Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Publication year range
1.
PLoS One ; 17(6): e0269303, 2022.
Article in English | MEDLINE | ID: mdl-35653358

ABSTRACT

The potential effects of Bt (Bacillus thuringiensis) maize on non-target organisms should be evaluated before such maize is commercially planted. Earthworms play an indispensable role in the soil ecosystem; act as important bio-indicators of soil quality and environmental pollution. Therefore, earthworms are often used as the object to evaluate the non-target effect of Bt maize. To accelerate the commercialization of transgenic maize in China, a 90-day Eisenia fetida feeding experiment was conducted to evaluate the potential effects of Bt maize line, BT799-which was developed by China Agricultural University and contains the Cry1Ac gene-and its non-Bt conventional isoline-Zheng 58-on E. fetida. Our results showed that the Bt maize line had no significant effects on the growth, reproduction, or enzymatic activities of these earthworms. In summary, Bt maize had no toxic effects on E. fetida.


Subject(s)
Oligochaeta , Plants, Genetically Modified , Animals , Bacillus thuringiensis Toxins/toxicity , Ecosystem , Plants, Genetically Modified/toxicity , Soil/chemistry , Zea mays/genetics
2.
Front Plant Sci ; 13: 875020, 2022.
Article in English | MEDLINE | ID: mdl-35498653

ABSTRACT

Bacillus thuringiensis (Bt) protein expressed by genetically modified (GM) crops is released into the soil ecosystem, where it accumulates for a long time; therefore, degradation of Bt protein has gained increased attention for environmental risk assessments. A first-order kinetic model (Y = ae-b*X) is usually used to evaluate the degradation of Bt proteins, including Bt-Cry1Ab and Bt-Cry1Ac; this has some limitations regarding the precise fitting and explanation of the influence of various factors on Bt protein degradation in the later stage. Therefore, to amend these limitations, we report a new degradation model Y = Y0 + ae-b*X. The effects of soil temperature, water content, soil types, and soil sterilization on the degradation of Bt-Cry1Ah protein in soil were estimated in a 96d long laboratory study using a GM maize leaf-soil mixture. The results showed that the Bt-Cry1Ah protein degraded rapidly in the early stage and then slowly in the middle and late stages. Temperature was identified as the key factor affecting the degradation of Cry1Ah protein-a relatively higher temperature favored the degradation. The degradation rate of Cry1Ah protein was the fastest when the water content was 33 and 20% in the early and later stages, respectively. The soil types had a significant effect on the degradation of Cry1Ah protein. Moreover, soil sterilization slowed down the rate of protein degradation in both the early and later stages. In conclusion, the model Y = Y0 + ae-b*X established in this study provided a more robust model for exploring and simulating the degradation of Bt protein in soil growing GM crops and overcame the shortcomings of the Y = ae-b*X model. The findings of this study enriched the understanding of Bt protein degradation in soil ecosystems. They would be helpful for evaluating the environmental safety of GM crops.

3.
Sci Rep ; 12(1): 13435, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35927281

ABSTRACT

Bt maize is being increasingly cultivated worldwide as the effects of climate change are increasing globally. Bt maize IE09S034 and its near-isogenic non-Bt maize Zong 31 were used to investigate whether climate change alters the effects of Bt maize on soil Collembola. Warming and drought conditions were simulated using open-top chambers (OTC), and their effects on soil Collembola were evaluated. We found that the maize type had no significant effect on Collembola; however, the abundance and diversity of Collembola were significantly higher in the OTC than outside at the seedling stage; they were significantly lower in the OTC at the heading and mature stages. The interactions of the maize type with the OTC had no effect on these parameters. Therefore, Bt maize had no significant effect on soil Collembola, and the effects of climate warming and drought on soil Collembola depended on the ambient climatic conditions. When the temperature was low, collembolan abundance and diversity were promoted by warming; however, when the temperature was high and the humidity was low, collembolan abundance and diversity were inhibited by warming and drought. The climate changes simulated by the OTC did not alter the effects of Bt maize on soil Collembola.


Subject(s)
Arthropods , Soil , Animals , Climate Change , Soil Microbiology , Zea mays/genetics
4.
Front Microbiol ; 13: 1023971, 2022.
Article in English | MEDLINE | ID: mdl-36246225

ABSTRACT

Transgenic technology has been widely applied to crop development, with genetically modified (GM) maize being the world's second-largest GM crop. Despite the fact that rhizosphere bacterial and fungal populations are critical regulators of plant performance, few studies have evaluated the influence of GM maize on these communities. Plant materials used in this study included the control maize line B73 and the mcry1Ab and mcry2Ab dual transgenic insect-resistant maize line 2A-7. The plants and soils samples were sampled at three growth stages (jointing, flowering, and maturing stages), and the sampling compartments from the outside to the inside of the root are surrounding soil (SS), rhizospheric soil (RS), and intact root (RT), respectively. In this study, the results of alpha diversity revealed that from the outside to the inside of the root, the community richness and diversity declined while community coverage increased. Morever, the different host niches of maize rhizosphere and maize development stages influenced beta diversity according to statistical analysis. The GM maize line 2A-7 had no significant influence on the composition of microbial communities when compared to B73. Compared to RS and SS, the host niche RT tended to deplete Chloroflexi, Gemmatimonadetes and Mortierellomycota at phylum level. Nitrogen-fixation bacteria Pseudomonas, Herbaspirillum huttiense, Rhizobium leguminosarum, and Sphingomonas azotifigens were found to be enriched in the niche RT in comparison to RS and SS, whilst Bacillus was found to be increased and Stenotrophomonas was found to be decreased at the maturing stage as compared to jointing and flowering stages. The nitrogen fixation protein FixH (clusters of orthologous groups, COG5456), was found to be abundant in RT. Furthermore, the pathogen fungus that causes maize stalk rot, Gaeumannomyces radicicola, was found to be abundant in RT, while the beneficial fungus Mortierella hyalina was found to be depleted in RT. Lastly, the abundance of G. radicicola gradually increased during the development of maize. In conclusion, the host niches throughout the soil-plant continuum rather than the Bt insect-resistant gene or Bt protein secretion were primarily responsible for the differential assembly of root-associated microbial communities in GM maize, which provides the theoretical basis for ecological agriculture.

5.
Insects ; 12(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494149

ABSTRACT

To evaluate the effect of Bt maize expressing Cry1Ie protein on non-target soil Collembola, a two-year field study was conducted in Northeast China. Bt maize line IE09S034 and its near isoline Zong 31 were selected as experimental crops; we investigated the collembolan community using both taxonomic and trait-based approaches, and elucidated the relationship between environmental variables and the collembolan community using redundancy analysis (RDA).The ANOVA results showed that maize variety neither had significant effect on the parameters based on taxonomic approach (abundance, species richness, Shannon-Wiener index, Pielou's evenness index), nor on the parameters based on trait-based approach (ocelli number, body length, pigmentation level, and furcula development) in either year. The results of RDA also showed that maize variety did not affect collembolan community significantly. These results suggest that two years cultivation of cry1Ie maize does not affect collembolan community in Northeast China.

6.
PLoS One ; 15(5): e0232747, 2020.
Article in English | MEDLINE | ID: mdl-32374765

ABSTRACT

The potential effects of Bt (Bacillus thuringiensis) maize on non-target organisms must be conducted before the Bt maize is commercially planted. Folsomia candida is one of the non-target organisms of Bt maize, also as an important indicator of soil quality and environmental pollution. In this study, a 90-day F. candida feeding test were conducted to evaluate the potential effects of two Bt maize lines IE09S034 and BT799 and their non-Bt conventional isolines Zong 31 and Zheng 58. The results show that Bt maize lines had no significant effects on the survival rate, reproduction, adult body length, larval body length, and the activities of acetyl cholinesterase, catalase and superoxide dismutase on the F. candida. Namely, Bt maize had no toxic effects on the F. candida.


Subject(s)
Bacillus thuringiensis/genetics , Candida/metabolism , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism , Zea mays/genetics , Acetylcholinesterase/metabolism , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Assay/methods , Catalase/metabolism , Endotoxins/genetics , Endotoxins/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Larva , Reproduction/genetics , Soil Microbiology , Superoxide Dismutase/metabolism , Zea mays/microbiology
7.
Sci Rep ; 9(1): 10333, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31316140

ABSTRACT

Soil fauna play an essential role in the soil ecosystem, but they may be influenced by insecticidal Cry proteins derived from Bacillus thuringiensis (Bt) maize. In this study, a 2-year field trial was conducted to study the effects of transgenic cry1Ie maize, a type of Bt maize (Event IE09S034), on soil fauna, with the near-isogenic line non-Bt maize (Zong 31) as a control. The soil animals were collected with Macfadyen heat extractor and hand-sorting methods, respectively, and their diversity, abundance and community composition were calculated. Then, the effects of maize type, year, sampling time and soil environmental factors on the soil fauna were evaluated by repeated-measures ANOVA, redundancy analysis (RDA) and nonmetric multidimensional scaling (nMDS). Repeated-measures ANOVA showed that the diversity and abundance of the soil fauna were not affected by maize type, while they were significantly influenced by year and sampling time. Furthermore, for both the Macfadyen and hand-sorting methods, RDA indicated that soil fauna community composition was not correlated with maize type (Bt and non-Bt maize) but was significantly correlated with year, sampling time and root biomass. In addition, it was significantly related to soil pH according to the hand-sorting method. nMDS indicated that soil fauna community composition was significantly correlated with year and sampling time; however, it was not associated with maize type. In this study, we collected soil faunal samples according to the Macfadyen and hand-sorting methods and processed the obtained data with ANOVA, RDA, and nMDS in three ways, and our data indicate that transgenic cry1Ie maize (Event IE09S034) had no substantial influence on the diversity, abundance or community composition of the soil fauna.


Subject(s)
Ecosystem , Plants, Genetically Modified/adverse effects , Plants, Genetically Modified/genetics , Soil , Zea mays/adverse effects , Zea mays/genetics , Animals , Arachnida , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Biodiversity , Endotoxins/genetics , Hemolysin Proteins/genetics , Insecta , Pest Control, Biological , Soil/parasitology
8.
Plant Pathol J ; 31(3): 305-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26361479

ABSTRACT

After four years of cold storage, dimethachlon resistance of two laboratory-induced resistant Sclerotinia sclerotiorum isolates SCG7 and LA50 declined by 99.5% and 98.9%, respectively, and cross resistance to iprodione and procymidone also declined dramatically. Along with the decline of fungicide resistance, osmotic sensitivity to sodium chloride and glucose decreased tremendously; mycelial growth rate, sclerotia number and weight per potato dextrose agar (PDA) plate increased on average by 118.6%, 85. 5% and 64.5%, respectively; and virulence to detached leaves of oilseed rape increased by 72.7% on average. Significant negative correlations were detected between dimethachlon resistance levels and mycelial growth rate on PDA (r = -0.980, P = 0.021), and between resistance levels and lesion diameters on detached leaves of oilseed rape plants (r = -0.997, P = 0.002). These results have profound implications for assessing the potential risk for resistance development to dicarboximide fungicides in S. sclerotiorum.

SELECTION OF CITATIONS
SEARCH DETAIL