Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Environ Res ; 252(Pt 4): 119129, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734292

ABSTRACT

Climate change has had a significant impact on many marine organisms. To investigate the effects of environmental changes on deep-water benthic fishes, we selected the genus Oplegnathus and applied species distribution modeling and ecological niche modeling. From the last glacial maximum to the present, the three Oplegnathus species (O. conwayi, O. robinsoni, and O. peaolopesi) distributed in the Cape of Good Hope region of southern Africa experienced fitness zone fluctuations of 39.9%, 13%, and 5.7%, respectively. In contrast, O. fasciatus and O. punctatus, which were primarily distributed in the western Pacific Ocean, had fitness zone fluctuations of -6.5% and 11.7%, respectively. Neither the O. insignis nor the O. woodward varied by more than 5% over the period. Under future environmental conditions, the range of variation in fitness zones for the three southern African Oplegnathus species was expected to be between -30.8% and -26.5%, while the range of variation in fitness zones for the two western Pacific stonefish species was expected to remain below 13%. In addition, the range of variation in the fitness zones of the O. insignis was projected to be between -2.3% and 7.1%, and the range of variation in the fitness zones of the O. woodward is projected to be between -5.7% and -2%. The results indicated that O. fasciatus and O. punctatus had a wide distribution and high expansion potential, while Oplegnathus species might have originated in western Pacific waters. Our results showed that benthic fishes were highly adaptable to extreme environments, such as the last glacial maximum. The high ecological niche overlap between Oplegnathus species in the same region suggested that they competed with each other. Future research could explore the impacts of environmental change on marine organisms and make conservation and management recommendations.


Subject(s)
Climate Change , Ecosystem , Animals , Fishes/classification , Fishes/physiology , Perciformes/physiology
2.
Fish Shellfish Immunol ; 138: 108817, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37230309

ABSTRACT

The frequent occurrence of diseases seriously hampers the sustainable development of the spotted knifejaw (Oplegnathus punctatus) breeding industry. Our previous genome-wide scan and cross-species comparative genomic analysis revealed that the immune gene family (Toll-like receptors, TLR) members of O. punctatus underwent a significant contraction event (tlr1, tlr2, tlr14, tlr5, and tlr23). To address immune genetic contraction may result in reduced immunity, we investigated whether adding different doses (0, 200, 400, 600, and 800 mg/kg) of immune enhancers (tea polyphenols, astaxanthin, and melittin) to the bait after 30 days of continuous feeding could stimulate the immune response of O. punctatus. We found that the expression of tlr1, tlr14, tlr23 genes in immune organs (spleen and head kidney) was stimulated when tea polyphenols were added at 600 mg/kg. The tlr2 (400 mg/kg), tlr14 (200 mg/kg), tlr5 (200 mg/kg), and tlr23 (200 mg/kg) genes expression of intestine were elevated in the tea polyphenol group. When the addition of astaxanthin is 600 mg/kg, it can effectively stimulate the expression of tlr14 gene in immune organs (liver, spleen and head kidney). In the astaxanthin group, the expression of the genes tlr1 (400 mg/kg), tlr14 (600 mg/kg), tlr5 (400 mg/kg) and tlr23 (400 mg/kg) reached their highest expression in the intestine. Besides, the addition of 400 mg/kg of melittin can effectively induce the expression of tlr genes in the liver, spleen and head kidney, except the tlr5 gene. The tlr-related genes expression in the intestine was not significantly elevated in the melittin group. We hypothesize that the immune enhancers could enhance the immunity of O. punctatus by increasing the expression of tlr genes, and thereby leading to increased resistance to diseases. Meanwhile, our findings further demonstrated that significant increases in weight gain rate (WGR), visceral index (VSI), and feed conversion rate (FCR) were observed at 400 mg/kg, 200 mg/kg and 200 mg/kg of tea polyphenols, astaxanthin and melittin in the diet, respectively. Overall, our study provided valuable insights for future immunity enhancement and viral infection prevention in O. punctatus, as well as offered guidance for the healthy development of the O. punctatus breeding industry.


Subject(s)
Toll-Like Receptor 1 , Toll-Like Receptor 2 , Animals , Toll-Like Receptor 2/genetics , Toll-Like Receptor 1/genetics , Gene Expression Regulation , Toll-Like Receptor 5/genetics , Melitten/genetics , Melitten/metabolism , Fishes/metabolism , Immunity , Tea
3.
J Fish Biol ; 101(4): 1084-1091, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35833517

ABSTRACT

This study provides a novel record of the reproductive behaviour of the Kong skate (Okamejei kenojei) in captivity. These skates were found to mate and deposit eggs at a temperature of 16.5 ± 0.5°C. The results showed that 76.13% of the eggs possessed one yolk, 0.77% of the eggs possessed two yolks and 23.11% of the eggs had no yolk (N = 1043). The deposition of non-yolk and double-yolk eggs was random. A total of 100 eggs were collected. After nearly 92 ± 5 days of incubation, 28 eggs failed to hatch, and 72 skates were successfully hatched with a female-to-male ratio of 1:1 (P > 0.05). The results enrich our knowledge of the reproduction in cartilaginous fishes and can inform management and conservation strategies for this species.


Subject(s)
Reproduction , Skates, Fish , Female , Male , Animals , Pregnancy , Oviposition , Temperature , Parturition , Egg Yolk
4.
Ecotoxicol Environ Saf ; 207: 111287, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32931967

ABSTRACT

Coming along with high water reuse in sustainable and intensive recirculating aquaculture systems (RASs), the waste products of fish in rearing water is continuously accumulated. Nitrate, the final product of biological nitrification processes, which may cause aquatic toxicity to fish in different degrees when exposed for a long time. Therefore, the present study was conducted to evaluate the impact of chronic nitrate exposure on intestinal morphology, immune status, barrier function, and microbiota of juvenile turbot. For that, groups of juvenile turbot were exposed to 0 (control check, CK), 50 (low nitrate, L), 200 (medium nitrate, M), and 400 (high nitrate, H) mg L-1 nitrate-N in small-sized recirculating aquaculture systems. After the 60-day experiment period, we found that exposure to a high concentration of nitrate-N caused obvious pathological damages to the intestine; for instance, atrophy of intestinal microvilli and necrosis in the lamina propria. Quantitative real-time PCR analysis revealed a significant downregulation of the barrier forming tight junction genes like occludin, claudin-like etc. under H treatment (P < 0.05). Intestinal MUC-2 expression also decreased significantly in the nitrate treatment groups compared to that in the control (P < 0.05). Additionally, the expression of HSP70 and HSP90 heat-shock proteins, toll-like receptor-3 (TLR-3), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) significantly increased (P < 0.05), whereas that of transforming growth factor-ß (TGF-ß), lysozyme (LYS), and insulin-like growth factor-I (IGF-I) significantly decreased with H treatment (P < 0.05). The results also revealed that intestinal microbial community was changed following nitrate exposure and could alter the α-diversity and ß-diversity. Specifically, the proportion of intrinsic flora decreased, whereas that of the potential pathogens significantly increased with M and H treatments (P < 0.05). In conclusion, chronic nitrate exposure could weaken the barrier function and disturb the composition of intestinal microbiota in marine teleosts, thereby harming their health condition.


Subject(s)
Flatfishes/growth & development , Gastrointestinal Microbiome/drug effects , Immunity, Mucosal/drug effects , Intestinal Mucosa/drug effects , Intestines/drug effects , Nitrates/toxicity , Water Pollutants, Chemical/toxicity , Animals , DNA, Bacterial/genetics , Dose-Response Relationship, Drug , Flatfishes/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Intestines/microbiology
5.
Ecotoxicol Environ Saf ; 208: 111617, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396137

ABSTRACT

Nitrate (NO3-), a potential toxic nitrogenous compound to aquatic animals, is distributed in aquatic ecosystems worldwide. The aim of this study was to investigate the effects of different NO3- levels on growth performance, health status, and endocrine function of juvenile turbot (Scophthalmus maximus) in recirculating aquaculture systems (RAS). Fish were exposed to 0 mg/L (control, CK), 50 mg/L (low nitrate, LN), 200 mg/L (medium nitrate, MN), and 400 mg/L (high nitrate, HN) NO3-N for 60 d in experimental RAS. Cumulative survival (CS) was significantly decreased with increasing NO3- levels in LN, MN, and HN. The lowest CS was 35% in the HN group. Growth parameters, including absolute growth rate, specific growth rate, and feed conversion rate, were significantly different in HN compared with that in the CK. Histological survey of gills and liver revealed dose-dependent histopathological damage induced by NO3- exposure and significant differences in glutamate pyruvate transaminase and glutamate oxalate transaminase in MN and HN compared with that in the CK. The hepatosomatic index in HN was significantly higher than that in the CK. Additionally, NO3- significantly increased bioaccumulation in plasma in LN, MN, and HN compared to that in the CK. Significant decreases in hemoglobin and increases in methemoglobin levels indicated reduced oxygen-carrying capacity in HN. Additionally, qRT-PCR and enzyme-linked immunosorbent assay (ELISA) were developed to investigate key biomarkers involved in the GH/IGF-1, HPT, and HPI axes. Compared with that in the CK, the abundance of GH, GHRb, and IGF-1 was significantly lower in HN, whereas GHRa did not differ between treatments. The plasma T3 level significantly decreased in LN, MN, and HN and T4 significantly decreased in HN. The CRH, ACTH, and plasma cortisol levels were significantly upregulated in HN compared with that in the CK. We conclude that elevated NO3- exposure leads to growth retardation, impaired health status, and endocrine disorders in turbot and the NO3- level for juvenile turbot culture should not exceed 50 mg/L NO3-N in RAS. Our findings indicate that endocrine dysfunction of the GH/IGF-1, HPT, and HPI axes might be responsible for growth inhibition induced by NO3- exposure.


Subject(s)
Aquaculture/methods , Endocrine System/drug effects , Flatfishes/growth & development , Nitrates/toxicity , Water Pollutants, Chemical/toxicity , Animals , Ecosystem , Endocrine System/metabolism , Gills/drug effects , Gills/pathology , Health Status , Liver/drug effects , Liver/pathology , Seafood , Thyroid Hormones/metabolism
6.
Gen Comp Endocrinol ; 274: 17-25, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30594590

ABSTRACT

In teleosts, sex is plastic and is influenced by environmental factors. Elevated temperatures have masculinizing effects on the phenotypic sex of certain sensitive species. In this study, we reared genetic XX Japanese flounder at a high temperature (27.5 ±â€¯0.5 °C) and obtained a population of sex-reversal XX males (male ratio, 95.24%). We comparatively analyzed the dynamic characteristics of germ cells and gsdf (gonadal soma-derived factor) expression during sexual differentiation for the experimental (27.5 ±â€¯0.5 °C) and control (18 °C ±â€¯0.5 °C) groups. The results revealed that the germ cell proliferation inhibited and gsdf expression up-regulated in the experimental group, and the gsdf mRNA and proteins expressed in somatic cells that had direct contact with germline stem cells (with Nanos 2 protein expression) including spermatogonia and oogonia by ISH (in situ hybridization) and IHC (immunohistochemistry). In addition, we also overexpressed the gsdf in XX flounders, and the germ cell number of XX flounders bearing gsdf gene significantly decreased and sometimes disappeared completely, which was consistent with the results from high-temperature induction. Therefore, based on all the results, we speculated that the high expression of gsdf might inhibit germ cell proliferation during sex differentiation, and eventually cause sex reversal in the high-temperature induced masculinization of XX Japanese flounder.


Subject(s)
Flounder/genetics , Gene Expression Regulation, Developmental , Hot Temperature , Transforming Growth Factor beta/genetics , Virilism/genetics , Animals , Cell Count , Female , Flounder/metabolism , Gonads/metabolism , Male , RNA, Messenger/genetics , Sex Differentiation , Spermatogonia/metabolism , Spermatogonia/pathology , Transforming Growth Factor beta/metabolism
7.
Fish Physiol Biochem ; 41(2): 413-22, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25255938

ABSTRACT

The present study was to evaluate the effects of six antioxidants on frozen-thawed sperm motility, viability, membrane integrity and mitochondrial function in red seabream (Pagrus major) by computer-assisted sperm analysis system and flow cytometry, respectively. All the parameters tested in this study were determined using one-way ANOVA and identified using the SNK test (P < 0.05). The results demonstrated that on the first day, the highest motility and longevity occurred in 100 mM trehalose (78.34 ± 3.41%, 29 ± 4.00 days) and 50 mM taurine (77.46 ± 1.54%, 29.33 ± 4.04 days), followed by 25 mM vitamin C (79.03 ± 5.37 %, 17 ± 1.00 days), 25 mM vitamin E (69.64 ± 1.64%, 27.67 ± 1.53 days) and 25 mM vitamin A (78.89 ± 2.81%, 9.33 ± 1.53 days), which were all higher than frozen-thawed sperm without antioxidant (control) (66.80 ± 5.55, 5.67 ± 1.15 days). Especially, the percentages of class A sperm with the addition of 100 mM trehalose (40.39 ± 5.20%) and 50 mM taurine (37.78 ± 3.22%) were significantly improved compared to the control (19.63 ± 5.44%). The viability of all groups on the third and sixth day showed a similar trend. Moreover, during the 4 °C storage process, the decrease of frozen-thawed sperm motility was closely associated with the decrease in membrane integrity and mitochondrial function. In conclusion, the present study indicated that antioxidant (100 mM trehalose and 50 mM taurine) provided the most pronounced protective effect in improving frozen-thawed quality of red seabream sperm. The addition of antioxidant may be capable of scavenging the ROS generated during the cryopreservation process and 4 °C storage.


Subject(s)
Antioxidants/pharmacology , Aquaculture/methods , Cell Membrane/drug effects , Cell Survival/drug effects , Cryopreservation/veterinary , Mitochondria/drug effects , Sea Bream/physiology , Analysis of Variance , Animals , Ascorbic Acid/pharmacology , Cryopreservation/methods , Flow Cytometry/veterinary , Male , Mitochondria/physiology , Sea Bream/metabolism , Sperm Motility/drug effects , Taurine/pharmacology , Trehalose/pharmacology , Vitamin A/pharmacology , Vitamin E/pharmacology
8.
Fish Physiol Biochem ; 40(4): 1031-41, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24390013

ABSTRACT

This study investigated the effects of long-term heat exposure on Japanese flounder (Paralichthys olivaceus) and its hybrids (P. olivaceus ♀ × summer flounder Paralichthys dentatus ♂). From 24 ± 0.5°C, temperature was increased by 1 ± 0.5°C in a day and was kept at that temperature for 5 days before next rise. Cumulative survival rate (CSR), cumulative survival rate under different temperature (CSR-T), histological alteration, and related enzyme activities were investigated. In P. olivaceus, mass mortality occurred at 29 and 32 °C (the CSR-T dropped to 42.39%), and serious gill damages appeared at 30 and 32°C. Meanwhile, the activities of superoxide dismutase (SOD), catalase (CAT), lysozyme (LZM), and pyruvate kinase (PK) declined around 29 and 32°C (except for CAT). In comparison with P. olivaceus, the CSR of the hybrids was higher, the gill kept a better structural integrity, and the activities of SOD, CAT, LZM, and PK showed tiny fluctuations. The results suggested that during the process of chronic heat stress, P. olivaceus seemed to be more sensitive to 29 and 32°C, and the manifestations in survival, histology, and enzyme activity were generally consistent. For the hybrids, the comparatively insensitivity to high temperature might imply its better heat tolerance.


Subject(s)
Fish Diseases/enzymology , Fish Diseases/physiopathology , Flounder/genetics , Heat Stress Disorders/veterinary , Hybridization, Genetic , Analysis of Variance , Animals , Catalase/metabolism , Fish Diseases/mortality , Gills/pathology , Heat Stress Disorders/enzymology , Heat Stress Disorders/mortality , Heat Stress Disorders/physiopathology , Muramidase/metabolism , Pyruvate Kinase/metabolism , Species Specificity , Superoxide Dismutase/metabolism , Survival Analysis , Temperature
9.
Mar Biotechnol (NY) ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874827

ABSTRACT

Spotted knifejaw (Oplegnathus punctatus) is a marine economic fish with high food and ecological value, and its growth process has obvious male and female sexual dimorphism, with males growing significantly faster than females. However, the current sex identification technology is not yet mature, which will limit the growth rate of O. punctatus aquaculture and the efficiency of separate sex breeding, so the development of efficient sex molecular markers is imperative. This study identified a 926 bp DNA insertion fragment in the cdkn1/srsf3 intergenic region of O. punctatus males through whole-genome scanning, comparative genomics, and structural variant analysis. A pair of primers was designed based on the insertion information of the Y chromosome intergenic region in male individuals. Agarose gel electrophoresis revealed the amplification of two DNA fragments, 1118 bp and 192 bp, in male O. punctatus individuals. The 926 bp fragment was identified as the insertion in the intergenic region of cdkn1/srsf3 in males, while only a single 192 bp DNA fragment was amplified in females. The biological sex of the individuals identified in this manner was consistent with their known phenotypic sex. In this study, we developed a method to detect DNA insertion variants in the intergenic region of O. punctatus. Additionally, we introduced a new DNA marker for the rapid identification of the sex of O. punctatus, which enhances detection efficiency. The text has important reference significance and application value in sex identification, all-male breeding, and lineage selection. It provides new insights into the regulation of variation in the intergenic region of cdkn1/srsf3 genes and the study of RNA shearing.

10.
Int J Biol Macromol ; 257(Pt 1): 128638, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070801

ABSTRACT

The role of the DMRT family in male sex determination and differentiation is significant, but its regulatory role in spotted knifejaw with Y fusion chromosomes remains unclear. Through genome-wide scanning, transcriptome analysis, qPCR, FISH, and RNA interference (RNAi), we investigated the DMRT family and the dmrt1-based sex regulation network. Seven DMRTs were identified (DMRT1/2 (2a,2b)/6, DMRT4/5, DMRT3), and dmrt gene dispersion among chromosomes is possibly driven by three whole-genome duplications. Transcriptome analysis enriched genes were associated with sex regulation and constructed a network associated with dmrt1. qPCR and FISH results showed the expression dimorphism of sex-related genes in dmrt-related regulatory networks. RNAi experiments indicated a distinct sex regulation mode in spotted knifejaw. Dmrt1 knockdown upregulated male-related genes (sox9a, sox9b, dmrt1, amh, amhr2) and hsd11b2 expression, which is critical for androgen synthesis. Amhr2 is located on the heterozygous chromosome (Y) and is specifically localized in primary spermatocytes, and is extremely upregulated after dmrt1 knockdown which suggested besides the important role of dmrt1 in male differentiation, the amhr2 along with amhr2/amh system, also play important regulatory roles in maintaining high expression of the hsd11b2 and male differentiation. This study aims to further investigate sex regulatory mechanisms in species with fusion chromosomes.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Genome , Sex Differentiation , Male , Humans , Sex Differentiation/genetics , Thionucleosides , Chromosomes
11.
Int J Biol Macromol ; 273(Pt 1): 132929, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866279

ABSTRACT

In order to more efficiently utilize the abundant cellulose resources in nature, increase the utilization rate of cellulose in aquaculture, implement precise feeding and save aquaculture costs, we have conducted research on cellulase genes related to the spotted knifejaw (Oplegnathus punctatus). Cellulose, as the most abundant renewable resource, is a cornerstone in the intricate ecological balance of diverse ecosystems. While herbivorous fish are recognized for their utilization of proteins, sugars, and fats, the extent of cellulose utilization by carnivorous and omnivorous fish remains an enigma. Here, through field sampling and behavioural observations, O. punctatus' omnivorous diet has been demonstrated (stomach contents contain approximately several species of algae in the Bacillariophyta (1.12 %), Streptomyces (0.55 %), Chlorophyta (0.35 %), Rhodophyta (0.16 %), and Euglenophyta (0.19 %) phylum). Additionally, the high cellulase activity in the intestine of O. punctatus has been detected first discovery (enzyme activity up to 4800.15 U/g), indicating its ability to digest cellulose. By employing whole-genome scanning and high-throughput sequencing, a single cellulase gene (ß-glucosidase) within the genome of O. punctatus, suggesting the absence of a complete cellulose digestive system. However, microbiological analysis revealed the three crucial role of microorganisms, including Actinobacteria (25.80 %), Bacteroidetes (18.93 %), and Firmicutes phylum (0.82 %), were found to play a crucial role in the decomposition of plant cell walls, thereby facilitating plant material digestion to help the host to complete the process of cellulose digestion. Expression patterns and proteomic analysis of the ß-glucosidase were notably high in the gonads. In situ hybridization confirmed the expression of the ß-glucosidase gene in the intestinal contents and gonads, highlighting its role in supplying energy of gonads. These discoveries shed light on the dietary habits of O. punctatus and its cellulose utilization, offering insights that can inform the development of customized feeding strategies to enhance aquaculture sustainability and minimize resource expenditure.


Subject(s)
Fishes , beta-Glucosidase , Animals , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , Fishes/genetics , Phylogeny , Cellulose/metabolism , Carnivory
12.
Mar Pollut Bull ; 198: 115827, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37995593

ABSTRACT

To show how dramatic global climate change affects marine ecosystem species in different habitats. We used a joint species distribution model (SDM) and an ecological niche model (ENM) to investigate the suitable habitat shifts and ecological niche overlaps of the Tridentiger fishes. In the present study, the SDM results showed that 5 hotspots were identified for T. trigonocephalus and T. barbatus, and 4 hotspots for T. bifasciatus. The study on center-of-mass transfer revealed notable reductions in the habitual range of the three Tridentiger species with future climate change and no significant bipolar shifts in the center of mass. The ENM results indicated that T. trigonocephalus and T. barbatus exhibited the greatest ecological niche overlap with Schoener's D (D) and Hellinger-based I (I) values of 0.4719 and 0.7690, respectively. Both SDM and ENM results have suggested that T. trigonocephalus occupied a wider distribution and greater adaptability to future climate change. This study sought to measure the variations in the effects of global climate change on marine species in different habitats. Our study first found that intertidal species with specific life histories may be more resilient to environmental change.


Subject(s)
Ecosystem , Perciformes , Animals , Climate Change , Models, Theoretical , Fishes
13.
Sci Data ; 11(1): 234, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395996

ABSTRACT

Pampus argenteus (Euphrasen, 1788) is one of the major fishery species in coastal China. Pampus argenteus has a highly specialized morphology, and its declining fishery resources have encouraged massive research efforts on its aquacultural biology. In this study, we reported the first high-quality chromosome-level genome of P. argenteus obtained by integrating Illumina, PacBio HiFi, and Hi-C sequencing techniques. The final size of the genome was 518.06 Mb, with contig and scaffold N50 values of 20.47 and 22.86 Mb, respectively. The sequences were anchored and oriented onto 24 pseudochromosomes based on Hi-C data corresponding to the 24-chromatid karyotype of P. argenteus. A colinear relationship was observed between the P. argenteus genome and that of a closely related species (Scomber japonicus). A total of 24,696 protein-coding genes were identified from the genome, 98.9% of which were complete BUSCOs. This report represents the first case of high-quality chromosome-level genome assembly for P. argenteus and can provide valuable information for future evolutionary, conservation, and aquacultural research.


Subject(s)
Genome , Perciformes , Animals , Chromosomes/genetics , Perciformes/genetics , Phylogeny , Sequence Analysis, DNA
14.
Gene ; 897: 148075, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38086454

ABSTRACT

To solve the high mortality rate of early-stage larval feed conversion during aquaculture in Oplegnathus punctatus, the investigation of the structural and functional characteristics of the gastric tissue was conducted. Histological results showed that the gastric gland rudiment appeared at 17 dph. The basic structure of the stomach was fully developed between 26 and 35 dph. Two pepsinogen genes, named OpPGA1 and OpPGA2, were identified in the spotted knifejaw genome. qPCR results of developmental period showed that the two genes were low in expression during early development (5 and 15 dph). At 20 dph, the two genes started to show trace expression, and at 30 dph the mRNA expression levels of OpPGA1 and OpPGA2 reached the highest levels. Results of pepsin activity detection during the development period showed lower activity was detected 22 dph, followed by a peak at 30 dph. Under different feeding inductions, OpPGA1 showed the highest expression in the basic diet group and hard-shell group, while the expression level in the phytophagous group remained consistently low. The mRNA expression level of OpPGA2 in the phytophagous group was significantly higher than in other groups. Enzyme activity determination under different feeding inductions showed slightly higher enzyme activity in the basic diet group and crustacean group. The results of in situ hybridization showed that the mRNA of both OpPGA1 and OpPGA2 genes was both expressed in gastric gland cells. These information can contribute to the development of practical feeding methods in terms of digestive physiology for the development of larvae.


Subject(s)
Fishes , Pepsinogen A , Animals , Pepsinogen A/genetics , Pepsinogen A/metabolism , Fishes/genetics , Stomach , Larva/genetics , Larva/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
15.
Int J Biol Macromol ; 250: 126188, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37562479

ABSTRACT

Oplegnathus punctatus is a fish species with beak-like tooth that feeds on algae, oysters, sea urchins, and other organisms attached to rocks. Currently, there are no research reports on the development and regulatory mechanisms of O. punctatus beak-like tooth. This present study firstly elucidated the nesting structure pattern of the beak-like tooth with dental formula (4, 15-16, 10-1) for O. punctatus. Four critical periods during early beak-like tooth development (28dph, 40dph, 50dph, 60dph) were also identified. In addition, 11 key genes (bmp2, bmpr2, smad1, wnt5a, msx, axin2, fgfr1a, fgfr2, pitx2, ptch1, cyp27a1) closely related to the development of beak-like tooth were discovered, with the highest expression levels in the initial stages of functional teeth and replacement teeth development, and expression in the mesenchymal and epithelial tissues of the teeth. Further research found that the cyp27a1 gene, related to vitamin D metabolism and calcium accumulation, was expressed in the maxilla and base of the tooth in O. punctatus. This study provides support for the biological theory of tooth development and healing and provides a reference for the adaptive evolution of tooth healing in special habitats.

16.
Sci Data ; 10(1): 774, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935724

ABSTRACT

Sciaenops ocellatus is among the most important artificially introduced farmed fish across 11 countries and regions. However, the frequent occurrence of extreme weather events and breeding escapes have placed great pressure on local marine biodiversity and ecosystems. We reported the de novo assembly and annotation with a contig N50 of 28.30 Mb using PacBio HiFi sequencing and Hi-C technologies, which resulted in a 283-fold increase in contig N50 length and improvement in continuity and quality in complex repetitive region for S. ocellatus compared to the previous version. In total, 257.36 Mb of repetitive sequences accounted for 35.48% of the genome, and 22,845 protein-coding genes associated with a BUSCO value of 98.32%, were identified by genome annotation. Moreover, 54 hub genes rapidly responding to hypoosmotic stress were identified by WGCNA. The high-quality chromosome-scale S. ocellatus genome and candidate resistance-related gene sets will not only provide a genomic basis for genetic improvement via molecular breeding, but will also lay an important foundation for investigating the molecular regulation of rapid responses to stress.


Subject(s)
Genome , Perciformes , Animals , Ecosystem , Genomics , Molecular Sequence Annotation , Perciformes/genetics , Phylogeny
17.
Mol Reprod Dev ; 79(11): 803-13, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23124920

ABSTRACT

Specification of primordial germ cells during early embryogenesis is a critical biological issue in reproduction and development. Yet, little is known in marine economic fish species. Vasa, a component of germ plasm, is the most-documented germ cell marker in teleosts. We isolated a full-length vasa cDNA (Smvas) from turbot (Scophthalmus maximus), a marine Euteleostei species, and investigated its expression patterns by RT-PCR and in situ hybridization during embryogenesis and gametogenesis to identify the germ cell lineage in this species. The deduced amino acid sequence of the isolated cDNA shared typical characteristics of Vasa protein and high identity to Vasa homologues in medaka (76.9%) and zebrafish (68.5%). The Smvas transcripts were exclusively detected in germ cells of testis and ovary, and exhibited an interesting dynamic localization pattern during oogenesis. The distribution pattern of Smvas during embyogenesis in this Euteleostei closely resembled the pattern observed in zebrafish (belonging to Osteriophysans) rather than medaka (belonging to Euteleostei). Thus, it is concluded that Smvas isolated in this study is a germ cell specific molecular marker in turbot. Furthermore, we hypothesize that Euteleostei could localize vasa mRNA by a special mode. The results not only facilitate the germ cell manipulation of the turbot, but also improve our understanding of germline development and evolution of vasa localization in teleost.


Subject(s)
Cleavage Stage, Ovum/cytology , DEAD-box RNA Helicases/genetics , Flatfishes/embryology , Zebrafish Proteins/genetics , Amino Acid Sequence , Animals , Biomarkers , Cloning, Molecular , DEAD-box RNA Helicases/biosynthesis , Embryo, Nonmammalian/metabolism , Female , Flatfishes/genetics , Gametogenesis/genetics , Gene Expression , Gene Expression Regulation, Developmental , Germ Cells/cytology , Male , Ovary/cytology , Phylogeny , RNA, Messenger/metabolism , Testis/cytology , Zebrafish Proteins/biosynthesis
18.
Fish Physiol Biochem ; 38(2): 297-308, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21604160

ABSTRACT

Histological development of the digestive tract and specific activities of three digestive enzymes (trypsin, alkaline phosphatase, and pepsin) were studied in rock bream Oplegnathus fasciatus from hatching to 50 days after hatching (DAH). At hatching, the digestive tract appeared as an undifferentiated straight tube and differentiated into the buccopharynx, esophagus, stomach, intestine, and rectum at mouth opening by 3 DAH. The taste bud and mandibular teeth were present in the buccopharyx at 8 DAH. The goblet cells appeared in the esophagus at 8 DAH and in the buccopharyx at 9 DAH. The stomach anlage was formed at 2 DAH and developed into cardia, fundus, and pylorus at 14 DAH. The gastric glands were visible at 16 DAH, and the pepsin was firstly detected on 22 DAH. At 2 DAH, the intestinal valve appeared and divided the intestine into anterior intestine (AI) and posterior intestine (PI). The rectum was differentiated from the PI at 3 DAH. The supranuclear vacuoles were visible in the rectum by 6 DAH, and the lipid inclusions were present in the AI at 8 DAH. The alkaline phosphatase was detected at 1 DAH, and the increase in its activity indicated the maturation of the intestine after 40 DAH. The hepatocytes and pancreatic cells were differentiated from the blast cells at 2 DAH, and the acidophilic zymogen granules in the exocrine pancreas were observed simultaneously. The trypsin was detected by 1 DAH and increased to the maximum at 19 DAH, followed by a decrease as the stomach became functional.


Subject(s)
Alkaline Phosphatase/metabolism , Gastrointestinal Tract/growth & development , Pepsin A/metabolism , Perciformes/metabolism , Trypsin/metabolism , Animals , Larva/enzymology , Perciformes/growth & development
19.
Genes (Basel) ; 13(7)2022 07 15.
Article in English | MEDLINE | ID: mdl-35886045

ABSTRACT

The spotted knifejaw (Oplegnathus punctatus) is a marine economic fish with high ecological value, food value, and fishing value, and its growth has obvious sex dimorphism. The rapid identification of its sex is beneficial to the development of sex determination and breeding. In this study, the method of comparative genomics and PCR amplification was used to further establish a rapid detection method for the recombinant RhoGEF10 gene in O. punctatus, which can quickly, accurately, and efficiently identify the sex of the O. punctatus to be tested. The homologous comparison results of male and female individuals showed that the DNA fragment length of the RhoGEF10 gene on the X1 chromosome was 326 bp, and the DNA fragment length on the Y chromosome was 879 bp. Therefore, it can be concluded that there is an insert fragment of 553 bp on the Y chromosome. PCR amplification results showed that the two DNA fragments of 879 bp and 326 bp were amplified in the Y chromosome and X1 chromosome of the male O. punctatus (X1X2Y), respectively, and the 879 bp fragment was a unique marker fragment of the recombinant RhoGEF10 gene; The female O. punctatus (X1X1X2X2) only a single DNA fragment of 326 bp was amplified. At the same time, the inserted fragment of the male individual resulted in partial inactivation of the RhoGEF10 protein, which in turn resulted in a slowing of peripheral nerve conduction velocity and thinning of the myelin sheath in male O. punctatus. The method shortens the time for accurate identification of the O. punctatus RhoGEF10 gene recombination and improves the detection efficiency. It is of great significance and application value in the research of nerve conduction and myelin development, male and female sex identification, the preparation of high male seedlings, and family selection based on the RhoGEF10 gene in the O. punctatus.


Subject(s)
Perciformes , Plant Breeding , Animals , Chromosomes , DNA , Female , Fishes/genetics , Male , Perciformes/genetics , Recombination, Genetic
20.
Article in English | MEDLINE | ID: mdl-35722147

ABSTRACT

Objective: To screen genes associated with poor prognosis of clear cell renal cell carcinoma (CcRCC) from the public databases HPA (Human Protein Atlas), UALCAN, and GEPIA (Gene Expression Profiling Interactive Analysis) and to investigate the expression of FKBP10 in CcRCC and the effect on prognosis of the patients and the biological behavior of CcRCC cells. Methods: The tumor tissues and adjacent noncancerous tissues of 42 patients with CcRCC diagnosed and treated in our hospital were collected, and the general information of the patients was recorded. FKBP10 expression in the tissues was determined by qRT-PCR and western blot, and its relationship with general information and prognosis of patients was analyzed. Knockdown or overexpression experiments were carried out with the human proximal tubule epithelial cell line HK-2 and CcRCC cell lines Caki-1, 786-O, ACHN, and A498 to verify the relationship between FKBP10 expression and cell proliferation and adhesion ability using MTT assay and fibronectin adhesion assay, respectively. Western blot was utilized to examine the protein expression level of c-Myc, cyclin D1, and Bcl-2 in the cells. Results: FKBP10 was highly expressed in CcRCC tissues and cells and was correlated with poor prognosis. In addition, FKBP10 expression was positively correlated with CcRCC tumor size and staging and negatively correlated with tumor differentiation. Moreover, knockdown of FKBP10 significantly inhibited the proliferation of CcRCC cells, notably declined the protein expression of c-Myc, cyclin D1, and Bcl-2, and promoted cell adhesion. Conclusion: FKBP10 is highly expressed in CcRCC tissues and cells and is associated with poor prognosis in patients. FKBP10 participated in the occurrence and development of CcRCC by promoting cell proliferation and inhibiting apoptosis and adhesion.

SELECTION OF CITATIONS
SEARCH DETAIL