Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Environ Sci Technol ; 58(1): 449-458, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38130002

ABSTRACT

Nitrogen is an essential nutrient and a major limiting element for the ocean ecosystem. Since the preindustrial era, substantial amounts of nitrogen from terrestrial sources have entered the ocean via rivers, groundwater, and atmospheric deposition. China serves as a key hub in the global nitrogen cycle, but the pathways, sources, and potential mitigation strategies for land-ocean nitrogen transport are unclear. By combining the CHANS, WRF-Chem, and WNF models, we estimated that 8 million tonnes (Tg) of nitrogen was transferred into the ocean in 2017 in China, with atmospheric deposition contributing 1/3. About half variation of the offshore chlorophyll concentration was explained by atmospheric deposition. The Bohai Sea was the hot spot of nitrogen input, estimated at 214 kg N ha-1, while other areas were around 25-51 kg N ha-1. The largest contributors are agricultural systems (4 Tg, 55%), followed by domestic sewage (2 Tg, 21%). Abatement measures could reduce nitrogen export to the ocean by 43%, and mitigating ammonia and nitrogen oxide emissions accounts for 33% of this reduction, highlighting the importance of addressing air pollution in resolving ocean pollution. The cost-benefit analysis suggests the priority of nitrogen reduction in cropland and transport systems for the ocean environment.


Subject(s)
Air Pollution , Ecosystem , Nitrogen/analysis , Environment , Environmental Pollution/analysis , Air Pollution/analysis , China , Environmental Monitoring
2.
Environ Res ; 250: 118484, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38373544

ABSTRACT

The Ningxia Yellow River irrigation area, characterized by an arid climate and high leaching of NO3--N, exhibits complex and unique groundwater nitrate (NO3--N) pollution, with denitrification serving as the principal mechanism for NO3--N removal. The characteristics of N leaching from paddy fields and NO3--N removal by groundwater denitrification were investigated through a two-year field observation. The leaching losses of total nitrogen (TN) and NO3--N accounted for 10.81-27.34% and 7.59-12.74%, respectively, of the N input. The linear relationship between NO3--N leaching and N input indicated that the fertilizer-induced emission factor (EF) of NO3--N leaching in direct dry seeding and seedling-raising and transplanting paddy fields was 8.2% (2021, R2 = 0.992) and 6.7% (2022, R2 = 0.994), respectively. The study highlighted that the quadratic relationship between the NO3--N leaching loss and N input (R2 = 0.999) significantly outperformed the linear relationship. Groundwater denitrification capacity was characterized by monitoring the concentrations of dinitrogen (N2) and nitrous oxide (N2O). The results revealed substantial seasonal fluctuations in excess N2 and N2O concentrations in groundwater, particularly following fertilization and irrigation events. The removal efficiency of NO3--N via groundwater denitrification ranged from 42.70% to 74.38%, varying with depth. Groundwater denitrification capacity appeared to be linked to dissolved organic carbon (DOC) concentration, redox conditions, fertilization, irrigation, and soil texture. The anthropogenic-alluvial soil with limited water retention accelerated the leaching of NO3--N into groundwater during irrigation. This process enhances the groundwater recharge capacity and alters the redox conditions of groundwater, consequently impacting groundwater denitrification activity. The DOC concentration emerged as the primary constraint on the groundwater denitrification capacity in this region. Hence, increasing carbon source concentration and enhancing soil water retention capacity are vital for improving the groundwater denitrification capacity and NO3--N removal efficiency. This study provides practical insights for managing groundwater NO3--N pollution in agricultural areas, optimizing fertilization strategies and improving groundwater quality.


