35731924

ABSTRACT

The Wnt signaling suppressor Notum is a promising target for osteoporosis, Alzheimer's disease, and colorectal cancers. To develop novel Notum inhibitors, we used an X-ray crystallographic fragment screen with the Diamond-SGC Poised Library (DSPL) and identified 59 fragment hits from the analysis of 768 data sets. Fifty-eight of the hits were found bound at the enzyme catalytic pocket with potencies ranging from 0.5 to >1000 µM. Analysis of the fragments' diverse binding modes, enzymatic inhibitory activities, and chemical properties led to the selection of six hits for optimization, and five of these resulted in improved Notum inhibitory potencies. One hit, 1-phenyl-1,2,3-triazole 7, and its related cluster members, have shown promising lead-like properties. These became the focus of our fragment development activities, resulting in compound 7d with IC50 0.0067 µM. The large number of Notum fragment structures and their initial optimization provided an important basis for further Notum inhibitor development.


Subject(s)
Crystallography, X-Ray
5.
J Med Chem ; 64(8): 4289-4311, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33783220

ABSTRACT

Regulation of the Wnt signaling pathway is critically important for a number of cellular processes in both development and adult mammalian biology. This Perspective will provide a summary of current and emerging therapeutic opportunities in modulating Wnt signaling, especially through inhibition of Notum carboxylesterase activity. Notum was recently shown to act as a negative regulator of Wnt signaling through the removal of an essential palmitoleate group. Inhibition of Notum activity may represent a new approach to treat disease where aberrant Notum activity has been identified as the underlying cause. Reliable screening technologies are available to identify inhibitors of Notum, and structural studies are accelerating the discovery of new inhibitors. A selection of these hits have been optimized to give fit-for-purpose small molecule inhibitors of Notum. Three noteworthy examples are LP-922056 (26), ABC99 (27), and ARUK3001185 (28), which are complementary chemical tools for exploring the role of Notum in Wnt signaling.


Subject(s)
Enzyme Inhibitors/chemistry , Esterases/antagonists & inhibitors , Wnt Signaling Pathway , Binding Sites , Catalytic Domain , Cell Nucleus/metabolism , Cytoplasm/metabolism , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Esterases/metabolism , Humans , Molecular Dynamics Simulation , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Wnt Signaling Pathway/drug effects
6.
J Med Chem ; 63(21): 12942-12956, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33124429

ABSTRACT

Carboxylesterase Notum is a negative regulator of the Wnt signaling pathway. There is an emerging understanding of the role Notum plays in disease, supporting the need to discover new small-molecule inhibitors. A crystallographic X-ray fragment screen was performed, which identified fragment hit 1,2,3-triazole 7 as an attractive starting point for a structure-based drug design hit-to-lead program. Optimization of 7 identified oxadiazol-2-one 23dd as a preferred example with properties consistent with drug-like chemical space. Screening 23dd in a cell-based TCF/LEF reporter gene assay restored the activation of Wnt signaling in the presence of Notum. Mouse pharmacokinetic studies with oral administration of 23dd demonstrated good plasma exposure and partial blood-brain barrier penetration. Significant progress was made in developing fragment hit 7 into lead 23dd (>600-fold increase in activity), making it suitable as a new chemical tool for exploring the role of Notum-mediated regulation of Wnt signaling.


Subject(s)
Enzyme Inhibitors/chemistry , Esterases/antagonists & inhibitors , Oxadiazoles/chemistry , Administration, Oral , Animals , Binding Sites , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Esterases/metabolism , Half-Life , Humans , Inhibitory Concentration 50 , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Molecular Dynamics Simulation , Oxadiazoles/pharmacokinetics , Oxadiazoles/pharmacology , Structure-Activity Relationship , Wnt Signaling Pathway/drug effects
7.
J Med Chem ; 63(17): 9464-9483, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32787107

ABSTRACT

The Wnt family of proteins are secreted signaling proteins that play key roles in regulating cellular functions. Recently, carboxylesterase Notum was shown to act as a negative regulator of Wnt signaling by mediating the removal of an essential palmitoleate. Here we disclose two new chemical scaffolds that inhibit Notum enzymatic activity. Our approach was to create a fragment library of 250 acids for screening against Notum in a biochemical assay followed by structure determination by X-ray crystallography. Twenty fragments were identified as hits for Notum inhibition, and 14 of these fragments were shown to bind in the palmitoleate pocket of Notum. Optimization of 1-phenylpyrrole 20, guided by structure-based drug design, identified 20z as the most potent compound from this series. Similarly, the optimization of 1-phenylpyrrolidine 8 gave acid 26. This work demonstrates that inhibition of Notum activity can be achieved by small, drug-like molecules possessing favorable in vitro ADME profiles.


Subject(s)
Carboxylic Ester Hydrolases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Carboxylic Ester Hydrolases/chemistry , Drug Evaluation, Preclinical , Models, Molecular , Protein Conformation
8.
J Med Chem ; 63(8): 4047-4068, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32275432

ABSTRACT

Deregulation of the transcriptional repressor BCL6 enables tumorigenesis of germinal center B-cells, and hence BCL6 has been proposed as a therapeutic target for the treatment of diffuse large B-cell lymphoma (DLBCL). Herein we report the discovery of a series of benzimidazolone inhibitors of the protein-protein interaction between BCL6 and its co-repressors. A subset of these inhibitors were found to cause rapid degradation of BCL6, and optimization of pharmacokinetic properties led to the discovery of 5-((5-chloro-2-((3R,5S)-4,4-difluoro-3,5-dimethylpiperidin-1-yl)pyrimidin-4-yl)amino)-3-(3-hydroxy-3-methylbutyl)-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (CCT369260), which reduces BCL6 levels in a lymphoma xenograft mouse model following oral dosing.


Subject(s)
Benzimidazoles/administration & dosage , Benzimidazoles/chemistry , Drug Delivery Systems/methods , Drug Discovery/methods , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-6/metabolism , Animals , Cell Line, Tumor , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, SCID , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley , Xenograft Model Antitumor Assays/methods
9.
Mol Cancer Ther ; 18(10): 1696-1707, 2019 10.
Article in English | MEDLINE | ID: mdl-31575759

ABSTRACT

BOS172722 (CCT289346) is a highly potent, selective, and orally bioavailable inhibitor of spindle assembly checkpoint kinase MPS1. BOS172722 treatment alone induces significant sensitization to death, particularly in highly proliferative triple-negative breast cancer (TNBC) cell lines with compromised spindle assembly checkpoint activity. BOS172722 synergizes with paclitaxel to induce gross chromosomal segregation defects caused by MPS1 inhibitor-mediated abrogation of the mitotic delay induced by paclitaxel treatment. In in vivo pharmacodynamic experiments, BOS172722 potently inhibits the spindle assembly checkpoint induced by paclitaxel in human tumor xenograft models of TNBC, as measured by inhibition of the phosphorylation of histone H3 and the phosphorylation of the MPS1 substrate, KNL1. This mechanistic synergy results in significant in vivo efficacy, with robust tumor regressions observed for the combination of BOS172722 and paclitaxel versus either agent alone in long-term efficacy studies in multiple human tumor xenograft TNBC models, including a patient-derived xenograft and a systemic metastasis model. The current target indication for BOS172722 is TNBC, based on their high sensitivity to MPS1 inhibition, the well-defined clinical patient population with high unmet need, and the synergy observed with paclitaxel.


Subject(s)
Cell Cycle Checkpoints , Pyrimidines/pharmacology , Spindle Apparatus/metabolism , Triazoles/pharmacology , Triple Negative Breast Neoplasms/pathology , Animals , Biological Availability , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Chromosome Segregation/drug effects , Chromosomes, Human/genetics , Drug Synergism , Humans , Mice , PTEN Phosphohydrolase/metabolism , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Pyrimidines/chemistry , Spindle Apparatus/drug effects , Triazoles/chemistry , Triple Negative Breast Neoplasms/drug therapy
10.
J Med Chem ; 61(18): 8226-8240, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30199249

ABSTRACT

Monopolar spindle 1 (MPS1) occupies a central role in mitosis and is one of the main components of the spindle assembly checkpoint. The MPS1 kinase is an attractive cancer target, and herein, we report the discovery of the clinical candidate BOS172722. The starting point for our work was a series of pyrido[3,4- d]pyrimidine inhibitors that demonstrated excellent potency and kinase selectivity but suffered from rapid turnover in human liver microsomes (HLM). Optimizing HLM stability proved challenging since it was not possible to identify a consistent site of metabolism and lowering lipophilicity proved unsuccessful. Key to overcoming this problem was the finding that introduction of a methyl group at the 6-position of the pyrido[3,4- d]pyrimidine core significantly improved HLM stability. Met ID studies suggested that the methyl group suppressed metabolism at the distant aniline portion of the molecule, likely by blocking the preferred pharmacophore through which P450 recognized the compound. This work ultimately led to the discovery of BOS172722 as a Phase 1 clinical candidate.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Drug Discovery , Microsomes, Liver/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/chemistry , Pyrimidines/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Animals , Cell Cycle Proteins/metabolism , Cells, Cultured , Clinical Trials, Phase I as Topic , Female , Humans , Male , Methylation , Mice , Microsomes, Liver/drug effects , Models, Molecular , Molecular Structure , Protein Conformation , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Pyrimidines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Tissue Distribution , Triazoles/pharmacokinetics
11.
J Med Chem ; 59(8): 3671-88, 2016 04 28.
Article in English | MEDLINE | ID: mdl-27055065

ABSTRACT

Monopolar spindle 1 (MPS1) plays a central role in the transition of cells from metaphase to anaphase and is one of the main components of the spindle assembly checkpoint. Chromosomally unstable cancer cells rely heavily on MPS1 to cope with the stress arising from abnormal numbers of chromosomes and centrosomes and are thus more sensitive to MPS1 inhibition than normal cells. We report the discovery and optimization of a series of new pyrido[3,4-d]pyrimidine based inhibitors via a structure-based hybridization approach from our previously reported inhibitor CCT251455 and a modestly potent screening hit. Compounds in this novel series display excellent potency and selectivity for MPS1, which translates into biomarker modulation in an in vivo human tumor xenograft model.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Cell Cycle Proteins/chemistry , Drug Discovery , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/chemistry , Protein-Tyrosine Kinases/chemistry
12.
Org Biomol Chem ; 5(16): 2636-44, 2007 Aug 21.
Article in English | MEDLINE | ID: mdl-18019539

ABSTRACT

Five and six ring a-phosphono lactams 14-20 are available by reaction of 1,2- and 1,3-cyclic sulfamidates respectively with enolates derived from ethyl dialkylphosphonoacetates 3 and 4. Subsequent Wadsworth-Emmons olefination provides the enantiomerically pure exo-alkylidene variants e.g. 25, which is efficiently converted to vinyl triflate 29 (> 98% ee). Suzuki coupling of 29 to a range of aryl and vinyl boronic acids leads to a structurally diverse range of pyrrolidinones exemplified by 30 and 34. The degree of epimerisation at the base-sensitive C(5) stereocentre during the Suzuki coupling of 29 is shown to be dependent on both the nature of the aryl boronic acid and the reaction conditions used.


Subject(s)
Ketones/chemistry , Lactams/chemical synthesis , Organophosphonates/chemistry , Sulfonamides/chemistry , Cyclization , Lactams/chemistry , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL