Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 649
Filter
1.
Cell ; 187(4): 914-930.e20, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38280375

ABSTRACT

The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/ß-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.


Subject(s)
Intestines , Liver , Animals , Mice , Cell Proliferation , Liver/metabolism , PPAR alpha/metabolism , Proteomics , Stem Cells/metabolism , Wnt Signaling Pathway , Intestines/cytology , Intestines/metabolism
2.
Cell ; 185(7): 1172-1188.e28, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35303419

ABSTRACT

Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Sialyltransferases/genetics , Animals , Homeostasis , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice , Mucus/metabolism , Sialyltransferases/metabolism , Symbiosis
3.
Cell ; 180(1): 33-49.e22, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31813624

ABSTRACT

Gut-innervating nociceptor sensory neurons respond to noxious stimuli by initiating protective responses including pain and inflammation; however, their role in enteric infections is unclear. Here, we find that nociceptor neurons critically mediate host defense against the bacterial pathogen Salmonella enterica serovar Typhimurium (STm). Dorsal root ganglia nociceptors protect against STm colonization, invasion, and dissemination from the gut. Nociceptors regulate the density of microfold (M) cells in ileum Peyer's patch (PP) follicle-associated epithelia (FAE) to limit entry points for STm invasion. Downstream of M cells, nociceptors maintain levels of segmentous filamentous bacteria (SFB), a gut microbe residing on ileum villi and PP FAE that mediates resistance to STm infection. TRPV1+ nociceptors directly respond to STm by releasing calcitonin gene-related peptide (CGRP), a neuropeptide that modulates M cells and SFB levels to protect against Salmonella infection. These findings reveal a major role for nociceptor neurons in sensing and defending against enteric pathogens.


Subject(s)
Gastrointestinal Microbiome/physiology , Host Microbial Interactions/physiology , Nociceptors/physiology , Animals , Epithelium/metabolism , Female , Ganglia, Spinal/metabolism , Ganglia, Spinal/microbiology , Intestinal Mucosa/microbiology , Male , Mice , Mice, Inbred C57BL , Nociceptors/metabolism , Peyer's Patches/innervation , Peyer's Patches/metabolism , Salmonella Infections/metabolism , Salmonella typhimurium/metabolism , Salmonella typhimurium/pathogenicity , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology
4.
Immunity ; 57(5): 987-1004.e5, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38614090

ABSTRACT

The development and function of the immune system are controlled by temporospatial gene expression programs, which are regulated by cis-regulatory elements, chromatin structure, and trans-acting factors. In this study, we cataloged the dynamic histone modifications and chromatin interactions at regulatory regions during T helper (Th) cell differentiation. Our data revealed that the H3K4me1 landscape established by MLL4 in naive CD4+ T cells is critical for restructuring the regulatory interaction network and orchestrating gene expression during the early phase of Th differentiation. GATA3 plays a crucial role in further configuring H3K4me1 modification and the chromatin interaction network during Th2 differentiation. Furthermore, we demonstrated that HSS3-anchored chromatin loops function to restrict the activity of the Th2 locus control region (LCR), thus coordinating the expression of Th2 cytokines. Our results provide insights into the mechanisms of how the interplay between histone modifications, chromatin looping, and trans-acting factors contributes to the differentiation of Th cells.


Subject(s)
Cell Differentiation , Chromatin , Histone Code , Histones , Th2 Cells , Cell Differentiation/immunology , Animals , Chromatin/metabolism , Mice , Th2 Cells/immunology , Histones/metabolism , GATA3 Transcription Factor/metabolism , Gene Expression Regulation , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Locus Control Region , Cytokines/metabolism
5.
Immunity ; 57(6): 1243-1259.e8, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38744291

ABSTRACT

Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the "weep" response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine. This response required tuft cell sensory functions and tuft cell-derived acetylcholine (ACh), which acted directly on neighboring epithelial cells to stimulate chloride secretion, independent of neurons. Maximal tuft cell-induced chloride secretion coincided with immune restriction of helminths, and clearance was delayed in mice lacking tuft cell-derived ACh, despite normal type 2 inflammation. Thus, we have uncovered an epithelium-intrinsic response unit that uses ACh to couple tuft cell sensing to the secretory defenses of neighboring epithelial cells.


