Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
2.
Cell ; 158(1): 185-197, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24954535

ABSTRACT

Activating mutations in KRAS are among the most frequent events in diverse human carcinomas and are particularly prominent in human pancreatic ductal adenocarcinoma (PDAC). An inducible Kras(G12D)-driven mouse model of PDAC has established a critical role for sustained Kras(G12D) expression in tumor maintenance, providing a model to determine the potential for and the underlying mechanisms of Kras(G12D)-independent PDAC recurrence. Here, we show that some tumors undergo spontaneous relapse and are devoid of Kras(G12D) expression and downstream canonical MAPK signaling and instead acquire amplification and overexpression of the transcriptional coactivator Yap1. Functional studies established the role of Yap1 and the transcriptional factor Tead2 in driving Kras(G12D)-independent tumor maintenance. The Yap1/Tead2 complex acts cooperatively with E2F transcription factors to activate a cell cycle and DNA replication program. Our studies, along with corroborating evidence from human PDAC models, portend a novel mechanism of escape from oncogenic Kras addiction in PDAC.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Phosphoproteins/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Adenocarcinoma/pathology , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Cycle , Cell Cycle Proteins , Cell Line, Tumor , DNA Replication , DNA-Binding Proteins/metabolism , Disease Models, Animal , E2F Transcription Factors/metabolism , Humans , Mice , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins/metabolism , TEA Domain Transcription Factors , Transcription Factors/metabolism , YAP-Signaling Proteins , ras Proteins/metabolism
3.
Nature ; 619(7970): 632-639, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37344599

ABSTRACT

Sex exerts a profound impact on cancer incidence, spectrum and outcomes, yet the molecular and genetic bases of such sex differences are ill-defined and presumptively ascribed to X-chromosome genes and sex hormones1. Such sex differences are particularly prominent in colorectal cancer (CRC) in which men experience higher metastases and mortality. A murine CRC model, engineered with an inducible transgene encoding oncogenic mutant KRASG12D and conditional null alleles of Apc and Trp53 tumour suppressors (designated iKAP)2, revealed higher metastases and worse outcomes specifically in males with oncogenic mutant KRAS (KRAS*) CRC. Integrated cross-species molecular and transcriptomic analyses identified Y-chromosome gene histone demethylase KDM5D as a transcriptionally upregulated gene driven by KRAS*-mediated activation of the STAT4 transcription factor. KDM5D-dependent chromatin mark and transcriptome changes showed repression of regulators of the epithelial cell tight junction and major histocompatibility complex class I complex components. Deletion of Kdm5d in iKAP cancer cells increased tight junction integrity, decreased cell invasiveness and enhanced cancer cell killing by CD8+ T cells. Conversely, iAP mice engineered with a Kdm5d transgene to provide constitutive Kdm5d expression specifically in iAP cancer cells showed an increased propensity for more invasive tumours in vivo. Thus, KRAS*-STAT4-mediated upregulation of Y chromosome KDM5D contributes substantially to the sex differences in KRAS* CRC by means of its disruption of cancer cell adhesion properties and tumour immunity, providing an actionable therapeutic strategy for metastasis risk reduction for men afflicted with KRAS* CRC.


Subject(s)
Colorectal Neoplasms , Histone Demethylases , Minor Histocompatibility Antigens , Sex Characteristics , Animals , Female , Humans , Male , Mice , CD8-Positive T-Lymphocytes/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Disease Models, Animal , Histone Demethylases/genetics , Histone Demethylases/metabolism , Mice, Transgenic , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Up-Regulation
4.
Genes Dev ; 35(19-20): 1327-1332, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34531315

ABSTRACT

Activating mutations in KRAS (KRAS*) are present in nearly all pancreatic ductal adenocarcinoma (PDAC) cases and critical for tumor maintenance. By using an inducible KRAS* PDAC mouse model, we identified a deubiquitinase USP21-driven resistance mechanism to anti-KRAS* therapy. USP21 promotes KRAS*-independent tumor growth via its regulation of MARK3-induced macropinocytosis, which serves to maintain intracellular amino acid levels for anabolic growth. The USP21-mediated KRAS* bypass, coupled with the frequent amplification of USP21 in human PDAC tumors, encourages the assessment of USP21 as a novel drug target as well as a potential parameter that may affect responsiveness to emergent anti-KRAS* therapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Deubiquitinating Enzymes/metabolism , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Ubiquitin Thiolesterase
5.
Cell ; 155(2): 462-77, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24120142

ABSTRACT

We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.