Subject(s)
Denitrification , Groundwater , Nitrates , Water Pollutants, Chemical , Groundwater/chemistry , Nitrates/analysis , Nitrates/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Fertilizers/analysis , Environmental Monitoring , China , Agriculture , Nitrogen/analysis
3.
J Environ Manage ; 362: 121308, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823301

ABSTRACT

Rural areas lacking essential sewage treatment facilities and collection systems often experience eutrophication due to elevated nutrient loads. Understanding nitrogen (N) sources and transport mechanisms in rural catchments is crucial for improving water quality and mitigating downstream export loads, particularly during storm events. To further elucidate the sources, pathways, and transport mechanisms of N from a rural catchment with intensive agricultural activities during storm events, we conducted an analysis of 21 events through continuous sampling over two rainy seasons in a small rural catchment from the lower reaches of the Yangtze River. The results revealed that ammonia-N (NH4+-N) and nitrate-N (NO3--N) exhibited distinct behaviors during rainstorm events, with NO3--N accounting for the primary nitrogen loss, its load being approximately forty times greater than that of NH4+-N. Through examinations of the concentration-discharge (c-Q) relationships, the findings revealed that, particularly in prolonged rainstorms, NH4+-N exhibited source limited pattern (b = -0.13, P < 0.01), while NO3--N displayed transport limited pattern (b = -0.21, P < 0.01). The figure-eight hysteresis pattern was prevalent for both NH4+-N and NO3--N (38.1% and 52.0%, respectively), arising from intricate interactions among diverse sources and pathways. For NO3--N, the hysteresis pattern shifted from clockwise under short-duration rainstorms to counter-clockwise under long-duration rainstorms, whereas hysteresis remained consistently clockwise for NH4+-N. The hysteresis analysis further suggests that the duration of rainstorms modifies hydrological connectivity, thereby influencing the transport processes of N. These insights provide valuable information for the development of targeted management strategies to reduce storm nutrient export in rural catchments.


Subject(s)
Environmental Monitoring , Nitrogen , Rain , Nitrogen/analysis , Rivers/chemistry , Nitrates/analysis , Water Quality
4.
J Environ Manage ; 364: 121472, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38879968

ABSTRACT

Aquaculture systems are expected to act as potential hotspots for nitrous oxide (N2O) emissions, largely attributed to substantial nutrient loading from aquafeed applications. However, the specific patterns and contributions of N2O fluxes from these systems to the global emissions inventory are not well characterized due to limited data. This study investigates the patterns of N2O flux across 127 freshwater systems in China to elucidate the role of aquaculture ponds and lakes/reservoirs in landscape N2O emission. Our findings show that the average N2O flux from aquaculture ponds was 3.63 times higher (28.73 µg N2O m-2 h-1) than that from non-aquaculture ponds. Additionally, the average N2O flux from aquaculture lakes/reservoirs (15.65 µg N2O m-2 h-1) increased 3.05 times compared to non-aquaculture lakes/reservoirs. The transition from non-aquaculture to aquaculture practices has resulted in a net annual increase of 7589 ± 2409 Mg N2O emissions in China's freshwater systems from 2003 to 2022, equivalent to 20% of total N2O emissions from China's inland water. Particularly, the robust negative regression relationship between N2O emission intensity and water area suggests that small ponds are hotspots of N2O emissions, a result of both elevated nutrient concentrations and more vigorous biogeochemical cycles. This indicates that N2O emissions from smaller aquaculture ponds are larger per unit area compared to equivalent larger water bodies. Our findings highlight that N2O emissions from aquaculture systems can not be proxied by those from natural water bodies, especially small water bodies exhibiting significant but largely unquantified N2O emissions. In the context of the rapid global expansion of aquaculture, this underscores the critical need to integrate aquaculture into global assessments of inland water N2O emissions to advance towards a low-carbon future.


Subject(s)
Aquaculture , Nitrous Oxide , Nitrous Oxide/analysis , China , Lakes , Environmental Monitoring
5.
J Environ Manage ; 365: 121681, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963966

ABSTRACT

The denitrification process in aquaculture systems plays a crucial role in nitrogen (N) cycle and N budget estimation. Reliable models are needed to rapidly quantify denitrification rates and assess nitrogen losses. This study conducted a comparative analysis of denitrification rates in fish, crabs, and natural ponds in the Taihu region from March to November 2021, covering a complete aquaculture cycle. The results revealed that aquaculture ponds exhibited higher denitrification rates compared to natural ponds. Key variables influencing denitrification rates were Nitrate nitrogen (NO3--N), Suspended particles (SPS), and chlorophyll a (Chla). There was a significant positive correlation between SPS concentration and denitrification rates. However, we observed that the denitrification rate initially rose with increasing Chla concentration, followed by a subsequent decline. To develop parsimonious models for denitrification rates in aquaculture ponds, we constructed five different statistical models to predict denitrification rates, among which the improved quadratic polynomial regression model (SQPR) that incorporated the three key parameters accounted for 80.7% of the variability in denitrification rates. Additionally, a remote sensing model (RSM) utilizing SPS and Chla explained 43.8% of the variability. The RSM model is particularly valuable for rapid estimation in large regions where remote sensing data are the only available source. This study enhances the understanding of denitrification processes in aquaculture systems, introduces a new model for estimating denitrification in aquaculture ponds, and offers valuable insights for environmental management.