Subject(s)
Acetylcholine , Chlorides , Epithelial Cells , Intestinal Mucosa , Animals , Acetylcholine/metabolism , Mice , Chlorides/metabolism , Epithelial Cells/metabolism , Epithelial Cells/parasitology , Epithelial Cells/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/parasitology , Intestine, Small/immunology , Intestine, Small/parasitology , Intestine, Small/metabolism , Mice, Inbred C57BL , Mice, Knockout , Tuft Cells
6.
Cell ; 175(5): 1307-1320.e22, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30392957

ABSTRACT

In the small intestine, a niche of accessory cell types supports the generation of mature epithelial cell types from intestinal stem cells (ISCs). It is unclear, however, if and how immune cells in the niche affect ISC fate or the balance between self-renewal and differentiation. Here, we use single-cell RNA sequencing (scRNA-seq) to identify MHC class II (MHCII) machinery enrichment in two subsets of Lgr5+ ISCs. We show that MHCII+ Lgr5+ ISCs are non-conventional antigen-presenting cells in co-cultures with CD4+ T helper (Th) cells. Stimulation of intestinal organoids with key Th cytokines affects Lgr5+ ISC renewal and differentiation in opposing ways: pro-inflammatory signals promote differentiation, while regulatory cells and cytokines reduce it. In vivo genetic perturbation of Th cells or MHCII expression on Lgr5+ ISCs impacts epithelial cell differentiation and IEC fate during infection. These interactions between Th cells and Lgr5+ ISCs, thus, orchestrate tissue-wide responses to external signals.


Subject(s)
Cell Differentiation , Cell Self Renewal , Interleukin-10/metabolism , Stem Cells/cytology , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Cell Differentiation/drug effects , Cell Self Renewal/drug effects , Cytokines/pharmacology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Histocompatibility Antigens Class II/metabolism , Immune System/metabolism , Intestines/cytology , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Receptors, G-Protein-Coupled/metabolism , Salmonella enterica/pathogenicity , Stem Cells/metabolism , T-Lymphocytes, Helper-Inducer/cytology
7.
Immunity ; 56(7): 1533-1547.e7, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37354904

ABSTRACT

The crosstalk between the immune and neuroendocrine systems is critical for intestinal homeostasis and gut-brain communications. However, it remains unclear how immune cells participate in gut sensation of hormones and neurotransmitters release in response to environmental cues, such as self-lipids and microbial lipids. We show here that lipid-mediated engagement of invariant natural killer T (iNKT) cells with enterochromaffin (EC) cells, a subset of intestinal epithelial cells, promoted peripheral serotonin (5-HT) release via a CD1d-dependent manner, regulating gut motility and hemostasis. We also demonstrated that inhibitory sphingolipids from symbiotic microbe Bacteroides fragilis represses 5-HT release. Mechanistically, CD1d ligation on EC cells transduced a signal and restrained potassium conductance through activation of protein tyrosine kinase Pyk2, leading to calcium influx and 5-HT secretion. Together, our data reveal that by engaging with iNKT cells, gut chemosensory cells selectively perceive lipid antigens via CD1d to control 5-HT release, modulating intestinal and systemic homeostasis.


Subject(s)
Natural Killer T-Cells , Serotonin , Serotonin/metabolism , Lipids , Antigens, CD1d/metabolism
8.
Immunity ; 56(6): 1187-1203.e12, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37160118

ABSTRACT

B7 ligands (CD80 and CD86), expressed by professional antigen-presenting cells (APCs), activate the main co-stimulatory receptor CD28 on T cells in trans. However, in peripheral tissues, APCs expressing B7 ligands are relatively scarce. This raises the questions of whether and how CD28 co-stimulation occurs in peripheral tissues. Here, we report that CD8+ T cells displayed B7 ligands that interacted with CD28 in cis at membrane invaginations of the immunological synapse as a result of membrane remodeling driven by phosphoinositide-3-kinase (PI3K) and sorting-nexin-9 (SNX9). cis-B7:CD28 interactions triggered CD28 signaling through protein kinase C theta (PKCθ) and promoted CD8+ T cell survival, migration, and cytokine production. In mouse tumor models, loss of T cell-intrinsic cis-B7:CD28 interactions decreased intratumoral T cells and accelerated tumor growth. Thus, B7 ligands on CD8+ T cells can evoke cell-autonomous CD28 co-stimulation in cis in peripheral tissues, suggesting cis-signaling as a general mechanism for boosting T cell functionality.


Subject(s)
CD28 Antigens , CD8-Positive T-Lymphocytes , Mice , Animals , CD28 Antigens/metabolism , Antigens, CD/metabolism , Ligands , Synaptic Membranes/metabolism , B7-2 Antigen , Membrane Glycoproteins/metabolism , B7-1 Antigen/metabolism , Cell Adhesion Molecules , Lymphocyte Activation
9.
Immunity ; 56(5): 944-958.e6, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37040761

ABSTRACT

Interferon-γ (IFN-γ) is a key cytokine in response to viral or intracellular bacterial infection in mammals. While a number of enhancers are described to promote IFN-γ responses, to the best of our knowledge, no silencers for the Ifng gene have been identified. By examining H3K4me1 histone modification in naive CD4+ T cells within Ifng locus, we identified a silencer (CNS-28) that restrains Ifng expression. Mechanistically, CNS-28 maintains Ifng silence by diminishing enhancer-promoter interactions within Ifng locus in a GATA3-dependent but T-bet-independent manner. Functionally, CNS-28 restrains Ifng transcription in NK cells, CD4+ cells, and CD8+ T cells during both innate and adaptive immune responses. Moreover, CNS-28 deficiency resulted in repressed type 2 responses due to elevated IFN-γ expression, shifting Th1 and Th2 paradigm. Thus, CNS-28 activity ensures immune cell quiescence by cooperating with other regulatory cis elements within the Ifng gene locus to minimize autoimmunity.


Subject(s)
CD8-Positive T-Lymphocytes , Interferon-gamma , Animals , Interferon-gamma/genetics , Interferon-gamma/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Regulatory Sequences, Nucleic Acid , Homeostasis , Th1 Cells , Mammals
10.
Immunity ; 54(1): 151-163.e6, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33220232

ABSTRACT

The gastrointestinal tract is known as the largest endocrine organ that encounters and integrates various immune stimulations and neuronal responses due to constant environmental challenges. Enterochromaffin (EC) cells, which function as chemosensors on the gut epithelium, are known to translate environmental cues into serotonin (5-HT) production, contributing to intestinal physiology. However, how immune signals participate in gut sensation and neuroendocrine response remains unclear. Interleukin-33 (IL-33) acts as an alarmin cytokine by alerting the system of potential environmental stresses. We here demonstrate that IL-33 induced instantaneous peristaltic movement and facilitated Trichuris muris expulsion. We found that IL-33 could be sensed by EC cells, inducing release of 5-HT. IL-33-mediated 5-HT release activated enteric neurons, subsequently promoting gut motility. Mechanistically, IL-33 triggered calcium influx via a non-canonical signaling pathway specifically in EC cells to induce 5-HT secretion. Our data establish an immune-neuroendocrine axis in calibrating rapid 5-HT release for intestinal homeostasis.


Subject(s)
Enterochromaffin Cells/physiology , Interleukin-33/metabolism , Intestines/physiology , Neurons/physiology , Serotonin/metabolism , Trichuriasis/immunology , Trichuris/physiology , Animals , Calcium Signaling , Homeostasis , Interleukin-33/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroimmunomodulation , Peristalsis
11.
Cell ; 163(6): 1400-12, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26607794

ABSTRACT

Extensive cellular heterogeneity exists within specific immune-cell subtypes classified as a single lineage, but its molecular underpinnings are rarely characterized at a genomic scale. Here, we use single-cell RNA-seq to investigate the molecular mechanisms governing heterogeneity and pathogenicity of Th17 cells isolated from the central nervous system (CNS) and lymph nodes (LN) at the peak of autoimmune encephalomyelitis (EAE) or differentiated in vitro under either pathogenic or non-pathogenic polarization conditions. Computational analysis relates a spectrum of cellular states in vivo to in-vitro-differentiated Th17 cells and unveils genes governing pathogenicity and disease susceptibility. Using knockout mice, we validate four new genes: Gpr65, Plzp, Toso, and Cd5l (in a companion paper). Cellular heterogeneity thus informs Th17 function in autoimmunity and can identify targets for selective suppression of pathogenic Th17 cells while potentially sparing non-pathogenic tissue-protective ones.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/pathology , Sequence Analysis, RNA , Single-Cell Analysis , Th17 Cells/metabolism , Th17 Cells/pathology , Animals , Apoptosis Regulatory Proteins/metabolism , Carrier Proteins/metabolism , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Gene Expression Profiling , Humans , Kruppel-Like Transcription Factors/metabolism , Lymph Nodes/pathology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/metabolism , Peptide Fragments/metabolism , Promyelocytic Leukemia Zinc Finger Protein , Receptors, G-Protein-Coupled/metabolism , Receptors, Immunologic/metabolism , Receptors, Scavenger , Th17 Cells/immunology
12.
Cell ; 163(6): 1413-27, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26607793