Subject(s)
Brain Neoplasms/genetics , Glioblastoma/genetics , Brain Neoplasms/metabolism , Female , Gene Expression Profiling , Gene Regulatory Networks , Glioblastoma/metabolism , Humans , Male , Mutation , Proteome/analysis , Signal Transduction
6.
Cell ; 148(5): 896-907, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22341455

ABSTRACT

To determine the role of telomere dysfunction and telomerase reactivation in generating pro-oncogenic genomic events and in carcinoma progression, an inducible telomerase reverse transcriptase (mTert) allele was crossed onto a prostate cancer-prone mouse model null for Pten and p53 tumor suppressors. Constitutive telomerase deficiency and associated telomere dysfunction constrained cancer progression. In contrast, telomerase reactivation in the setting of telomere dysfunction alleviated intratumoral DNA-damage signaling and generated aggressive cancers with rearranged genomes and new tumor biological properties (bone metastases). Comparative oncogenomic analysis revealed numerous recurrent amplifications and deletions of relevance to human prostate cancer. Murine tumors show enrichment of the TGF-ß/SMAD4 network, and genetic validation studies confirmed the cooperative roles of Pten, p53, and Smad4 deficiencies in prostate cancer progression, including skeletal metastases. Thus, telomerase reactivation in tumor cells experiencing telomere dysfunction enables full malignant progression and provides a mechanism for acquisition of cancer-relevant genomic events endowing new tumor biological capabilities.


Subject(s)
Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Telomerase/metabolism , Telomere/metabolism , Animals , Bone Neoplasms/secondary , Cell Line, Tumor , Crosses, Genetic , DNA Copy Number Variations , Disease Models, Animal , Female , Genomic Instability , Humans , Male , Mice , Tumor Suppressor Protein p53/metabolism
7.
Genes Dev ; 33(19-20): 1361-1366, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31488580

ABSTRACT

The ubiquitin-specific protease (USP) family is the largest group of cysteine proteases. Cancer genomic analysis identified frequent amplification of USP21 (22%) in human pancreatic ductal adenocarcinoma (PDAC). USP21 overexpression correlates with human PDAC progression, and enforced expression of USP21 accelerates murine PDAC tumor growth and drives PanIN to PDAC progression in immortalized human pancreatic ductal cells. Conversely, depletion of USP21 impairs PDAC tumor growth. Mechanistically, USP21 deubiquitinates and stabilizes the TCF/LEF transcription factor TCF7, which promotes cancer cell stemness. Our work identifies and validates USP21 as a PDAC oncogene, providing a potential druggable target for this intractable disease.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Pancreatic Neoplasms/enzymology , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Wnt Signaling Pathway/genetics , Animals , Cell Line, Tumor , Humans , Mice , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/physiopathology , T Cell Transcription Factor 1 , Ubiquitination , Pancreatic Neoplasms
8.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34475205

ABSTRACT

Prostate cancer is a leading cause of cancer-related mortality in men. The widespread use of androgen receptor (AR) inhibitors has generated an increased incidence of AR-negative prostate cancer, triggering the need for effective therapies for such patients. Here, analysis of public genome-wide CRISPR screens in human prostate cancer cell lines identified histone demethylase JMJD1C (KDM3C) as an AR-negative context-specific vulnerability. Secondary validation studies in multiple cell lines and organoids, including isogenic models, confirmed that small hairpin RNA (shRNA)-mediated depletion of JMJD1C potently inhibited growth specifically in AR-negative prostate cancer cells. To explore the cooperative interactions of AR and JMJD1C, we performed comparative transcriptomics of 1) isogenic AR-positive versus AR-negative prostate cancer cells, 2) AR-positive versus AR-negative prostate cancer tumors, and 3) isogenic JMJD1C-expressing versus JMJD1C-depleted AR-negative prostate cancer cells. Loss of AR or JMJD1C generates a modest tumor necrosis factor alpha (TNFα) signature, whereas combined loss of AR and JMJD1C strongly up-regulates the TNFα signature in human prostate cancer, suggesting TNFα signaling as a point of convergence for the combined actions of AR and JMJD1C. Correspondingly, AR-negative prostate cancer cells showed exquisite sensitivity to TNFα treatment and, conversely, TNFα pathway inhibition via inhibition of its downstream effector MAP4K4 partially reversed the growth defect of JMJD1C-depleted AR-negative prostate cancer cells. Given the deleterious systemic side effects of TNFα therapy in humans and the viability of JMJD1C-knockout mice, the identification of JMJD1C inhibition as a specific vulnerability in AR-negative prostate cancer may provide an alternative drug target for prostate cancer patients progressing on AR inhibitor therapy.


Subject(s)
Jumonji Domain-Containing Histone Demethylases/genetics , Oxidoreductases, N-Demethylating/genetics , Prostatic Neoplasms/genetics , Receptors, Androgen/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Databases, Genetic , Histone Demethylases/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Male , Oxidoreductases, N-Demethylating/metabolism , Promoter Regions, Genetic/drug effects , Prostate/pathology , Protein Serine-Threonine Kinases/genetics , Receptors, Androgen/genetics , Signal Transduction/drug effects , Transcriptional Activation/drug effects , Tumor Necrosis Factor-alpha/metabolism
9.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34253611

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory condition driven by diverse genetic and nongenetic programs that converge to disrupt immune homeostasis in the intestine. We have reported that, in murine intestinal epithelium with telomere dysfunction, DNA damage-induced activation of ataxia-telangiectasia mutated (ATM) results in ATM-mediated phosphorylation and activation of the YAP1 transcriptional coactivator, which in turn up-regulates pro-IL-18, a pivotal immune regulator in IBD pathogenesis. Moreover, individuals with germline defects in telomere maintenance genes experience increased occurrence of intestinal inflammation and show activation of the ATM/YAP1/pro-IL-18 pathway in the intestinal epithelium. Here, we sought to determine the relevance of the ATM/YAP1/pro-IL-18 pathway as a potential driver of IBD, particularly older-onset IBD. Analysis of intestinal biopsy specimens and organoids from older-onset IBD patients documented the presence of telomere dysfunction and activation of the ATM/YAP1/precursor of interleukin 18 (pro-IL-18) pathway in the intestinal epithelium. Employing intestinal organoids from healthy individuals, we demonstrated that experimental induction of telomere dysfunction activates this inflammatory pathway. In organoid models from ulcerative colitis and Crohn's disease patients, pharmacological interventions of telomerase reactivation, suppression of DNA damage signaling, or YAP1 inhibition reduced pro-IL-18 production. Together, these findings support a model wherein telomere dysfunction in the intestinal epithelium can initiate the inflammatory process in IBD, pointing to therapeutic interventions for this disease.


Subject(s)
Inflammatory Bowel Diseases/immunology , Telomere/immunology , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/immunology , Humans , Inflammatory Bowel Diseases/genetics , Interleukin-18/genetics , Interleukin-18/immunology , Intestinal Mucosa/immunology , Mice , Telomerase/genetics , Telomerase/immunology , Telomere/genetics , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/immunology
10.
J Autoimmun ; 133: 102952, 2022 12.
Article in English | MEDLINE | ID: mdl-36427410

ABSTRACT

OBJECTIVE: To investigate the changes of Spike protein-HLA binding affinity profiles between the Wuhan strain and two dominant variants, the Delta and the Omicron strains, among the Taiwanese, the British and the Russian populations. METHODS: The HLA frequencies and the HLA-peptide binding affinity profiles in the T-CoV database were combined to conduct the study. We focused on the public alleles in the three populations (HLA-A, HLA-B, HLA-C, HLA-DRB1, and/or HLA-DPA1/DPB1 alleles) and the altered peptides of the spike protein (compared to the Wuhan strain) in the Delta G/478K·V1 (B.1.617.2 + AY.1 + AY.2) and the Omicron (BA.1) strains. RESULTS: For the Delta strain, tight bindings of the altered peptides to the HLA alleles decrease in all three populations and almost vanish in the Taiwanese population. For the Omicron strain, tight bindings are mostly preserved for both HLA classes and in the Taiwanese and the British populations, with a slight reduction in HLA class II in the Taiwanese (1.4%), while the Russian population preserves a relatively high fraction of tight bindings for both HLA classes. CONCLUSION: We comprehensively reported the changes in the HLA-associated SARS-CoV-2 Spike protein peptide binding profiles among the Taiwanese, the British, and the Russian populations. Further studies are needed to understand the immunological mechanisms and the clinical value of our findings.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/genetics
11.
Nature ; 470(7333): 269-73, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21289624

ABSTRACT

Effective clinical management of prostate cancer (PCA) has been challenged by significant intratumoural heterogeneity on the genomic and pathological levels and limited understanding of the genetic elements governing disease progression. Here, we exploited the experimental merits of the mouse to test the hypothesis that pathways constraining progression might be activated in indolent Pten-null mouse prostate tumours and that inactivation of such progression barriers in mice would engender a metastasis-prone condition. Comparative transcriptomic and canonical pathway analyses, followed by biochemical confirmation, of normal prostate epithelium versus poorly progressive Pten-null prostate cancers revealed robust activation of the TGFß/BMP-SMAD4 signalling axis. The functional relevance of SMAD4 was further supported by emergence of invasive, metastatic and lethal prostate cancers with 100% penetrance upon genetic deletion of Smad4 in the Pten-null mouse prostate. Pathological and molecular analysis as well as transcriptomic knowledge-based pathway profiling of emerging tumours identified cell proliferation and invasion as two cardinal tumour biological features in the metastatic Smad4/Pten-null PCA model. Follow-on pathological and functional assessment confirmed cyclin D1 and SPP1 as key mediators of these biological processes, which together with PTEN and SMAD4, form a four-gene signature that is prognostic of prostate-specific antigen (PSA) biochemical recurrence and lethal metastasis in human PCA. This model-informed progression analysis, together with genetic, functional and translational studies, establishes SMAD4 as a key regulator of PCA progression in mice and humans.


Subject(s)
Disease Progression , Neoplasm Metastasis/pathology , Prostatic Neoplasms/pathology , Smad4 Protein/metabolism , Animals , Bone Morphogenetic Proteins/metabolism , Cell Proliferation , Cyclin D1/genetics , Cyclin D1/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor/physiology , Humans , Lung Neoplasms/secondary , Lymphatic Metastasis , Male , Mice , Mice, Transgenic , Models, Biological , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/genetics , Osteopontin/genetics , Osteopontin/metabolism , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , Penetrance , Prognosis , Prostate/metabolism , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Smad4 Protein/deficiency , Smad4 Protein/genetics , Transforming Growth Factor beta
12.
Nat Cancer ; 5(2): 262-282, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38195932

ABSTRACT

The contribution of antitumor immunity to metastatic dormancy is poorly understood. Here we show that the long noncoding RNA Malat1 is required for tumor initiation and metastatic reactivation in mouse models of breast cancer and other tumor types. Malat1 localizes to nuclear speckles to couple transcription, splicing and mRNA maturation. In metastatic cells, Malat1 induces WNT ligands, autocrine loops to promote self-renewal and the expression of Serpin protease inhibitors. Through inhibition of caspase-1 and cathepsin G, SERPINB6B prevents gasdermin D-mediated induction of pyroptosis. In this way, SERPINB6B suppresses immunogenic cell death and confers evasion of T cell-mediated tumor lysis of incipient metastatic cells. On-target inhibition of Malat1 using therapeutic antisense nucleotides suppresses metastasis in a SERPINB6B-dependent manner. These results suggest that Malat1-induced expression of SERPINB6B can titrate pyroptosis and immune recognition at metastatic sites. Thus, Malat1 is at the nexus of tumor initiation, reactivation and immune evasion and represents a tractable and clinically relevant drug target.


Subject(s)
RNA, Long Noncoding , Animals , Mice , Cell Line, Tumor , Pyroptosis , RNA Splicing , RNA, Long Noncoding/genetics , T-Lymphocytes/metabolism
13.
Front Genet ; 14: 1172365, 2023.
Article in English | MEDLINE | ID: mdl-37234870

ABSTRACT

Identification of germline pathogenic variants in cancer patients is critical for treatment planning, genetic counseling, and health policymaking. However, previous estimates of the prevalence of germline etiology of pancreatic ductal adenocarcinoma (PDAC) were biased because they were based only on sequencing data of protein-coding regions of known PDAC candidate genes. To determine the percentage of patients with PDAC carrying germline pathogenic variants, we enrolled the inpatients from the digestive health clinics, hematology and oncology clinics, and surgical clinics of a single tertiary medical center in Taiwan for whole genome sequencing (WGS) analysis of genomic DNA. The virtual gene panel of 750 genes comprised PDAC candidate genes and those listed in the COSMIC Cancer Gene Census. The genetic variant types under investigation included single nucleotide substitutions, small indels, structural variants, and mobile element insertions (MEIs). In 8 of 24 (33.3%) patients with PDAC, we identified pathogenic/likely pathogenic variants, including single nucleotide substitutions and small indels in ATM, BRCA1, BRCA2, POLQ, SPINK1 and CASP8, as well as structural variants in CDC25C and USP44. We identified additional patients carrying variants that could potentially affect splicing. This cohort study demonstrates that an extensive analysis of the abundant information yielded by the WGS approach can uncover many pathogenic variants that could be missed by traditional panel-based or whole exome sequencing-based approaches. The percentage of patients with PDAC carrying germline variants might be much higher than previously expected.

14.
Cancer Discov ; 13(12): 2652-2673, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37768068

ABSTRACT

Oncogenic KRAS (KRAS*) contributes to many cancer hallmarks. In colorectal cancer, KRAS* suppresses antitumor immunity to promote tumor invasion and metastasis. Here, we uncovered that KRAS* transforms the phenotype of carcinoma-associated fibroblasts (CAF) into lipid-laden CAFs, promoting angiogenesis and tumor progression. Mechanistically, KRAS* activates the transcription factor CP2 (TFCP2) that upregulates the expression of the proadipogenic factors BMP4 and WNT5B, triggering the transformation of CAFs into lipid-rich CAFs. These lipid-rich CAFs, in turn, produce VEGFA to spur angiogenesis. In KRAS*-driven colorectal cancer mouse models, genetic or pharmacologic neutralization of TFCP2 reduced lipid-rich CAFs, lessened tumor angiogenesis, and improved overall survival. Correspondingly, in human colorectal cancer, lipid-rich CAF and TFCP2 signatures correlate with worse prognosis. This work unveils a new role for KRAS* in transforming CAFs, driving tumor angiogenesis and disease progression, providing an actionable therapeutic intervention for KRAS*-driven colorectal cancer. SIGNIFICANCE: This study identified a molecular mechanism contributing to KRAS*-driven colorectal cancer progression via fibroblast transformation in the tumor microenvironment to produce VEGFA driving tumor angiogenesis. In preclinical models, targeting the KRAS*-TFCP2-VEGFA axis impaired tumor progression, revealing a potential novel therapeutic option for patients with KRAS*-driven colorectal cancer. This article is featured in Selected Articles from This Issue, p. 2489.


Subject(s)
Cancer-Associated Fibroblasts , Colonic Neoplasms , Proto-Oncogene Proteins p21(ras) , Animals , Humans , Mice , Angiogenesis , Cancer-Associated Fibroblasts/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colorectal Neoplasms/metabolism , DNA-Binding Proteins/metabolism , Fibroblasts/metabolism , Lipids , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Transcription Factors/metabolism , Tumor Microenvironment/genetics
15.
Nat Cancer ; 4(1): 62-80, 2023 01.
Article in English | MEDLINE | ID: mdl-36585453

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is considered non-immunogenic, with trials showing its recalcitrance to PD1 and CTLA4 immune checkpoint therapies (ICTs). Here, we sought to systematically characterize the mechanisms underlying de novo ICT resistance and to identify effective therapeutic options for PDAC. We report that agonist 41BB and antagonist LAG3 ICT alone and in combination, increased survival and antitumor immunity, characterized by modulating T cell subsets with antitumor activity, increased T cell clonality and diversification, decreased immunosuppressive myeloid cells and increased antigen presentation/decreased immunosuppressive capability of myeloid cells. Translational analyses confirmed the expression of 41BB and LAG3 in human PDAC. Since single and dual ICTs were not curative, T cell-activating ICTs were combined with a CXCR1/2 inhibitor targeting immunosuppressive myeloid cells. Triple therapy resulted in durable complete responses. Given similar profiles in human PDAC and the availability of these agents for clinical testing, our findings provide a testable hypothesis for this lethal disease.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/drug therapy , Myeloid Cells/pathology , Pancreatic Neoplasms/drug therapy , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology , Receptors, Interleukin-8A/immunology , Pancreatic Neoplasms
16.
Cancer Discov ; 12(7): 1702-1717, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35537038