6.
J Environ Manage ; 347: 119134, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37793294

ABSTRACT

The biological thermal-alkaline hydrolysis-acidification (BTAHA) could promote sludge disintegration, which was conducive to producing volatile fatty acids (VFAs). However, high temperature and strong alkali could reduce the BTAHA effluent quality. Because high temperature denatures proteins and significantly changes the material and energy metabolism of bacteria, while strong alkali inhibits fermentation microorganisms (especially acid-producing microorganisms). This study investigated the internal mechanism of zero valent iron (ZVI) and magnetite (Mag.) alleviating temperature and alkali stress and improving the quality of hydrolysis-acidification effluent. At pH 7-10, compared with the control and magnetite, ZVI increased the average effluent VFAs by 24.0%-40.1% and 11.6%-18.1%, respectively. At pH 9, ZVI could provide an ecological niche for acidifying bacteria that preferred neutral and weakly alkaline conditions, with a 49.8% proportion of VFAs to soluble chemical oxygen demand (SCOD). At pH 12, the fluorescence intensity ratio of easy to difficult biodegradable organic matter in control, RMag., and RZVI were 0.63, 0.62, and 1.31, respectively. It indicated ZVI effectively alleviated high temperature and strong alkali stress. This study provides a reference for improving the quality of BTAHA effluent.


Subject(s)
Iron , Sewage , Sewage/chemistry , Hydrolysis , Ferrosoferric Oxide , Fermentation , Fatty Acids, Volatile , Bacteria , Hydrogen-Ion Concentration , Alkalies , Anaerobiosis
7.
J Sci Food Agric ; 103(8): 4119-4130, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36576004

ABSTRACT

BACKGROUND: Nitrogen (N) is the most limiting nutrient in rice production. N loss via denitrification and ammonia (NH3 ) volatilization decreases N utilization efficiency. The effect of periphyton (a widespread soil surface microbial aggregate in paddy soil) on N-cycling processes and rice growth in paddy soils remain unclear. The purpose of this study was to reveal the interactions of periphyton with the overlying water and sediment in paddy soils on denitrification/NH3 emissions and rice yield by combining pot experiments and path analysis modeling. RESULTS: The sediment exerted significant direct and positive effects on denitrification. The periphyton both directly and indirectly enhanced denitrification, mainly by regulating the ammonium (NH4 + )-N content in the sediment. The total contribution of periphyton to denitrification was stronger than that of the overlying water but smaller than that of the sediment. The pH in the overlying water and the NH4 + -N content in the sediment had a strong positive effect on NH3 volatilization. Although the periphyton biomass and chlorophyll a directly prohibited NH3 emissions, this was counterbalanced by the indirect stimulation effects of the periphyton due to its positive alteration of the pH. Moreover, periphyton facilitated rice yield by 10.2% by releasing N. CONCLUSION: Although the periphyton may have driven N loss by regulating the NH4 + -N content in the sediment and the pH in the overlying water, our study also found that the periphyton was considered a temporary N sink and provided a sustained release of N for rice, thus increasing the rice yield. © 2022 Society of Chemical Industry.


Subject(s)
Oryza , Periphyton , Ammonia/analysis , Oryza/chemistry , Volatilization , Chlorophyll A , Denitrification , Fertilizers/analysis , Soil/chemistry , Nitrogen/analysis
8.
J Environ Manage ; 245: 173-186, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31152961

ABSTRACT

Converting straw to biochar (BC) followed by successive application to soil has been increasingly suggested as a multi-win approach for soil fertility improvement, carbon (C) sequestration and efficient disposal of straw residues in intensive cropping agroecosystems. However, different soil types response differently in terms of crop growth and non-CO2 greenhouse gas (GHG) emissions after BC application. Furthermore, few studies have comprehensively evaluated the net global warming potential (GWP) and net ecosystem economic benefits (NEEB) after long-term BC incorporation across representative soil types in China. A five-year outdoor column experiment was conducted using three rice-wheat rotated paddy soils and three millet-wheat rotated upland soils developed from different parent materials. Rice straw BC application rates of 0, 2.25 and 11.3 Mg ha-1 were used in each crop season with identical doses of NPK fertilizers. Compared with the no BC controls, BC significantly boosted crop growth, enhanced C sequestration, and decreased cumulative N2O and CH4 emissions in all six soils over five rotation cycles. The response of the upland soils to BC was better in terms of crop growth and N2O mitigation, whereas the soil organic carbon (SOC) increment and CH4 mitigation were less effective compared with the paddy soils. Net GWP decreased 0.6-19 fold after BC application; however, given the low trade price of CO2 (0.21 × 103 CNY Mg-1), only a small contribution was made in terms of C costs to the NEEB. The BC-induced NEEB was mainly dependent on grain yield gains and BC costs. These findings highlight that widespread adoption of successive straw BC application to farmland requires an increase in crop yield and substantial lowering of the BC cost regardless of the soil type. From the standpoints of agronomics, environment and economics, acid upland soil shows most potential in terms of BC application.


Subject(s)
Carbon Sequestration , Oryza , Agriculture , Charcoal , China , Crop Production , Ecosystem , Soil
9.
Environ Sci Technol ; 50(18): 9972-80, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27499451

ABSTRACT

Using soil slurry-based (15)N tracer combined with N2/Ar technique, the potential rates of denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA), and their respective contributions to total nitrate reduction were investigated in 11 typical paddy soils across China. The measured rates of denitrification, anammox, and DNRA varied from 2.37 to 8.31 nmol N g(-1) h(-1), 0.15 to 0.77 nmol N g(-1) h(-1) and 0.03 to 0.54 nmol N g(-1) h(-1), respectively. The denitrification and anammox rates were significantly correlated with the soil organic carbon content, nitrate concentration, and the abundance of nosZ genes. The DNRA rates were significantly correlated with the soil C/N, extractable organic carbon (EOC)/NO3(-) ratio, and sulfate concentration. Denitrification was the dominant pathway (76.75-92.47%), and anammox (4.48-9.23%) and DNRA (0.54-17.63%) also contributed substantially to total nitrate reduction. The N loss or N conservation attributed to anammox and DNRA was 4.06-21.24 and 0.89-15.01 g N m(-2) y(-1), respectively. This study reports the first simultaneous investigation of the dissimilatory nitrate reduction processes in paddy soils, highlighting that anammox and DNRA play important roles in removing nitrate and should be considered when evaluating N transformation processes in paddy fields.


Subject(s)
Nitrates , Soil , Ammonium Compounds/metabolism , Denitrification , Nitrogen Oxides , Oxidation-Reduction
10.
Environ Sci Technol ; 49(3): 1427-35, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25579626

ABSTRACT

Denitrification is the primary process that regulates the removal of bioavailable nitrogen (N) from aquatic ecosystems. Quantifying the capacity of N removal from aquatic systems can provide a scientific basis for establishing the relationship between N reduction and water quality objectives, quantifying pollution contributions from different sources, as well as recommending control measures. The Lake Taihu region in China has a dense river network and heavy N pollution; however, the capacity for permanent N removal by the river network is unknown. Here, we concurrently examined environmental factors and net N2 flux from sediments of two rivers in the Lake Taihu region between July 2012 and May 2013, using membrane inlet mass spectrometry, and then established a regression model incorporating the highly correlated factors to predict the N removal capacity of the river network in the region. To test the applicability of the regression model, 21 additional rivers surrounding Lake Taihu were sampled between July and December 2013. The results suggested that water nitrate concentrations are still the primary controlling factor for net denitrification even in this high N loading river network, probably due to multicollinearity of other relevant factors, and thus can be used to predict N removal from aquatic systems. Our established model accounted for 78% of the variability in the measured net N2 flux in these 21 rivers, and the total N removed through N2 production by the river network was estimated at 4 × 10(4) t yr(-1), accounting for about 43% of the total aquatic N load to the river system. Our results indicate that the average total N content in the river water discharged into Lake Taihu would be around 5.9 mg of N L(-1) in the current situation, far higher than the target concentration of 2 mg of N L(-1), given the total N load and the N removal capacity. Therefore, a much stronger effort is required to control the N pollution of the surface water in the region.


Subject(s)
Nitrogen/analysis , Water Pollutants, Chemical/analysis , China , Denitrification , Models, Theoretical , Rivers/chemistry , Water Quality
12.
Sci Total Environ ; 914: 169821, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38190921

ABSTRACT

Taihu Lake has suffered from eutrophication and algal blooms for decades, primarily due to increasing anthropogenic pollutants from human activities. Extensive research and widespread implementation of water pollution control measures have significantly contributed to the improvement of water quality of Taihu Lake. However, the relevant experience of Taihu Lake pollution control has not been well summarized to provide insight for future lake restoration. This review article seeks to address this gap by first providing a comprehensive overview of Taihu Lake's water quality dynamics over the past thirty years, characterized by two distinct stages: (I) water quality deterioration (1990s-2007); and (II) water total nitrogen (TN) improvement but total phosphorus (TP) fluctuation (2007-current). Subsequently, we conducted a thorough review of the experiences and challenges associated with water pollution control during these two stages. Generally, pollution control practices emphasized point source control but overlooked non-point sources before 2007, possibly due to point sources being easier to identify and manage. Accordingly, the focus shifted from industrial point sources to a combination of industrial point and agricultural non-point sources after 2007 to control water pollution in the Taihu Lake Basin. Numerous studies have delved into non-point source pollution control, including source control, transport intercept, in-lake measures, and the integration of these technologies. Taken together, this paper provides suggestions based on the needs and opportunities of this region. Further research is needed to better understand and model the underlying pollution processes, as well as to increase public participation and improve policy and law implementation, which will assist decision-makers in formulating better water management in Taihu Lake.

13.
Water Res ; 251: 121164, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38246078

ABSTRACT

Agriculture is a main source of nitrous oxide (N2O) emissions. In agricultural systems, direct N2O emissions from nitrogen (N) addition to soils have been widely investigated, whereas indirect emissions from aquatic ecosystems such as ditches are poorly known, with insufficient data available to refine the IPCC emission factor. In this contribution, in situ N2O emissions from two ditch water‒air interfaces based on a diffusion model were investigated (almost once per month) from June 2021 to December 2022 in an intensive arable catchment with high N inputs and salt-affected conditions in the Qingtongxia Irrigation District, northwestern China. Our results implied that agricultural ditches (mean 148 µg N m-2 h-1) were significant sources for N2O emissions, and were approximately 2.1 times greater than those of the Yellow River directly connected to ditches. Agronomic management strategies increased N2O fluxes in summer, while precipitation events decreased N2O fluxes. Agronomic management strategies, including fertilization (294--540 kg N hm-2) and irrigation on farmland, resulted in enhanced diffuse N loads in drain water, whereas precipitation diluted the dissolved N2O concentration in ditches and accelerated the ditch flow rate, leading to changes in the residence time of N-containing substances in water. The spatial analysis showed that N2O fluxes (202-233 µg N m-2 h-1) in the headstream and upstream regions of ditches due to livestock and aquaculture pollution sources were relatively high compared to those in the midstream and downstream regions (100-114 µg N m-2 h-1). Furthermore, high available carbon (C) relative to N reduced N2O fluxes at low DOC:DIN ratio levels by inhibiting nitrification. Spatiotemporal variations in the N2O emission factor (EF5) across ditches with higher N resulted in lower EF5 and a large coefficient of variation (CV) range. EF5 was 0.0011 for the ditches in this region, while the EF5 (0.0025) currently adopted by the IPCC is relatively high. The EF5 variation was strongly controlled by the DOC:DIN ratio, TN, and NO3--N, while salinity was also a nonnegligible factor regulating the EF5 variation. The regression model incorporating NO3--N and the DOC:DIN ratio could greatly enhance the predictions of EF5 for agricultural ditches. Our study filled a key knowledge gap regarding EF5 from agricultural ditches in salt-affected farmland and offered a field investigation for refining the EF5 currently used by the IPCC.


Subject(s)
Ecosystem , Nitrogen , Farms , Nitrogen/analysis , Environmental Monitoring , Agriculture/methods , Soil , Sodium Chloride , Water/analysis , Nitrous Oxide/analysis , China
14.
Sci Total Environ ; 916: 170314, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38272083

ABSTRACT

Drainage networks, consisting of different levels of ditches, play a positive role in removing reactive nitrogen (N) via self-purification before drainage water returns to natural water bodies. However, relatively little is known about the N removal capacity of irrigation agricultural systems with different drainage ditch levels. In this study, we employed soil core incubation and soil slurry 15N paired tracer techniques to investigate the N removal rate (i.e., N2 flux), denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) rates in the Ningxia Yellow River irrigation district at various ditch levels, including field ditches (FD), paddy field ditches (PFD), lateral ditches (LD1 and LD2), branch ditches (BD1, BD2, BD3), and trunk ditches (TD). The results indicated that the N removal rate ranged from 44.7 to 165.22 nmol N g-1 h-1 in the ditches, in the following decreasing order: trunk ditches > branch ditches > paddy field ditches > lateral ditches > field ditches. This result suggested that the N removal rate in drainage ditches is determined by the ditch level. In addition, denitrification and anammox were the primary pathways for N removal in the ditches, contributing 68.40-76.64 % and 21.55-30.29 %, respectively, to the total N removal. In contrast, DNRA contributed only 0.82-2.15 % to the total nitrate reduction. The N removal rates were negatively correlated with soil EC and pH and were also constrained by the abundances of denitrification functional genes. Overall, our findings suggest that the ditch level should be considered when evaluating the N removal capacity of agricultural ditch systems.


Subject(s)
Ammonium Compounds , Nitrates , Nitrates/analysis , Denitrification , Rivers , Anaerobic Ammonia Oxidation , Soil , Nitrogen/analysis , Water , Oxidation-Reduction
15.
Sci Total Environ ; 934: 173228, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38768735

ABSTRACT

Indirect emissions of nitrous oxide (N2O) stemming from nitrogen (N) leaching in agricultural fields constitute a significant contributor to atmospheric N2O. Groundwater nitrate (NO3--N) pollution is severe in the Ningxia Yellow River Irrigation Area (NYRIA), coupled with high NO3--N leaching, exacerbates the risk of indirect N2O emissions from groundwater. Over two years of field observations, this study investigated the characteristics and interannual variations of dissolved N2O (dN2O) concentrations and indirect N2O emission factors (EF5g) in shallow groundwater. The research focused on three typical farmlands in the NYRIA, each subjected to six levels of N fertilizer application. The mean dN2O concentrations in the groundwater of paddy, corn and vegetable fields were 5.17, 8.40 and 16.35 µg N·L-1, respectively. Notably, the dN2O concentrations in the shallow groundwater of upland fields exceeded those in paddy fields, with maximum levels in vegetable fields nearly an order of magnitude higher. Elevated N application significantly increased dN2O concentrations across various farmlands, showing statistically significant variation. However, differences in EF5g-A and EF5g-B within the same farmland were negligible. Denitrification was the primary process contributing to N2O production in groundwater, with nitrification also played a crucial role in upland fields. Factors such as NO3--N, NH4+-N, dissolved oxygen (DO), and pH critically influenced N2O production. EF5g-B, which considers the NO3--N consumption during denitrification processes in groundwater, was deemed more appropriate than EF5g-A for assessing the indirect N2O emission in the NYRIA. The EF5g of agricultural fields exhibited minimal sensitivity to N input but was significantly affected by other factors, such as the planting pattern. The study revealed the rationality of adopting EF5g-B in assessing indirect N2O emissions, providing valuable insights for N management strategies in regions with high NO3--N leaching. Minimizing N fertilizer application while ensuring crop yield, especially in upland fields, is beneficial for reducing N2O emissions.

16.
Nat Commun ; 15(1): 401, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195574

ABSTRACT

Halving nitrogen pollution is crucial for achieving Sustainable Development Goals (SDGs). However, how to reduce nitrogen pollution from multiple sources remains challenging. Here we show that reactive nitrogen (Nr) pollution could be roughly halved by managed urban development in China by 2050, with NH3, NOx and N2O atmospheric emissions declining by 44%, 30% and 33%, respectively, and Nr to water bodies by 53%. While rural-urban migration increases point-source nitrogen emissions in metropolitan areas, it promotes large-scale farming, reducing rural sewage and agricultural non-point-source pollution, potentially improving national air and water quality. An investment of approximately US$ 61 billion in waste treatment, land consolidation, and livestock relocation yields an overall benefit of US$ 245 billion. This underscores the feasibility and cost-effectiveness of halving Nr pollution through urbanization, contributing significantly to SDG1 (No poverty), SDG2 (Zero hunger), SDG6 (Clean water), SDG12 (Responsible consumption and production), SDG14 (Climate Action), and so on.

17.
Sci Rep ; 13(1): 2155, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36750752

ABSTRACT

Denitrification, as the main nitrogen (N) removal process in farmland drainage ditches in coastal areas, is significantly affected by saline-alkali conditions. To elucidate the effects of saline-alkali conditions on denitrification, incubation experiments with five salt and salt-alkali gradients and three nitrogen addition levels were conducted in a saline-alkali soil followed by determination of denitrification rates and the associated functional genes (i.e., nirK/nirS and nosZ Clade I) via N2/Ar technique in combination with qPCR. The results showed that denitrification rates were significantly decreased by 23.83-50.08%, 20.64-57.31% and 6.12-54.61% with salt gradient increasing from 1 to 3‰, 8‰, and 15‰ under 0.05‰, 0.10‰ and 0.15‰ urea addition conditions, respectively. Similarly, denitrification rates were significantly decreased by 44.57-63.24% with an increase of the salt-alkali gradient from 0.5 to 8‰. The abundance of nosZ decreased sharply in the saline condition, while a high salt level significantly decreased the abundance of nirK and nirS. In addition, the increase of nitrogen concentration attenuated the reduction of nirK, nirS and nosZ gene abundance. Partial least squares regression (PLSR) models demonstrated that salinity, dissolved oxygen (DO) in the overlying water, N concentration, and denitrifying gene abundance were key determinants of the denitrification rate in the saline environment, while pH was an additional determinant in the saline-alkali environment. Taken together, our results suggest that salinity and high pH levels decreased the denitrification rates by significantly inhibiting the abundance of the denitrifying genes nirK, nirS, and nosZ, whereas increasing nitrogen concentration could alleviate this effect. Our study provides helpful information on better understanding of reactive N removal and fertilizer application in the coastal areas.


Subject(s)
Denitrification , Soil , Alkalies , Salinity , Hydrogen-Ion Concentration , Nitrogen/analysis , Soil Microbiology
18.
Water Res ; 238: 119991, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37130489

ABSTRACT

Small water bodies such as interval water-flooded ditches, ponds, and streams serve as important nutrient sinks in many landscapes, especially in the multi-water continuum system. Yet watershed nutrient cycling models often fail to or insufficiently capture these waters, resulting in great uncertainty in quantifying the distributed transfer and retention of nutrients across diverse landscapes in a watershed. In this study, we present a network-based predictive framework of the nutrient transport process in nested small water bodies, which incorporates topology structure, hydrological and biogeochemical processes, and connectivity to perform a nonlinear and distributed scaling of nutrient transfer and retention. The framework was validated and applied to N transport in a multi-water continuum watershed in the Yangtze River basin. We show that the importance of N loading and retention depends on the spatial context of grid source and water bodies because of the great variation in location, connectivity, and water types. Our results demonstrate that hotspots in nutrient loading and retention could be accurately and efficiently identified through hierarchical network effects and spatial interactions. This offers an effective approach for the reduction of watershed-scale nutrient loads. This framework can be used in modeling to identify where and how to restore small water bodies for reduced non-point pollution from agricultural watersheds.


Subject(s)
Rivers , Water Supply , Rivers/chemistry , Environmental Pollution , Water , Nutrients , Nitrogen/analysis , Environmental Monitoring/methods , Phosphorus/analysis
19.
Water Res ; 220: 118639, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35640505

ABSTRACT

The effects of land use on riverine N2O emissions are not well understood, especially in suburban zones between urban and rural with distinct anthropogenic perturbations. Here, we investigated in situ riverine N2O emissions among suburban, urban, and rural sections of a typical agricultural-urban gradient river, the Qinhuai River of Southeastern China from June 2010 to September 2012. Our results showed that suburban agriculture greatly increased riverine N concentration compared to traditional agricultural rivers (TAR). The mean total dissolved nitrogen (TDN) concentration was 8.18 mg N L-1 in the suburban agricultural rivers (SUAR), which was almost the same as that in the urban rivers (UR, of 8.50 mg N L-1), compared to that in TAR (0.92 mg N L-1). However, the annual average indirect N2O flux from the SUAR was only 27.15 µg N2O-N m-2 h-1, which was slightly higher than that from the TAR (13.14 µg N2O-N m-2 h-1) but much lower than that from the UR (131.10 µg N2O-N m-2 h-1). Moreover, the average N2O emission factor (EF5r, N2O-N/DIN-N) in the SUAR (0.0002) was significantly lower than those in the TAR (0.0028) and UR (0.0004). The limited indirect N2O fluxes from the SUAR are best explained by the high riverine dissolved organic carbon (DOC) and low dissolved oxygen, which probably reduced the denitrification source N2O by favoring complete denitrification to produce N2 and inhibited the nitrification source N2O, respectively. An exponential decrease model incorporating dissolved inorganic nitrogen and DOC could greatly improve our EF5r predictions in the agricultural-urban gradient river. Given the unprecedented suburban agriculture in the world, more studies in suburban agricultural rivers are needed to further refine the EF5r and better reveal the mechanisms behind indirect N2O emissions as influenced by suburban agriculture.


Subject(s)
Nitrous Oxide , Rivers , Agriculture/methods , China , Environmental Monitoring , Nitrogen/analysis , Nitrous Oxide/analysis
20.
Sci Total Environ ; 803: 149933, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34482141

ABSTRACT

To ensure global food security, agriculture must increase productivity while reducing environmental impacts associated with chemical nitrogen (N) fertilisation. This necessitates towards more sustainable practices such as recycling organic waste to substitute chemical fertiliser N inputs. However, hitherto how such strategy controls the succession of microbial communities and their relationship with crop yields and environmental impacts have not been comprehensively investigated. We conducted a field experiment with vegetable production in China examining partial substitution (25-50%) of chemical fertiliser with organic forms (pig manure or municipal sludge compost) considering key sustainability metrics: productivity, soil health, environmental impacts and microbial communities. We demonstrate that partial organic substitution improved crop yields, prevented soil acidification and improved soil fertility. Treatments also reduced detrimental environmental impacts with lower N2O emission, N leaching and runoff, likely due to reduced inorganic nitrogen surplus. Microbial communities, including key genes involved in the N cycle, were dynamic and time-dependent in response to partial organic substitution, and were also important in regulating crop yields and environmental impacts. Partial organic substitution increased bacterial diversity and the relative abundance of several specific microbial groups (e.g. Sphingomonadales, Myxococcales, Planctomycetes, and Rhizobiales) involved in N cycling. Additionally, partial organic substitution reduced the number of bacterial ammonia oxidizers and increased the number of denitrifiers, with the proportion of N2O-reducers being more pronounced, suggesting a mechanism for reducing N2O emissions. Comprehensive economic cost-benefit evaluation showed that partial organic substitution increased economic benefit per unit area by 37-46%, and reduced agricultural inputs and environmental impacts per unit product by 22-44%. Among them, 50% substitution of pig manure was the most profitable strategy. The study is crucial to policy-making as it highlights the potential advantages of shifting towards systems balancing chemical and organic fertilisers with economic benefits for farmers, reduced environmental damage and an efficient way for organic waste disposal.


Subject(s)
Agriculture , Fertilizers , Animals , Fertilizers/analysis , Manure , Nitrogen , Soil , Swine
SELECTION OF CITATIONS
SEARCH DETAIL