ABSTRACT

Th17 cells play a critical role in host defense against extracellular pathogens and tissue homeostasis but can induce autoimmunity. The mechanisms implicated in balancing "pathogenic" and "non-pathogenic" Th17 cell states remain largely unknown. We used single-cell RNA-seq to identify CD5L/AIM as a regulator expressed in non-pathogenic, but not in pathogenic Th17 cells. Although CD5L does not affect Th17 differentiation, it is a functional switch that regulates the pathogenicity of Th17 cells. Loss of CD5L converts non-pathogenic Th17 cells into pathogenic cells that induce autoimmunity. CD5L mediates this effect by modulating the intracellular lipidome, altering fatty acid composition and restricting cholesterol biosynthesis and, thus, ligand availability for Rorγt, the master transcription factor of Th17 cells. Our study identifies CD5L as a critical regulator of the Th17 cell functional state and highlights the importance of lipid metabolism in balancing immune protection and disease induced by T cells.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Lipid Metabolism , Receptors, Immunologic/metabolism , Th17 Cells/pathology , Animals , Cell Differentiation , Central Nervous System/pathology , Cholesterol/biosynthesis , Encephalomyelitis, Autoimmune, Experimental/immunology , Fatty Acids, Unsaturated/metabolism , Humans , Lymph Nodes/pathology , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptors, Scavenger , Single-Cell Analysis , Th17 Cells/immunology
13.
Nat Immunol ; 18(3): 344-353, 2017 03.
Article in English | MEDLINE | ID: mdl-28114290

ABSTRACT

Although master transcription factors (TFs) are key to the development of specific T cell subsets, whether additional transcriptional regulators are induced by the same stimuli that dominantly repress the development of other, non-specific T cell lineages has not been fully elucidated. Through the use of regulatory T cells (Treg cells) induced by transforming growth factor-ß (TGF-ß), we identified the TF musculin (MSC) as being critical for the development of induced Treg cells (iTreg cells) by repression of the T helper type 2 (TH2) transcriptional program. Loss of MSC reduced expression of the Treg cell master TF Foxp3 and induced TH2 differentiation even under iTreg-cell-differentiation conditions. MSC interrupted binding of the TF GATA-3 to the locus encoding TH2-cell-related cytokines and diminished intrachromosomal interactions within that locus. MSC-deficient (Msc-/-) iTreg cells were unable to suppress TH2 responses, and Msc-/- mice spontaneously developed gut and lung inflammation with age. MSC therefore enforced Foxp3 expression and promoted the unidirectional induction of iTreg cells by repressing the TH2 developmental program.


Subject(s)
Cell Differentiation , Inflammation , Intestinal Mucosa/immunology , Pneumonia/immunology , T-Lymphocytes, Regulatory/physiology , Th2 Cells/physiology , Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors , Cells, Cultured , Forkhead Transcription Factors/metabolism , GATA3 Transcription Factor/metabolism , Gene Expression Regulation , Inflammation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors/genetics , Transcription, Genetic , Transforming Growth Factor beta/metabolism
14.
Nat Immunol ; 17(3): 277-85, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26808230

ABSTRACT

Regulatory T (Treg) cells respond to immune and inflammatory signals to mediate immunosuppression, but how the functional integrity of Treg cells is maintained under activating environments is unclear. Here we show that autophagy is active in Treg cells and supports their lineage stability and survival fitness. Treg cell-specific deletion of Atg7 or Atg5, two essential genes in autophagy, leads to loss of Treg cells, greater tumor resistance and development of inflammatory disorders. Atg7-deficient Treg cells show increased apoptosis and readily lose expression of the transcription factor Foxp3, especially after activation. Mechanistically, autophagy deficiency upregulates metabolic regulators mTORC1 and c-Myc and glycolysis, which contribute to defective Treg function. Therefore, autophagy couples environmental signals and metabolic homeostasis to protect lineage and survival integrity of Treg cells in activating contexts.