ABSTRACT

Inactivation of adenomatous polyposis coli (APC) is common across many cancer types and serves as a critical initiating event in most sporadic colorectal cancers. APC deficiency activates WNT signaling, which remains an elusive target for cancer therapy, prompting us to apply the synthetic essentiality framework to identify druggable vulnerabilities for APC-deficient cancers. Tryptophan 2,3-dioxygenase 2 (TDO2) was identified as a synthetic essential effector of APC-deficient colorectal cancer. Mechanistically, APC deficiency results in the TCF4/ß-catenin-mediated upregulation of TDO2 gene transcription. TDO2 in turn activates the Kyn-AhR pathway, which increases glycolysis to drive anabolic cancer cell growth and CXCL5 secretion to recruit macrophages into the tumor microenvironment. Therapeutically, APC-deficient colorectal cancer models were susceptible to TDO2 depletion or pharmacologic inhibition, which impaired cancer cell proliferation and enhanced antitumor immune profiles. Thus, APC deficiency activates a TCF4-TDO2-AhR-CXCL5 circuit that affects multiple cancer hallmarks via autonomous and nonautonomous mechanisms and illuminates a genotype-specific vulnerability in colorectal cancer. SIGNIFICANCE: This study identifies critical effectors in the maintenance of APC-deficient colorectal cancer and demonstrates the relationship between APC/WNT pathway and kynurenine pathway signaling. It further determines the tumor-associated macrophage biology in APC-deficient colorectal cancer, informing genotype-specific therapeutic targets and the use of TDO2 inhibitors. This article is highlighted in the In This Issue feature, p. 1599.


Subject(s)
Adenomatous Polyposis Coli , Colorectal Neoplasms , Dioxygenases , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/metabolism , Adenomatous Polyposis Coli/pathology , Colorectal Neoplasms/metabolism , Dioxygenases/metabolism , Humans , Tryptophan , Tryptophan Oxygenase/metabolism , Tumor Microenvironment , Wnt Signaling Pathway/genetics , beta Catenin/genetics , beta Catenin/metabolism
17.
Cancer Cell ; 40(8): 818-834.e9, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35868307

ABSTRACT

In contrast to normal type I collagen (Col1) heterotrimer (α1/α2/α1) produced by fibroblasts, pancreatic cancer cells specifically produce unique Col1 homotrimer (α1/α1/α1). Col1 homotrimer results from epigenetic suppression of the Col1a2 gene and promotes oncogenic signaling, cancer cell proliferation, tumor organoid formation, and growth via α3ß1 integrin on cancer cells, associated with tumor microbiome enriched in anaerobic Bacteroidales in hypoxic and immunosuppressive tumors. Deletion of Col1 homotrimers increases overall survival of mice with pancreatic ductal adenocarcinoma (PDAC), associated with reprograming of the tumor microbiome with increased microaerophilic Campylobacterales, which can be reversed with broad-spectrum antibiotics. Deletion of Col1 homotrimers enhances T cell infiltration and enables efficacy of anti-PD-1 immunotherapy. This study identifies the functional impact of Col1 homotrimers on tumor microbiome and tumor immunity, implicating Col1 homotrimer-α3ß1 integrin signaling axis as a cancer-specific therapeutic target.


Subject(s)
Carcinoma, Pancreatic Ductal , Microbiota , Pancreatic Neoplasms , Animals , Carcinogenesis , Carcinoma, Pancreatic Ductal/genetics , Collagen , Collagen Type I , Integrin alpha3beta1 , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms
18.
Nat Commun ; 13(1): 4000, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810190

ABSTRACT

Melanoma cells display distinct intrinsic phenotypic states. Here, we seek to characterize the molecular regulation of these states using multi-omic analyses of whole exome, transcriptome, microRNA, long non-coding RNA and DNA methylation data together with reverse-phase protein array data on a panel of 68 highly annotated early passage melanoma cell lines. We demonstrate that clearly defined cancer cell intrinsic transcriptomic programs are maintained in melanoma cells ex vivo and remain highly conserved within melanoma tumors, are associated with distinct immune features within tumors, and differentially correlate with checkpoint inhibitor and adoptive T cell therapy efficacy. Through integrative analyses we demonstrate highly complex multi-omic regulation of melanoma cell intrinsic programs that provide key insights into the molecular maintenance of phenotypic states. These findings have implications for cancer biology and the identification of new therapeutic strategies. Further, these deeply characterized cell lines will serve as an invaluable resource for future research in the field.


Subject(s)
Melanoma , MicroRNAs , RNA, Long Noncoding , DNA Methylation , Humans , Melanoma/metabolism , Melanoma/pathology , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Transcriptome
19.
Mol Med ; 17(7-8): 588-98, 2011.
Article in English | MEDLINE | ID: mdl-21519634

ABSTRACT

Stroke is the third leading cause of death in the United States with high rates of morbidity among survivors. The search to fill the unequivocal need for new therapeutic approaches would benefit from unbiased proteomic analyses of animal models of spontaneous stroke in the prestroke stage. Since brain microvessels play key roles in neurovascular coupling, we investigated prestroke microvascular proteome changes. Proteomic analysis of cerebral cortical microvessels (cMVs) was done by tandem mass spectrometry comparing two prestroke time points. Metaprotein-pathway analyses of proteomic spectral count data were done to identify risk factor-induced changes, followed by QSPEC-analyses of individual protein changes associated with increased stroke susceptibility. We report 26 cMV proteome profiles from male and female stroke-prone and non-stroke-prone rats at 2 months and 4.5 months of age prior to overt stroke events. We identified 1,934 proteins by two or more peptides. Metaprotein pathway analysis detected age-associated changes in energy metabolism and cell-to-microenvironment interactions, as well as sex-specific changes in energy metabolism and endothelial leukocyte transmigration pathways. Stroke susceptibility was associated independently with multiple protein changes associated with ischemia, angiogenesis or involved in blood brain barrier (BBB) integrity. Immunohistochemical analysis confirmed aquaporin-4 and laminin-α1 induction in cMVs, representative of proteomic changes with >65 Bayes factor (BF), associated with stroke susceptibility. Altogether, proteomic analysis demonstrates significant molecular changes in ischemic cerebral microvasculature in the prestroke stage, which could contribute to the observed model phenotype of microhemorrhages and postischemic hemorrhagic transformation. These pathways comprise putative targets for translational research of much needed novel diagnostic and therapeutic approaches for stroke.


Subject(s)
Cerebral Cortex/blood supply , Microvessels/metabolism , Proteome/analysis , Proteomics/methods , Animals , Aquaporin 4/analysis , Cerebral Cortex/metabolism , Cerebrovascular Circulation , Cholesterol Ester Transfer Proteins/genetics , Female , Humans , Hyperlipidemias/genetics , Hyperlipidemias/metabolism , Immunohistochemistry , Ischemia/complications , Laminin/analysis , Male , Rats , Rats, Inbred Dahl , Rats, Transgenic , Stroke/etiology , Stroke/genetics , Stroke/metabolism , Tandem Mass Spectrometry , Time Factors
20.
Cancer Cell ; 39(4): 548-565.e6, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33667385

ABSTRACT

Stromal desmoplastic reaction in pancreatic ductal adenocarcinoma (PDAC) involves significant accumulation of type I collagen (Col1). However, the precise molecular and mechanistic contribution of Col1 in PDAC progression remains unknown. Activated pancreatic stellate cells/αSMA+ myofibroblasts are major contributors of Col1 in the PDAC stroma. We use a dual-recombinase genetic mouse model of spontaneous PDAC to delete Col1 specifically in myofibroblasts. This results in significant reduction of total stromal Col1 content and accelerates the emergence of PanINs and PDAC, decreasing overall survival. Col1 deletion leads to Cxcl5 upregulation in cancer cells via SOX9. Increase in Cxcl5 is associated with recruitment of myeloid-derived suppressor cells and suppression of CD8+ T cells, which can be attenuated with combined targeting of CXCR2 and CCR2 to restrain accelerated PDAC progression in the setting of stromal Col1 deletion. Our results unravel the fundamental role of myofibroblast-derived Co1l in regulating tumor immunity and restraining PDAC progression.


Subject(s)
Collagen Type I/metabolism , Myofibroblasts/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Tumor Microenvironment/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Disease Models, Animal , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Stellate Cells/pathology , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL