Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Genes Dev ; 35(7-8): 489-494, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33737384

ABSTRACT

While changes in MeCP2 dosage cause Rett syndrome (RTT) and MECP2 duplication syndrome (MDS), its transcriptional regulation is poorly understood. Here, we identified six putative noncoding regulatory elements of Mecp2, two of which are conserved in humans. Upon deletion in mice and human iPSC-derived neurons, these elements altered RNA and protein levels in opposite directions and resulted in a subset of RTT- and MDS-like behavioral deficits in mice. Our discovery provides insight into transcriptional regulation of Mecp2/MECP2 and highlights genomic sites that could serve as diagnostic and therapeutic targets in RTT or MDS.


Subject(s)
Gene Expression Regulation/genetics , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/genetics , Neurons/pathology , Regulatory Elements, Transcriptional/genetics , Rett Syndrome/genetics , Animals , Behavior, Animal/physiology , Conserved Sequence/genetics , Gene Deletion , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
2.
Development ; 149(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35297995

ABSTRACT

Establishing a functional circulatory system is required for post-implantation development during murine embryogenesis. Previous studies in loss-of-function mouse models showed that FOXO1, a Forkhead family transcription factor, is required for yolk sac (YS) vascular remodeling and survival beyond embryonic day (E) 11. Here, we demonstrate that at E8.25, loss of Foxo1 in Tie2-cre expressing cells resulted in increased sprouty 2 (Spry2) and Spry4 expression, reduced arterial gene expression and reduced Kdr (also known as Vegfr2 and Flk1) transcripts without affecting overall endothelial cell identity, survival or proliferation. Using a Dll4-BAC-nlacZ reporter line, we found that one of the earliest expressed arterial genes, delta like 4, is significantly reduced in Foxo1 mutant YS without being substantially affected in the embryo proper. We show that FOXO1 binds directly to previously identified Spry2 gene regulatory elements (GREs) and newly identified, evolutionarily conserved Spry4 GREs to repress their expression. Furthermore, overexpression of Spry4 in transient transgenic embryos largely recapitulates the reduced expression of arterial genes seen in conditional Foxo1 mutants. Together, these data reveal a novel role for FOXO1 as a key transcriptional repressor regulating both pre-flow arterial specification and subsequent vessel remodeling within the murine YS.


Subject(s)
Nerve Tissue Proteins/metabolism , Vascular Remodeling , Yolk Sac , Animals , Arteries , Embryo, Mammalian/metabolism , Endothelial Cells/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Mice , Vascular Remodeling/genetics , Yolk Sac/metabolism
3.
Nucleic Acids Res ; 50(4): 2270-2286, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35137168

ABSTRACT

Human genetic studies identified a strong association between loss of function mutations in RBFOX2 and hypoplastic left heart syndrome (HLHS). There are currently no Rbfox2 mouse models that recapitulate HLHS. Therefore, it is still unknown how RBFOX2 as an RNA binding protein contributes to heart development. To address this, we conditionally deleted Rbfox2 in embryonic mouse hearts and found profound defects in cardiac chamber and yolk sac vasculature formation. Importantly, our Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS. To determine the molecular drivers of these cardiac defects, we performed RNA-sequencing in Rbfox2 mutant hearts and identified dysregulated alternative splicing (AS) networks that affect cell adhesion to extracellular matrix (ECM) mediated by Rho GTPases. We identified two Rho GTPase cycling genes as targets of RBFOX2. Modulating AS of these two genes using antisense oligos led to cell cycle and cell-ECM adhesion defects. Consistently, Rbfox2 mutant hearts displayed cell cycle defects and inability to undergo endocardial-mesenchymal transition, processes dependent on cell-ECM adhesion and that are seen in HLHS. Overall, our work not only revealed that loss of Rbfox2 leads to heart development defects resembling HLHS, but also identified RBFOX2-regulated AS networks that influence cell-ECM communication vital for heart development.


Subject(s)
Alternative Splicing , Heart/embryology , RNA Splicing Factors/metabolism , Animals , Gene Expression Regulation, Developmental , Mice , Mice, Knockout , Organogenesis , RNA/metabolism , RNA Splicing Factors/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
4.
Development ; 146(12)2019 06 14.
Article in English | MEDLINE | ID: mdl-31201182

ABSTRACT

The Pitx2 gene encodes a homeobox transcription factor that is required for mammalian development. Disruption of PITX2 expression in humans causes congenital heart diseases and is associated with atrial fibrillation; however, the cellular and molecular processes dictated by Pitx2 during cardiac ontogeny remain unclear. To characterize the role of Pitx2 during murine heart development we sequenced over 75,000 single cardiac cell transcriptomes between two key developmental timepoints in control and Pitx2 null embryos. We found that cardiac cell composition was dramatically altered in mutants at both E10.5 and E13.5. Interestingly, the differentiation dynamics of both anterior and posterior second heart field-derived progenitor cells were disrupted in Pitx2 mutants. We also uncovered evidence for defects in left-right asymmetry within atrial cardiomyocyte populations. Furthermore, we were able to detail defects in cardiac outflow tract and valve development associated with Pitx2 Our findings offer insight into Pitx2 function and provide a compilation of gene expression signatures for further detailing the complexities of heart development that will serve as the foundation for future studies of cardiac morphogenesis, congenital heart disease and arrhythmogenesis.


Subject(s)
Gene Expression Regulation, Developmental , Heart Valves/embryology , Heart/embryology , Homeodomain Proteins/physiology , Myocytes, Cardiac/metabolism , Transcription Factors/physiology , Alleles , Animals , Heart Atria , Heart Defects, Congenital/genetics , Homeodomain Proteins/genetics , Mice , Mutation , Myocardium/metabolism , Nuclear Proteins/metabolism , Organogenesis , Sequence Analysis, RNA , Transcription Factors/genetics , Transcriptome , Homeobox Protein PITX2
5.
PLoS Biol ; 17(6): e3000343, 2019 06.
Article in English | MEDLINE | ID: mdl-31220074

ABSTRACT

The zebrafish Danio rerio is a powerful model system to study the genetics of development and disease. However, maintenance of zebrafish husbandry records is both time intensive and laborious, and a standardized way to manage and track the large amount of unique lines in a given laboratory or centralized facility has not been embraced by the field. Here, we present FishNET, an intuitive, open-source, relational database for managing data and information related to zebrafish husbandry and maintenance. By creating a "virtual facility," FishNET enables users to remotely inspect the rooms, racks, tanks, and lines within a given facility. Importantly, FishNET scales from one laboratory to an entire facility with several laboratories to multiple facilities, generating a cohesive laboratory and community-based platform. Automated data entry eliminates confusion regarding line nomenclature and streamlines maintenance of individual lines, while flexible query forms allow researchers to retrieve database records based on user-defined criteria. FishNET also links associated embryonic and adult biological samples with data, such as genotyping results or confocal images, to enable robust and efficient colony management and storage of laboratory information. A shared calendar function with email notifications and automated reminders for line turnover, automated tank counts, and census reports promote communication with both end users and administrators. The expected benefits of FishNET are improved vivaria efficiency, increased quality control for experimental numbers, and flexible data reporting and retrieval. FishNET's easy, intuitive record management and open-source, end-user-modifiable architecture provides an efficient solution to real-time zebrafish colony management for users throughout a facility and institution and, in some cases, across entire research hubs.


Subject(s)
Animal Husbandry/methods , Zebrafish , Animal Husbandry/standards , Animals , Data Management/methods , Database Management Systems , Databases, Factual , Laboratories , Software
6.
Circ Res ; 127(6): 727-743, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32552404

ABSTRACT

RATIONALE: We previously identified somatic activating mutations in the KRAS (Kirsten rat sarcoma viral oncogene homologue) gene in the endothelium of the majority of human sporadic brain arteriovenous malformations; a disorder characterized by direct connections between arteries and veins. However, whether this genetic abnormality alone is sufficient for lesion formation, as well as how active KRAS signaling contributes to arteriovenous malformations, remains unknown. OBJECTIVE: To establish the first in vivo models of somatic KRAS gain of function in the endothelium in both mice and zebrafish to directly observe the phenotypic consequences of constitutive KRAS activity at a cellular level in vivo, and to test potential therapeutic interventions for arteriovenous malformations. METHODS AND RESULTS: Using both postnatal and adult mice, as well as embryonic zebrafish, we demonstrate that endothelial-specific gain of function mutations in Kras (G12D or G12V) are sufficient to induce brain arteriovenous malformations. Active KRAS signaling leads to altered endothelial cell morphogenesis and increased cell size, ectopic sprouting, expanded vessel lumen diameter, and direct connections between arteries and veins. Furthermore, we show that these lesions are not associated with altered endothelial growth dynamics or a lack of proper arteriovenous identity but instead seem to feature exuberant angiogenic signaling. Finally, we demonstrate that KRAS-dependent arteriovenous malformations in zebrafish are refractory to inhibition of the downstream effector PI3K but instead require active MEK (mitogen-activated protein kinase kinase 1) signaling. CONCLUSIONS: We demonstrate that active KRAS expression in the endothelium is sufficient for brain arteriovenous malformations, even in the setting of uninjured adult vasculature. Furthermore, the finding that KRAS-dependent lesions are reversible in zebrafish suggests that MEK inhibition may represent a promising therapeutic treatment for arteriovenous malformation patients. Graphical Abstract: A graphical abstract is available for this article.


Subject(s)
Endothelial Cells/enzymology , Gain of Function Mutation , Intracranial Arteriovenous Malformations/genetics , MAP Kinase Kinase 1/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Cells, Cultured , Disease Models, Animal , Endothelial Cells/pathology , Female , Genetic Predisposition to Disease , Human Umbilical Vein Endothelial Cells/enzymology , Human Umbilical Vein Endothelial Cells/pathology , Humans , Intracranial Arteriovenous Malformations/enzymology , Intracranial Arteriovenous Malformations/pathology , Intracranial Hemorrhages/enzymology , Intracranial Hemorrhages/genetics , Intracranial Hemorrhages/pathology , MAP Kinase Kinase 1/antagonists & inhibitors , Male , Mice, Transgenic , Permeability , Phenotype , Phosphatidylinositol 3-Kinase/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Signal Transduction , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins
7.
N Engl J Med ; 378(3): 250-261, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29298116

ABSTRACT

BACKGROUND: Sporadic arteriovenous malformations of the brain, which are morphologically abnormal connections between arteries and veins in the brain vasculature, are a leading cause of hemorrhagic stroke in young adults and children. The genetic cause of this rare focal disorder is unknown. METHODS: We analyzed tissue and blood samples from patients with arteriovenous malformations of the brain to detect somatic mutations. We performed exome DNA sequencing of tissue samples of arteriovenous malformations of the brain from 26 patients in the main study group and of paired blood samples from 17 of those patients. To confirm our findings, we performed droplet digital polymerase-chain-reaction (PCR) analysis of tissue samples from 39 patients in the main study group (21 with matching blood samples) and from 33 patients in an independent validation group. We interrogated the downstream signaling pathways, changes in gene expression, and cellular phenotype that were induced by activating KRAS mutations, which we had discovered in tissue samples. RESULTS: We detected somatic activating KRAS mutations in tissue samples from 45 of the 72 patients and in none of the 21 paired blood samples. In endothelial cell-enriched cultures derived from arteriovenous malformations of the brain, we detected KRAS mutations and observed that expression of mutant KRAS (KRASG12V) in endothelial cells in vitro induced increased ERK (extracellular signal-regulated kinase) activity, increased expression of genes related to angiogenesis and Notch signaling, and enhanced migratory behavior. These processes were reversed by inhibition of MAPK (mitogen-activated protein kinase)-ERK signaling. CONCLUSIONS: We identified activating KRAS mutations in the majority of tissue samples of arteriovenous malformations of the brain that we analyzed. We propose that these malformations develop as a result of KRAS-induced activation of the MAPK-ERK signaling pathway in brain endothelial cells. (Funded by the Swiss Cancer League and others.).


Subject(s)
Intracranial Arteriovenous Malformations/genetics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Adult , Cells, Cultured , DNA Mutational Analysis , Exome , Gene Expression , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Intracranial Arteriovenous Malformations/etiology , Intracranial Arteriovenous Malformations/pathology , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System , Phosphorylation , Proto-Oncogene Proteins p21(ras)/metabolism
8.
Development ; 144(13): 2428-2444, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28536097

ABSTRACT

The transcriptional pathways activated downstream of vascular endothelial growth factor (VEGF) signaling during angiogenesis remain incompletely characterized. By assessing the signals responsible for induction of the Notch ligand delta-like 4 (DLL4) in endothelial cells, we find that activation of the MAPK/ERK pathway mirrors the rapid and dynamic induction of DLL4 transcription and that this pathway is required for DLL4 expression. Furthermore, VEGF/ERK signaling induces phosphorylation and activation of the ETS transcription factor ERG, a prerequisite for DLL4 induction. Transcription of DLL4 coincides with dynamic ERG-dependent recruitment of the transcriptional co-activator p300. Genome-wide gene expression profiling identified a network of VEGF-responsive and ERG-dependent genes, and ERG chromatin immunoprecipitation (ChIP)-seq revealed the presence of conserved ERG-bound putative enhancer elements near these target genes. Functional experiments performed in vitro and in vivo confirm that this network of genes requires ERK, ERG and p300 activity. Finally, genome-editing and transgenic approaches demonstrate that a highly conserved ERG-bound enhancer located upstream of HLX (which encodes a transcription factor implicated in sprouting angiogenesis) is required for its VEGF-mediated induction. Collectively, these findings elucidate a novel transcriptional pathway contributing to VEGF-dependent angiogenesis.


Subject(s)
E1A-Associated p300 Protein/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Transcription, Genetic/drug effects , Vascular Endothelial Growth Factor A/pharmacology , Adaptor Proteins, Signal Transducing , Animals , Calcium-Binding Proteins , Cattle , Enhancer Elements, Genetic/genetics , Female , Gene Expression Regulation, Developmental/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Introns/genetics , MAP Kinase Signaling System/drug effects , Male , Mice , Neovascularization, Physiologic/genetics , Transcriptional Regulator ERG/metabolism , Zebrafish/embryology
9.
J Neurosci Res ; 98(2): 312-324, 2020 02.
Article in English | MEDLINE | ID: mdl-31630455

ABSTRACT

Recent advances in three-dimensional (3D) fluorescence microscopy offer the ability to image the entire vascular network in entire organs, or even whole animals. However, these imaging modalities rely on either endogenous fluorescent reporters or involved immunohistochemistry protocols, as well as optical clearing of the tissue and refractive index matching. Conversely, X-ray-based 3D imaging modalities, such as micro CT, can image non-transparent samples, at high resolution, without requiring complicated or expensive immunolabeling and clearing protocols, or fluorescent reporters. Here, we compared two "homemade" barium-based contrast agents to the field standard, lead-containing Microfil, for micro-computed tomography (micro CT) imaging of the adult mouse cerebrovasculature. The perfusion pressure required for uniform vessel filling was significantly lower with the barium-based contrast agents compared to the polymer-based Microfil. Accordingly, the barium agents showed no evidence of vascular distension or rupture, common problems associated with Microfil. Compellingly, perfusion of an aqueous BaCl2 /gelatin mixture yielded equal or superior visualization of the cerebrovasculature by micro CT compared to Microfil. However, phosphate-containing buffers and fixatives were incompatible with BaCl2 due to the formation of unwanted precipitates. X-ray attenuation of the vessels also decreased overtime, as the BaCl2 appeared to gradually diffuse into surrounding tissues. A second, unique formulation composed of BaSO4 microparticles, generated in-house by mixing BaCl2 and MgSO4 , suffered none of these drawbacks. These microparticles, however, were unable to pass small diameter capillary vessels, conveniently labeling only the arterial cerebrovasculature. In summary, we present an affordable, robust, low pressure, non-toxic, and straightforward methodology for 3D visualization of the cerebrovasculature.


Subject(s)
Barium , Cerebrovascular Circulation/physiology , Imaging, Three-Dimensional/methods , X-Ray Microtomography/methods , Animals , Contrast Media , Mice
10.
Development ; 143(3): 504-15, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26718006

ABSTRACT

The role of the Hippo signaling pathway in cranial neural crest (CNC) development is poorly understood. We used the Wnt1(Cre) and Wnt1(Cre2SOR) drivers to conditionally ablate both Yap and Taz in the CNC of mice. When using either Cre driver, Yap and Taz deficiency in the CNC resulted in enlarged, hemorrhaging branchial arch blood vessels and hydrocephalus. However, Wnt1(Cre2SOR) mutants had an open cranial neural tube phenotype that was not evident in Wnt1(Cre) mutants. In O9-1 CNC cells, the loss of Yap impaired smooth muscle cell differentiation. RNA-sequencing data indicated that Yap and Taz regulate genes encoding Fox transcription factors, specifically Foxc1. Proliferation was reduced in the branchial arch mesenchyme of Yap and Taz CNC conditional knockout (CKO) embryos. Moreover, Yap and Taz CKO embryos had cerebellar aplasia similar to Dandy-Walker spectrum malformations observed in human patients and mouse embryos with mutations in Foxc1. In embryos and O9-1 cells deficient for Yap and Taz, Foxc1 expression was significantly reduced. Analysis of Foxc1 regulatory regions revealed a conserved recognition element for the Yap and Taz DNA binding co-factor Tead. ChIP-PCR experiments supported the conclusion that Foxc1 is directly regulated by the Yap-Tead complex. Our findings uncover important roles for Yap and Taz in CNC diversification and development.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Face/embryology , Neural Crest/embryology , Phosphoproteins/metabolism , Skull/embryology , Animals , Apoptosis/genetics , Cell Cycle Proteins , Cell Differentiation , Cell Proliferation , Embryo Loss/pathology , Embryo, Mammalian/metabolism , Embryo, Mammalian/pathology , Gene Deletion , Gene Expression Regulation, Developmental , Hemorrhage/pathology , Hydrocephalus/embryology , Hydrocephalus/pathology , Mandible/pathology , Mice, Knockout , Myocytes, Smooth Muscle/cytology , Neural Tube Defects/pathology , Phenotype , Sequence Analysis, RNA , Signal Transduction , Trans-Activators , YAP-Signaling Proteins
11.
J Med Genet ; 55(10): 675-684, 2018 10.
Article in English | MEDLINE | ID: mdl-30120215

ABSTRACT

BACKGROUND: Brain arteriovenous malformations (BAVM) represent a congenital anomaly of the cerebral vessels with a prevalence of 10-18/100 000. BAVM is the leading aetiology of intracranial haemorrhage in children. Our objective was to identify gene variants potentially contributing to disease and to better define the molecular aetiology underlying non-syndromic sporadic BAVM. METHODS: We performed whole-exome trio sequencing of 100 unrelated families with a clinically uniform BAVM phenotype. Pathogenic variants were then studied in vivo using a transgenic zebrafish model. RESULTS: We identified four pathogenic heterozygous variants in four patients, including one in the established BAVM-related gene, ENG, and three damaging variants in novel candidate genes: PITPNM3, SARS and LEMD3, which we then functionally validated in zebrafish. In addition, eight likely pathogenic heterozygous variants (TIMP3, SCUBE2, MAP4K4, CDH2, IL17RD, PREX2, ZFYVE16 and EGFR) were identified in eight patients, and 16 patients carried one or more variants of uncertain significance. Potential oligogenic inheritance (MAP4K4 with ENG, RASA1 with TIMP3 and SCUBE2 with ENG) was identified in three patients. Regulation of sma- and mad-related proteins (SMADs) (involved in bone morphogenic protein (BMP)/transforming growth factor beta (TGF-ß) signalling) and vascular endothelial growth factor (VEGF)/vascular endotheliual growth factor recepter 2 (VEGFR2) binding and activity (affecting the VEGF signalling pathway) were the most significantly affected biological process involved in the pathogenesis of BAVM. CONCLUSIONS: Our study highlights the specific role of BMP/TGF-ß and VEGF/VEGFR signalling in the aetiology of BAVM and the efficiency of intensive parallel sequencing in the challenging context of genetically heterogeneous paradigm.


Subject(s)
Bone Morphogenetic Proteins/genetics , Genetic Variation , Intracranial Arteriovenous Malformations/genetics , Receptors, Vascular Endothelial Growth Factor/genetics , Transforming Growth Factor beta/genetics , Vascular Endothelial Growth Factor A/genetics , Animals , Animals, Genetically Modified , Brain/diagnostic imaging , Brain/pathology , China , Cohort Studies , Disease Models, Animal , Family , Female , Heterozygote , Humans , Intracranial Arteriovenous Malformations/diagnostic imaging , Intracranial Arteriovenous Malformations/pathology , Male , Signal Transduction , Exome Sequencing , Zebrafish
12.
Biochem Biophys Res Commun ; 471(4): 430-6, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26902114

ABSTRACT

Recent identification of the neonatal 2nd coronary vascular population (2nd CVP) suggests that a subset of these vessels form de novo and mature in the inner myocardial wall of the postnatal heart. However, the origin of smooth muscle cells (SMCs) in the postnatal 2nd CVP remains undetermined. Using a tamoxifen-inducible Wt1-CreER driver and a Rosa26-RFP reporter line, we traced the lineage of epicardial cells to determine if they contribute to SMCs of the 2nd CVP. Late embryonic and postnatal induction of Wt1-CreER activity demonstrated that at these stages Wt1-labeled epicardium does not significantly migrate into the myocardium to form SMCs. However, following tamoxifen treatment at an early embryonic stage (E10.5), we detected Wt1 descendants (epicardium-derived cells, or EPDCs) in the outer myocardial wall at E17.5. When the 2nd CVP forms and remodels at postnatal stage, these early labeled EDPCs re-migrate deep into the inner myocardial wall and contribute to 2nd CVP-SMCs in the adult heart. Our findings reveal that SMCs in the postnatal 2nd CVP are pre-specified as EPDCs from the earliest wave of epicardial cell migration. Rather than the re-activation and migration of epicardial cells at later stages, these resident EPDCs mobilize and contribute to smooth muscle of the 2nd CVP during postnatal development.


Subject(s)
Coronary Vessels/cytology , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/embryology , Animals , Animals, Newborn , Cell Movement , Coronary Vessels/drug effects , Coronary Vessels/embryology , Mice, Inbred C57BL , Mice, Transgenic , Myocardium/cytology , Pericardium/cytology , Pericardium/embryology , Tamoxifen
13.
Dev Dyn ; 244(3): 391-409, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25641373

ABSTRACT

The formation of a hierarchical vascular network, composed of arteries, veins, and capillaries, is essential for embryogenesis and is required for the production of new functional vasculature in the adult. Elucidating the molecular mechanisms that orchestrate the differentiation of vascular endothelial cells into arterial and venous cell fates is requisite for regenerative medicine, as the directed formation of perfused vessels is desirable in a myriad of pathological settings, such as in diabetes and following myocardial infarction. Additionally, this knowledge will enhance our understanding and treatment of vascular anomalies, such as arteriovenous malformations (AVMs). From studies in vertebrate model organisms, such as mouse, zebrafish, and chick, a number of key signaling pathways have been elucidated that are required for the establishment and maintenance of arterial and venous fates. These include the Hedgehog, Vascular Endothelial Growth Factor (VEGF), Transforming Growth Factor-ß (TGF-ß), Wnt, and Notch signaling pathways. In addition, a variety of transcription factor families acting downstream of, or in concert with, these signaling networks play vital roles in arteriovenous (AV) specification. These include Notch and Notch-regulated transcription factors (e.g., HEY and HES), SOX factors, Forkhead factors, ß-Catenin, ETS factors, and COUP-TFII. It is becoming apparent that AV specification is a highly coordinated process that involves the intersection and carefully orchestrated activity of multiple signaling cascades and transcriptional networks. This review will summarize the molecular mechanisms that are involved in the acquisition and maintenance of AV fate, and will highlight some of the limitations in our current knowledge of the molecular machinery that directs AV morphogenesis.


Subject(s)
Arteriovenous Malformations/embryology , Receptors, Notch/metabolism , Transforming Growth Factor beta/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Animals , Arteriovenous Malformations/genetics , Arteriovenous Malformations/pathology , Disease Models, Animal , Humans , Mice , Receptors, Notch/genetics , Transforming Growth Factor beta/genetics , Wnt Proteins/genetics
14.
J Cell Mol Med ; 18(11): 2152-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25265869

ABSTRACT

Over the last two decades, genetic lineage tracing has allowed for the elucidation of the cellular origins and fates during both embryogenesis and in pathological settings in adults. Recent lineage tracing studies using Apln-CreER tool indicated that a large number of post-natal coronary vessels do not form from pre-existing vessels. Instead, they form de novo after birth, which represents a coronary vascular population (CVP) distinct from the pre-existing one. Herein, we present new coronary vasculature lineage tracing results using a novel tool, Fabp4-CreER. Our results confirm the distinct existence of two unique CVPs. The 1(st) CVP, which is labelled by Fabp4-CreER, arises through angiogenic sprouting of pre-existing vessels established during early embryogenesis. The 2(nd) CVP is not labelled by Fabp4, suggesting that these vessels form de novo, rather than through expansion of the 1(st) CVP. These results support the de novo formation of vessels in the post-natal heart, which has implications for studies in cardiovascular disease and heart regeneration.


Subject(s)
Cardiovascular Diseases/genetics , Embryonic Development , Fatty Acid-Binding Proteins/biosynthesis , Heart/growth & development , Adult , Animals , Cardiovascular Diseases/pathology , Cell Lineage/genetics , Coronary Vessels/cytology , Coronary Vessels/growth & development , Coronary Vessels/metabolism , Fatty Acid-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Heart/physiopathology , Humans , Integrases/genetics , Mice , Morphogenesis/genetics , Neovascularization, Physiologic/genetics , Regeneration/genetics
15.
Development ; 138(7): 1409-19, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21385766

ABSTRACT

Members of the Slit family of secreted ligands interact with Roundabout (Robo) receptors to provide guidance cues for many cell types. For example, Slit/Robo signaling elicits repulsion of axons during neural development, whereas in endothelial cells this pathway inhibits or promotes angiogenesis depending on the cellular context. Here, we show that miR-218 is intronically encoded in slit2 and slit3 and that it suppresses Robo1 and Robo2 expression. Our data indicate that miR-218 and multiple Slit/Robo signaling components are required for heart tube formation in zebrafish and that this network modulates the previously unappreciated function of Vegf signaling in this process. These findings suggest a new paradigm for microRNA-based control of ligand-receptor interactions and provide evidence for a novel signaling pathway regulating vertebrate heart tube assembly.


Subject(s)
Glycoproteins/metabolism , Heart/embryology , MicroRNAs/metabolism , Myocardium/metabolism , Nerve Tissue Proteins/metabolism , Organogenesis/physiology , Receptors, Immunologic/metabolism , Zebrafish/embryology , Analysis of Variance , Animals , Blotting, Western , Cell Movement/physiology , Cell Polarity/physiology , Gene Expression Regulation, Developmental/physiology , Glycoproteins/genetics , In Situ Hybridization , MicroRNAs/genetics , Nerve Tissue Proteins/genetics , Receptors, Immunologic/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology , Zebrafish/genetics , Zebrafish/metabolism , Roundabout Proteins
16.
ArXiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38654761

ABSTRACT

Microvascular networks are challenging to model because these structures are currently near the diffraction limit for most advanced three-dimensional imaging modalities, including confocal and light sheet microscopy. This makes semantic segmentation difficult, because individual components of these networks fluctuate within the confines of individual pixels. Level set methods are ideally suited to solve this problem by providing surface and topological constraints on the resulting model, however these active contour techniques are extremely time intensive and impractical for terabyte-scale images. We propose a reformulation and implementation of the region-scalable fitting (RSF) level set model that makes it amenable to three-dimensional evaluation using both single-instruction multiple data (SIMD) and single-program multiple-data (SPMD) parallel processing. This enables evaluation of the level set equation on independent regions of the data set using graphics processing units (GPUs), making large-scale segmentation of high-resolution networks practical and inexpensive. We tested this 3D parallel RSF approach on multiple data sets acquired using state-of-the-art imaging techniques to acquire microvascular data, including micro-CT, light sheet fluorescence microscopy (LSFM) and milling microscopy. To assess the performance and accuracy of the RSF model, we conducted a Monte-Carlo-based validation technique to compare results to other segmentation methods. We also provide a rigorous profiling to show the gains in processing speed leveraging parallel hardware. This study showcases the practical application of the RSF model, emphasizing its utility in the challenging domain of segmenting large-scale high-topology network structures with a particular focus on building microvascular models.

17.
STAR Protoc ; 5(2): 103053, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38704833

ABSTRACT

Tissue clearing is an essential prerequisite for 3D volumetric imaging of larger tissues or organs. Here, we present a detailed protocol for optical, aqueous-based clearing of adult murine tissues using EZ Clear. We describe steps to ensure successful perfusion and fixation of organs from the adult mouse and supply guidelines for optimal lipid removal, refractive index matching, and tissue clearing. Finally, we provide imaging parameters for visualizing both exogenous perfused fluorescent dyes and endogenous fluorescence reporters in the adult mouse. For complete details on the use and execution of this protocol, please refer to Hsu et al.1.


Subject(s)
Imaging, Three-Dimensional , Animals , Mice , Imaging, Three-Dimensional/methods , Fluorescent Dyes/chemistry , Optical Imaging/methods
18.
Life Sci Alliance ; 7(2)2024 02.
Article in English | MEDLINE | ID: mdl-38012001

ABSTRACT

Modulation of the heart's immune microenvironment is crucial for recovery after ischemic events such as myocardial infarction (MI). Endothelial cells (ECs) can have immune regulatory functions; however, interactions between ECs and the immune environment in the heart after MI remain poorly understood. We identified an EC-specific IFN responsive and immune regulatory gene signature in adult and pediatric heart failure (HF) tissues. Single-cell transcriptomic analysis of murine hearts subjected to MI uncovered an EC population (IFN-ECs) with immunologic gene signatures similar to those in human HF. IFN-ECs were enriched in regenerative-stage mouse hearts and expressed genes encoding immune responsive transcription factors (Irf7, Batf2, and Stat1). Single-cell chromatin accessibility studies revealed an enrichment of these TF motifs at IFN-EC signature genes. Expression of immune regulatory ligand genes by IFN-ECs suggests bidirectional signaling between IFN-ECs and macrophages in regenerative-stage hearts. Our data suggest that ECs may adopt immune regulatory signatures after cardiac injury to accompany the reparative response. The presence of these signatures in human HF and murine MI models suggests a potential role for EC-mediated immune regulation in responding to stress induced by acute injury in MI and chronic adverse remodeling in HF.


Subject(s)
Heart Failure , Myocardial Infarction , Mice , Humans , Animals , Child , Endothelial Cells/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Heart , Signal Transduction/genetics
19.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38766159

ABSTRACT

Brain arteriovenous malformations (bAVMs) are direct connections between arteries and veins that remodel into a complex nidus susceptible to rupture and hemorrhage. Most sporadic bAVMs feature somatic activating mutations within KRAS, and endothelial-specific expression of the constitutively active variant KRASG12D models sporadic bAVM in mice. By leveraging 3D-based micro-CT imaging, we demonstrate that KRASG12D-driven bAVMs arise in stereotypical anatomical locations within the murine brain, which coincide with high endogenous Kras expression. We extend these analyses to show that a distinct variant, KRASG12C, also generates bAVMs in predictable locations. Analysis of 15,000 human patients revealed that, similar to murine models, bAVMs preferentially occur in distinct regions of the adult brain. Furthermore, bAVM location correlates with hemorrhagic frequency. Quantification of 3D imaging revealed that G12D and G12C alter vessel density, tortuosity, and diameter within the mouse brain. Notably, aged G12D mice feature increased lethality, as well as impaired cognition and motor function. Critically, we show that pharmacological blockade of the downstream kinase, MEK, after lesion formation ameliorates KRASG12D-driven changes in the murine cerebrovasculature and may also impede bAVM progression in human pediatric patients. Collectively, these data show that distinct KRAS variants drive bAVMs in similar patterns and suggest MEK inhibition represents a non-surgical alternative therapy for sporadic bAVM.

20.
Biomedicines ; 11(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38001877

ABSTRACT

Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture. BAVMs are a leading cause of hemorrhagic stroke in children and young adults. Current treatments for bAVMs are limited to surgery, embolization, and radiosurgery, although even these options are not viable for ~20% of AVM patients due to excessive risk. Critically, inflammation has been suggested to contribute to lesion progression. Here we summarize the current literature discussing the role of the immune system in bAVM pathogenesis and lesion progression, as well as the potential for targeting inflammation to prevent bAVM rupture and intracranial hemorrhage. We conclude by proposing that a dysfunctional endothelium, which harbors the somatic mutations that have been shown to give rise to sporadic bAVMs, may drive disease development and progression by altering the immune status of the brain.

SELECTION OF CITATIONS
SEARCH DETAIL