Subject(s)
Apoptosis/genetics , Autophagy/genetics , Forkhead Transcription Factors/genetics , Microtubule-Associated Proteins/genetics , Multiprotein Complexes/metabolism , Proto-Oncogene Proteins c-myc/metabolism , T-Lymphocytes, Regulatory/immunology , TOR Serine-Threonine Kinases/metabolism , Adenocarcinoma/immunology , Adoptive Transfer , Animals , Apoptosis/immunology , Autophagy/immunology , Autophagy-Related Protein 5 , Autophagy-Related Protein 7 , Cell Line, Tumor , Colonic Neoplasms/immunology , DNA Methylation , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation , Glycolysis , Homeostasis , Immunoblotting , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Knockout , Neoplasm Transplantation , Real-Time Polymerase Chain Reaction , Up-Regulation
16.
J Biol Chem ; : 107581, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025450

ABSTRACT

Because of their ability to induce lymphocyte apoptosis, glucocorticoids (GC) are widely used to treat hematological malignancies such as lymphomas and multiple myeloma. Their effectiveness is often limited, however, due to the development of glucocorticoid resistance by a variety of molecular mechanisms. Here we performed an unbiased genome-wide CRISPR screen with the human T cell leukemia cell line Jurkat to find previously unidentified genes required for GC-induced apoptosis. One such gene was KMT2D (also known as MLL2 or MLL4), which encodes a histone lysine methyltransferase whose mutations are associated with a variety of cancers, blood malignancies in particular, and are considered markers of poor prognosis. Knockout of KMT2D by CRISPR/Cas9 gene editing in Jurkat and several multiple myeloma cell lines downregulated GR protein expression. Surprisingly, this was not due to a reduction in GR transcripts, but rather to a decrease in the protein's half-life, primarily due to proteasomal degradation. Reconstitution of KMT2D expression restored GR levels. In contrast to the known ability of KMT2D to control gene transcription through covalent histone methylation, KMT2D-mediated upregulation of GR levels did not require its methyltransferase activity. Co-immunoprecipitation and proximity ligation assays found constitutive binding of KMT2D to the GR, which was enhanced in the presence of GC. These observations reveal KMT2D to be essential for stabilization of cellular GR levels, and suggest a possible mechanism by which KMT2D mutations may lead to GC resistance in some malignancies.

17.
Eur J Immunol ; 54(6): e2350631, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38556632

ABSTRACT

The intestinal barrier is mainly formed by a monolayer of epithelial cells, which forms a physical barrier to protect the gut tissues from external insults and provides a microenvironment for commensal bacteria to colonize while ensuring immune tolerance. Moreover, various immune cells are known to significantly contribute to intestinal barrier function by either directly interacting with epithelial cells or by producing immune mediators. Fulfilling this function of the gut barrier for mucosal homeostasis requires not only the intrinsic regulation of intestinal epithelial cells (IECs) but also constant communication with immune cells and gut microbes. The reciprocal interactions between IECs and immune cells modulate mucosal barrier integrity. Dysregulation of barrier function could lead to dysbiosis, inflammation, and tumorigenesis. In this overview, we provide an update on the characteristics and functions of IECs, and how they integrate their functions with tissue immune cells and gut microbiota to establish gut homeostasis.


Subject(s)
Epithelial Cells , Gastrointestinal Microbiome , Homeostasis , Intestinal Mucosa , Humans , Homeostasis/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Animals , Gastrointestinal Microbiome/immunology , Epithelial Cells/immunology , Cell Communication/immunology , Immune Tolerance/immunology
18.
Immunity ; 44(5): 1162-76, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27156384

ABSTRACT

Hemorrhagic stroke and brain microbleeds are caused by cerebrovascular ruptures. Fast repair of such ruptures is the most promising therapeutic approach. Due to a lack of high-resolution in vivo real-time studies, the dynamic cellular events involved in cerebrovascular repair remain unknown. Here, we have developed a cerebrovascular rupture system in zebrafish by using multi-photon laser, which generates a lesion with two endothelial ends. In vivo time-lapse imaging showed that a macrophage arrived at the lesion and extended filopodia or lamellipodia to physically adhere to both endothelial ends. This macrophage generated mechanical traction forces to pull the endothelial ends and facilitate their ligation, thus mediating the repair of the rupture. Both depolymerization of microfilaments and inhibition of phosphatidylinositide 3-kinase or Rac1 activity disrupted macrophage-endothelial adhesion and impaired cerebrovascular repair. Our study reveals a hitherto unexpected role for macrophages in mediating repair of cerebrovascular ruptures through direct physical adhesion and mechanical traction.


