Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Cell Commun Signal ; 22(1): 106, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38336645

ABSTRACT

Aquaporins (AQPs) are ubiquitous channel proteins that play a critical role in the homeostasis of the cellular environment by allowing the transit of water, chemicals, and ions. They can be found in many different types of cells and organs, including the lungs, eyes, brain, glands, and blood vessels. By controlling the osmotic water flux in processes like cell growth, energy metabolism, migration, adhesion, and proliferation, AQPs are capable of exerting their regulatory influence over a wide range of cellular processes. Tumour cells of varying sources express AQPs significantly, especially in malignant tumours with a high propensity for metastasis. New insights into the roles of AQPs in cell migration and proliferation reinforce the notion that AQPs are crucial players in tumour biology. AQPs have recently been shown to be a powerful tool in the fight against pathogenic antibodies and metastatic cell migration, despite the fact that the molecular processes of aquaporins in pathology are not entirely established. In this review, we shall discuss the several ways in which AQPs are expressed in the body, the unique roles they play in tumorigenesis, and the novel therapeutic approaches that could be adopted to treat carcinoma.


Subject(s)
Aquaporins , Neoplasms , Humans , Neoplasms/pathology , Carcinogenesis , Cell Transformation, Neoplastic , Water/metabolism , Aquaporins/chemistry , Aquaporins/metabolism
2.
Neuromolecular Med ; 26(1): 20, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744725

ABSTRACT

The salient features of autism spectrum disorder (ASD) encompass persistent difficulties in social communication, as well as the presence of restricted and repetitive facets of behavior, hobbies, or pursuits, which are often accompanied with cognitive limitations. Over the past few decades, a sizable number of studies have been conducted to enhance our understanding of the pathophysiology of ASD. Preclinical rat models have proven to be extremely valuable in simulating and analyzing the roles of a wide range of established environmental and genetic factors. Recent research has also demonstrated the significant involvement of the endocannabinoid system (ECS) in the pathogenesis of several neuropsychiatric diseases, including ASD. In fact, the ECS has the potential to regulate a multitude of metabolic and cellular pathways associated with autism, including the immune system. Moreover, the ECS has emerged as a promising target for intervention with high predictive validity. Particularly noteworthy are resent preclinical studies in rodents, which describe the onset of ASD-like symptoms after various genetic or pharmacological interventions targeting the ECS, providing encouraging evidence for further exploration in this area.


Subject(s)
Autism Spectrum Disorder , Disease Models, Animal , Endocannabinoids , Endocannabinoids/physiology , Endocannabinoids/metabolism , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Animals , Humans , Rats , Receptors, Cannabinoid/physiology , Mice , Child
3.
Curr Gene Ther ; 11(2): 144-53, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21291355

ABSTRACT

Classical non-viral methods of gene transfer, such as chemical transfection, have met with limited success of instillation of genetic material into non-proliferating cells in vitro. Among the different kinds of viral vectors, Lentiviral vectors (LVs) have emerged as robust and versatile tool for ex vivo and in vivo gene delivery into multiple cell types including non-dividing cells such as neurons. The capacity of LVs to maintain stable, long-term transgene expression and the substantial flexibility in the design of the expression cassettes account for their increasing use in various pre-clinical and clinical applications. Additionally, LVs have been hugely successful in reprogramming induced pluripotent stem cells (iPSCs). Recent development using LVs in conjunction with a Cre-Lox based reversible system has opened up many new possibilities towards therapeutic application of iPSC technology in various clinical settings. Moreover, improvements in term of biosafety and efficacy, achieved either by modifying the vector design or by involving integration-deficient LVs (IDLVs), have important implications for adoption of LV as the vector of choice for clinical trials. Several human gene therapy clinical trials evaluating the use of LVs for treatment: of human diseases such as Parkinson's disease, ß-thalassemia, X-linked adrenoleukodystrophy (ALD), and AIDS are currently ongoing. This review will describe the state of the art achieved by LV technology, its impact on biomedical research, and implications to human clinical trials as therapeutic gene delivery vehicle for a wide range of infectious and genetic diseases.


Subject(s)
Genetic Vectors/genetics , Lentivirus/genetics , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/therapy , Animals , Biomedical Research , Genetic Therapy , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Lentivirus/metabolism , beta-Thalassemia/genetics , beta-Thalassemia/therapy
SELECTION OF CITATIONS
SEARCH DETAIL