Subject(s)
Aneurysm, Ruptured/immunology , Cerebrovascular Trauma/immunology , Endothelium, Vascular/physiology , Macrophages/immunology , Mechanical Phenomena , Vascular Remodeling , Zebrafish/immunology , Actin Cytoskeleton/metabolism , Animals , Cell Adhesion , Cells, Cultured , Phosphatidylinositol 3-Kinases/metabolism , Traction , Wound Healing , rac1 GTP-Binding Protein/metabolism
19.
Nano Lett ; 24(27): 8427-8435, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38920280

ABSTRACT

Metal selenides show outstanding sodium-ion storage performance when matched with an ether-based electrolyte. However, the intrinsic origin of improvement and deterministic interface characteristics have not been systematically elucidated. Herein, employing FeSe2 anode as the model system, the electrochemical kinetics of metal selenides in ether and ester-based electrolytes and associated solid electrolyte interphase (SEI) are investigated in detail. Based on the galvanostatic intermittent titration technique and in situ electrochemical impedance spectroscopy, it is found that the ether-based electrolyte can ensure fast Na+ transfer and low interface impedance. Additionally, the ether-derived thin and smooth double-layer SEI, which is critical in facilitating ion transport, maintaining structural stability, and inhibiting electrolyte overdecomposition, is concretely visualized by transmission electron microscopy, atomic force microscopy, and depth-profiling X-ray photoelectron spectroscopy. This work provides a deep understanding of the optimization mechanism of electrolytes, which can guide available inspiration for the design of practical electrode materials.

20.
J Cell Mol Med ; 28(8): e18244, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520211

ABSTRACT

To explore the mechanism of tripartite motif 52 (TRIM52) in the progression of temporomandibular joint osteoarthritis (TMJOA). Gene and protein expression were tested by quantitative real-time polymerase chain reaction and western blot, respectively. The levels of pro-inflammatory cytokines and oxidative stress factors were evaluated using enzyme-linked immunosorbent assay and biochemical kit, respectively. Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays were carried out to assess cell proliferation. Immunofluorescence was used to detect the expression of CD68 and Vimentin in primary synovial fibroblasts (SFs). Haematoxylin and eosin staining and Safranin O/Fast green were used to evaluate the pathological damage of synovial and cartilage tissue in rats. TRIM52 was upregulated in the synovial tissue and SFs in patients with TMJOA. Interleukin (IL)-1ß treatment upregulated TRIM52 expression in TMJOA SFs and normal SF (NSF), promoting cell proliferation, inflammatory response and oxidative stress in NSF, SFs. Silence of TRIM52 relieved the cell proliferation, inflammatory response and oxidative stress induced by IL-1ß in SFs, while overexpression of TRIM52 enhanced IL-1ß induction. Meanwhile, IL-1ß induction activated toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB pathway, which was augmented by upregulation of TRIM52 in NSF, and was attenuated by TRIM52 knockdown in SFs. Besides, pyrrolidinedithiocarbamic acid ameliorated IL-1ß-induced proliferation and inflammatory response by inhibiting TLR4/NF-κB signalling. Meanwhile, TRIM52 knockdown inhibited cell proliferation, oxidative stress and inflammatory response in IL-1ß-induced SFs through downregulation of TLR4. TRIM52 promoted cell proliferation, inflammatory response, and oxidative stress in IL-1ß-induced SFs. The above functions were mediated by the activation of TLR4/NF- κB signal pathway.


Subject(s)
Osteoarthritis , Toll-Like Receptor 4 , Animals , Humans , Rats , Cell Proliferation , Fibroblasts/metabolism , Interleukin-1beta/metabolism , NF-kappa B/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , Oxidative Stress , Temporomandibular Joint/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL