Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Nature ; 589(7842): 396-401, 2021 01.
Article in English | MEDLINE | ID: mdl-33473229

ABSTRACT

The water-gas shift (WGS) reaction is an industrially important source of pure hydrogen (H2) at the expense of carbon monoxide and water1,2. This reaction is of interest for fuel-cell applications, but requires WGS catalysts that are durable and highly active at low temperatures3. Here we demonstrate that the structure (Pt1-Ptn)/α-MoC, where isolated platinum atoms (Pt1) and subnanometre platinum clusters (Ptn) are stabilized on α-molybdenum carbide (α-MoC), catalyses the WGS reaction even at 313 kelvin, with a hydrogen-production pathway involving direct carbon monoxide dissociation identified. We find that it is critical to crowd the α-MoC surface with Pt1 and Ptn species, which prevents oxidation of the support that would cause catalyst deactivation, as seen with gold/α-MoC (ref. 4), and gives our system high stability and a high metal-normalized turnover number of 4,300,000 moles of hydrogen per mole of platinum. We anticipate that the strategy demonstrated here will be pivotal for the design of highly active and stable catalysts for effective activation of important molecules such as water and carbon monoxide for energy production.

2.
J Am Chem Soc ; 144(8): 3535-3542, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35107999

ABSTRACT

Identification of catalytic active sites is pivotal in the design of highly effective heterogeneous metal catalysts, especially for structure-sensitive reactions. Downsizing the dimension of the metal species on the catalyst increases the dispersion, which is maximized when the metal exists as single atoms, namely, single-atom catalysts (SACs). SACs have been reported to be efficient for various catalytic reactions. We show here that the Pt SACs, although with the highest metal atom utilization efficiency, are totally inactive in the cyclohexane (C6H12) dehydrogenation reaction, an important reaction that could enable efficient hydrogen transportation. Instead, catalysts enriched with fully exposed few-atom Pt ensembles, with a Pt-Pt coordination number of around 2, achieve the optimal catalytic performance. The superior performance of a fully exposed few-atom ensemble catalyst is attributed to its high d-band center, multiple neighboring metal sites, and weak binding of the product.

3.
PLoS Genet ; 15(1): e1007901, 2019 01.
Article in English | MEDLINE | ID: mdl-30615616

ABSTRACT

Morphogenetic transitions are prevalent in the fungal kingdom. For a leading human fungal pathogen, Candida albicans, the capacity to transition between yeast and filaments is key for virulence. For the model yeast Saccharomyces cerevisiae, filamentation enables nutrient acquisition. A recent functional genomic screen in S. cerevisiae identified Mfg1 as a regulator of morphogenesis that acts in complex with Flo8 and Mss11 to mediate transcriptional responses crucial for filamentation. In C. albicans, Mfg1 also interacts physically with Flo8 and Mss11 and is critical for filamentation in response to diverse cues, but the mechanisms through which it regulates morphogenesis remained elusive. Here, we explored the consequences of perturbation of Mfg1, Flo8, and Mss11 on C. albicans morphogenesis, and identified functional divergence of complex members. We observed that C. albicans Mss11 was dispensable for filamentation, and that overexpression of FLO8 caused constitutive filamentation even in the absence of Mfg1. Harnessing transcriptional profiling and chromatin immunoprecipitation coupled to microarray analysis, we identified divergence between transcriptional targets of Flo8 and Mfg1 in C. albicans. We also established that Flo8 and Mfg1 cooperatively bind to promoters of key regulators of filamentation, including TEC1, for which overexpression was sufficient to restore filamentation in the absence of Flo8 or Mfg1. To further explore the circuitry through which Mfg1 regulates morphogenesis, we employed a novel strategy to select for mutations that restore filamentation in the absence of Mfg1. Whole genome sequencing of filamentation-competent mutants revealed chromosome 6 amplification as a conserved adaptive mechanism. A key determinant of the chromosome 6 amplification is FLO8, as deletion of one allele blocked morphogenesis, and chromosome 6 was not amplified in evolved lineages for which FLO8 was re-located to a different chromosome. Thus, this work highlights rewiring of key morphogenetic regulators over evolutionary time and aneuploidy as an adaptive mechanism driving fungal morphogenesis.


Subject(s)
Candida albicans/genetics , Fungal Proteins/genetics , Nuclear Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Trans-Activators/genetics , Candida albicans/pathogenicity , Fungi/genetics , Fungi/pathogenicity , Gene Expression Regulation, Fungal , Humans , Hyphae/genetics , Hyphae/pathogenicity , Morphogenesis/genetics , Multiprotein Complexes/genetics , Saccharomyces cerevisiae/genetics , Transcription Factors/genetics
4.
Angew Chem Int Ed Engl ; 59(48): 21736-21744, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-32809247

ABSTRACT

Mn and Na additives have been widely studied to improve the efficiency of CO2 hydrogenation to valuable olefins on Fe catalysts, but their effects on the catalytic properties and mechanism are still under vigorous debate. This study shows that Fe-based catalysts with moderate Mn and Na contents are highly selective for CO2 hydrogenation to olefins, together with low selectivities for both CO and CH4 and much improved space-time olefin yields compared to state-of-the-art catalysts. Combined kinetic assessment and quasi in situ characterizations further unveil that the sole presence of Mn suppresses the activity of Fe catalysts because of the close contact between Fe and Mn, whereas the introduction of Na mediates the Fe-Mn interaction and provides strong basic sites. This subtle synergy between Na and Mn sheds light on the importance of the interplay of multiple additives that could bring an enabling strategy to improve catalytic activity and selectivity.

5.
J Am Chem Soc ; 141(48): 18921-18925, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31647665

ABSTRACT

Direct selective oxidation of light alkanes, such as ethane, into value-added chemical products under mild reaction conditions remains a challenge in both industry and academia. Herein, the iridium cluster and atomically dispersed iridium catalysts have been successfully fabricated using nanodiamond as support. The obtained iridium cluster catalyst shows remarkable performance for selective oxidation of ethane under oxygen at 100 °C, with an initial activity as high as 7.5 mol/mol/h and a selectivity to acetic acid higher than 70% after five in situ recycles. The presence of CO in the reaction feed is pivotal for the excellent reaction performance. On the basis of X-ray photoelectron spectroscopy (XPS) analysis, the critical role of CO was revealed, which is to maintain the metallic state of reactive Ir species during the oxidation cycles.

6.
PLoS Genet ; 12(11): e1006452, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27870871

ABSTRACT

Fungal biofilms are complex, structured communities that can form on surfaces such as catheters and other indwelling medical devices. Biofilms are of particular concern with Candida albicans, one of the leading opportunistic fungal pathogens of humans. C. albicans biofilms include yeast and filamentous cells that are surrounded by an extracellular matrix, and they are intrinsically resistant to antifungal drugs such that resolving biofilm infections often requires surgery to remove the contaminated device. C. albicans biofilms form through a regulated process of adhesion to surfaces, filamentation, maturation, and ultimately dispersion. To uncover new strategies to block the initial stages of biofilm formation, we utilized a functional genomic approach to identify genes that modulate C. albicans adherence. We screened a library of 1,481 double barcoded doxycycline-repressible conditional gene expression strains covering ~25% of the C. albicans genome. We identified five genes for which transcriptional repression impaired adherence, including: ARC18, PMT1, MNN9, SPT7, and orf19.831. The most severe adherence defect was observed upon transcriptional repression of ARC18, which encodes a member of the Arp2/3 complex that is involved in regulation of the actin cytoskeleton and endocytosis. Depletion of components of the Arp2/3 complex not only impaired adherence, but also caused reduced biofilm formation, increased cell surface hydrophobicity, and increased exposure of cell wall chitin and ß-glucans. Reduced function of the Arp2/3 complex led to impaired cell wall integrity and activation of Rho1-mediated cell wall stress responses, thereby causing cell wall remodelling and reduced adherence. Thus, we identify important functional relationships between cell wall stress responses and a novel mechanism that controls adherence and biofilm formation, thereby illuminating novel strategies to cripple a leading fungal pathogen of humans.


Subject(s)
Actin-Related Protein 2-3 Complex/genetics , Biofilms/growth & development , Candida albicans/genetics , Drug Resistance, Fungal/genetics , Fungal Proteins/biosynthesis , Actin Cytoskeleton/genetics , Actin-Related Protein 2-3 Complex/drug effects , Biofilms/drug effects , Candida albicans/drug effects , Candida albicans/growth & development , Candida albicans/pathogenicity , Candidiasis/drug therapy , Candidiasis/genetics , Candidiasis/microbiology , Cell Adhesion/genetics , Cell Wall/genetics , Endocytosis/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Genome, Fungal , Genomics , Humans , Metabolic Networks and Pathways/genetics , Stress, Physiological/genetics
7.
PLoS Genet ; 12(10): e1006405, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27788136

ABSTRACT

The capacity to transition between distinct morphological forms is a key virulence trait for diverse fungal pathogens. A poignant example of a leading opportunistic fungal pathogen of humans for which an environmentally responsive developmental program underpins virulence is Candida albicans. C. albicans mutants that are defective in the transition between yeast and filamentous forms typically have reduced virulence. Although many positive regulators of C. albicans filamentation have been defined, there are fewer negative regulators that have been implicated in repression of filamentation in the absence of inducing cues. To discover novel negative regulators of filamentation, we screened a collection of 1,248 C. albicans homozygous transposon insertion mutants to identify those that were filamentous in the absence of inducing cues. We identified the Rho1 GAP Lrg1, which represses filamentous growth by stimulating Rho1 GTPase activity and converting Rho1 to its inactive, GDP-bound form. Deletion of LRG1 or introduction of a RHO1 mutation that locks Rho1 in constitutively active, GTP-bound state, leads to filamentation in the absence of inducing cues. Deletion of the Rho1 downstream effector PKC1 results in defective filamentation in response to diverse host-relevant inducing cues, including serum. We further established that Pkc1 is not required to sense filament-inducing cues, but its kinase activity is critical for the initiation of filamentous growth. Our genetic analyses revealed that Pkc1 regulates filamentation independent of the canonical MAP kinase cascade. Further, although Ras1 activation is not impaired in a pkc1Δ/pkc1Δ mutant, adenylyl cyclase activity is reduced, consistent with a model in which Pkc1 functions in parallel with Ras1 in regulating Cyr1 activation. Thus, our findings delineate a signaling pathway comprised of Lrg1, Rho1 and Pkc1 with a core role in C. albicans morphogenesis, and illuminate functional relationships that govern activation of a central transducer of signals that control environmental response and virulence programs.


Subject(s)
Glycoproteins/genetics , Morphogenesis/genetics , Protein Kinase C/genetics , rho GTP-Binding Proteins/genetics , Candida albicans/genetics , Candida albicans/growth & development , Candida albicans/pathogenicity , Cytoskeleton/genetics , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Glycoproteins/biosynthesis , Humans , Mitochondrial Proteins/genetics , Protein Kinase C/biosynthesis , Signal Transduction/genetics , ras Proteins/genetics , rho GTP-Binding Proteins/biosynthesis
8.
Inorg Chem ; 57(3): 1269-1276, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29363963

ABSTRACT

Solid solutions Ba1-xLnx(Bi0.20Pb0.80)O3-δ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; 0.00 ≤ x ≲ 0.15) have been prepared under 850 °C. They all crystallize in space group P1 at room temperature. XPS data indicate that the valences are 5+ and 3+ for bismuth, 4+ and 2+ for lead, and 3+ or 4+ for lanthanide. Some of them are superconductors. The superconductive transition temperature Tczero decreases or remains constant with an increase of Ln in the sample when Ln = La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. However, Tczero first decreases, then increases, and finally decreases when Ln = Ce, Pr, which is due to the corresponding sample changes from hole-doped to electron-doped superconductors with an increase of Ce or Pr in the sample.

9.
Mol Cell ; 39(2): 209-21, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20670890

ABSTRACT

We report an interaction between poxA, encoding a paralog of lysyl tRNA-synthetase, and the closely linked yjeK gene, encoding a putative 2,3-beta-lysine aminomutase, that is critical for virulence and stress resistance in Salmonella enterica. Salmonella poxA and yjeK mutants share extensive phenotypic pleiotropy, including attenuated virulence in mice, an increased ability to respire under nutrient-limiting conditions, hypersusceptibility to a variety of diverse growth inhibitors, and altered expression of multiple proteins, including several encoded on the SPI-1 pathogenicity island. PoxA mediates posttranslational modification of bacterial elongation factor P (EF-P), analogous to the modification of the eukaryotic EF-P homolog, eIF5A, with hypusine. The modification of EF-P is a mechanism of regulation whereby PoxA acts as an aminoacyl-tRNA synthetase that attaches an amino acid to a protein resembling tRNA rather than to a tRNA.


Subject(s)
Bacterial Proteins/metabolism , Drug Resistance, Microbial , Peptide Elongation Factors/metabolism , Protein Processing, Post-Translational , Salmonella enterica , Virulence Factors/metabolism , Animals , Bacterial Proteins/genetics , Female , Gene Expression Regulation, Bacterial/genetics , Genomic Islands/genetics , Lysine/analogs & derivatives , Lysine/genetics , Lysine/metabolism , Lysine-tRNA Ligase/genetics , Lysine-tRNA Ligase/metabolism , Mice , Peptide Elongation Factors/genetics , Salmonella enterica/metabolism , Salmonella enterica/pathogenicity , Virulence Factors/genetics
10.
Faraday Discuss ; 197: 207-224, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28184397

ABSTRACT

Various carbonaceous species were controllably deposited on Co/Al2O3 catalysts using ethylene as carbon source during the activation process for Fischer-Tropsch synthesis (FTS). Atomic, polymeric and graphitic carbon were distinguished by Raman spectroscopy, thermoanalysis and temperature programmed hydrogenation. Significant changes occurred in both the catalytic activity and selectivity toward hydrocarbon products after ethylene treatment. The activity decreased along with an increase in CH4 selectivity, at the expense of a remarkable decrease of heavy hydrocarbon production, resulting in enhanced selectivity for the gasoline fraction. In situ XPS experiments show the possible electron transfer from cobalt to carbon and the blockage of metallic cobalt sites, which is responsible for the deactivation of the catalyst. DFT calculations reveal that the activation barrier (Ea) of methane formation decreases by 0.61 eV on the carbon-absorbed Co(111) surface, whereas the Ea of the CH + CH coupling reaction changes unnoticeably. Hydrogenation of CHx to methane becomes the preferable route among the elementary reactions on the Co(111) surface, leading to dramatic changes in the product distribution. Detailed coke-induced deactivation mechanisms of Co-based catalysts during FTS are discussed.

11.
Angew Chem Int Ed Engl ; 56(36): 10761-10765, 2017 08 28.
Article in English | MEDLINE | ID: mdl-28691396

ABSTRACT

A one-step ligand-free method based on an adsorption-precipitation process was developed to fabricate iridium/cerium oxide (Ir/CeO2 ) nanocatalysts. Ir species demonstrated a strong metal-support interaction (SMSI) with the CeO2 substrate. The chemical state of Ir could be finely tuned by altering the loading of the metal. In the carbon dioxide (CO2 ) hydrogenation reaction it was shown that the chemical state of Ir species-induced by a SMSI-has a major impact on the reaction selectivity. Direct evidence is provided indicating that a single-site catalyst is not a prerequisite for inhibition of methanation and sole production of carbon monoxide (CO) in CO2 hydrogenation. Instead, modulation of the chemical state of metal species by a strong metal-support interaction is more important for regulation of the observed selectivity (metallic Ir particles select for methane while partially oxidized Ir species select for CO production). The study provides insight into heterogeneous catalysts at nano, sub-nano, and atomic scales.

12.
Angew Chem Int Ed Engl ; 55(34): 9902-7, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27445106

ABSTRACT

Zn- and Na-modulated Fe catalysts were fabricated by a simple coprecipitation/washing method. Zn greatly changed the size of iron species, serving as the structural promoter, while the existence of Na on the surface of the Fe catalyst alters the electronic structure, making the catalyst very active for CO activation. Most importantly, the electronic structure of the catalyst surface suppresses the hydrogenation of double bonds and promotes desorption of products, which renders the catalyst unexpectedly reactive toward alkenes-especially C5+ alkenes (with more than 50% selectivity in hydrocarbons)-while lowering the selectivity for undesired products. This study enriches C1 chemistry and the design of highly selective new catalysts for high-value chemicals.

13.
Angew Chem Int Ed Engl ; 55(13): 4215-9, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26915824

ABSTRACT

Metallic nickel nanostructures that were partially decorated by discrete nickel oxide layers were fabricated by in situ reduction of calcinated Ni-containing layered double hydroxide nanosheets, the structure of which was confirmed by extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The existence of the abundant interfaces between the surface Ni oxide overlayer and metallic Ni altered the geometric/electronic structure of the Ni nanoparticles, making them apt for CO activation under light irradiation. Most importantly, the unique structure favors the C-C coupling reaction on its surface, which confers the catalyst unexpected reaction power towards higher hydrocarbons at moderate reaction conditions. This study leads to a green and sustainable approach for the photocatalytic production of highly valuable chemical fuels.

14.
PLoS Pathog ; 8(5): e1002718, 2012.
Article in English | MEDLINE | ID: mdl-22615574

ABSTRACT

The evolution of drug resistance has a profound impact on human health. Candida glabrata is a leading human fungal pathogen that can rapidly evolve resistance to echinocandins, which target cell wall biosynthesis and are front-line therapeutics for Candida infections. Here, we provide the first global analysis of mutations accompanying the evolution of fungal drug resistance in a human host utilizing a series of C. glabrata isolates that evolved echinocandin resistance in a patient treated with the echinocandin caspofungin for recurring bloodstream candidemia. Whole genome sequencing identified a mutation in the drug target, FKS2, accompanying a major resistance increase, and 8 additional non-synonymous mutations. The FKS2-T1987C mutation was sufficient for echinocandin resistance, and associated with a fitness cost that was mitigated with further evolution, observed in vitro and in a murine model of systemic candidemia. A CDC6-A511G(K171E) mutation acquired before FKS2-T1987C(S663P), conferred a small resistance increase. Elevated dosage of CDC55, which acquired a C463T(P155S) mutation after FKS2-T1987C(S663P), ameliorated fitness. To discover strategies to abrogate echinocandin resistance, we focused on the molecular chaperone Hsp90 and downstream effector calcineurin. Genetic or pharmacological compromise of Hsp90 or calcineurin function reduced basal tolerance and resistance. Hsp90 and calcineurin were required for caspofungin-dependent FKS2 induction, providing a mechanism governing echinocandin resistance. A mitochondrial respiration-defective petite mutant in the series revealed that the petite phenotype does not confer echinocandin resistance, but renders strains refractory to synergy between echinocandins and Hsp90 or calcineurin inhibitors. The kidneys of mice infected with the petite mutant were sterile, while those infected with the HSP90-repressible strain had reduced fungal burden. We provide the first global view of mutations accompanying the evolution of fungal drug resistance in a human host, implicate the premier compensatory mutation mitigating the cost of echinocandin resistance, and suggest a new mechanism of echinocandin resistance with broad therapeutic potential.


Subject(s)
Antifungal Agents/pharmacology , Candida glabrata/drug effects , Candida glabrata/genetics , Drug Resistance, Fungal/genetics , Echinocandins/pharmacology , Antifungal Agents/therapeutic use , Base Sequence , Calcineurin/genetics , Calcineurin/metabolism , Candida glabrata/metabolism , Candidemia/drug therapy , Candidemia/microbiology , Caspofungin , Evolution, Molecular , Female , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genome, Fungal , Glucosyltransferases/genetics , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Humans , Lipopeptides , Microbial Sensitivity Tests , Middle Aged , Polymorphism, Genetic , Sequence Analysis, DNA
15.
Environ Sci Technol ; 48(18): 10716-24, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25148405

ABSTRACT

Reductive precipitation is an effective method of attenuating the mobility of uranium (U) in subsurface environments. The reduction of U(VI) by synthetic and naturally occurring pyrite was investigated at pH 3.0-9.5. In contrast to thermodynamic calculations that were used to predict UO2(s) precipitation, a mixed U(IV) and U(VI) product (e.g., U3O8/U4O9/U3O7) was only observed at pH 6.21-8.63 and 4.52-4.83 for synthetic and natural pyrite, respectively. Under acidic conditions, the reduction of UO2(2+) by surface-associated Fe(2+) may not be favored because the mineral surface is nearly neutral or not negative enough. At high pH, the sorption of negatively charged U(VI) species is not favored on the negatively charged mineral surface. Thus, the redox reaction is not favored. Trace elements generally contained within the natural pyrite structure can affect the reactivity of pyrite and lead to a different result between the natural and synthetic pyrite. Because UO2(s) is extremely redox-sensitive toward U(VI), the observed UO2+x(s) phase reduction product indicates a surface reaction that is largely controlled by reaction kinetics and pyrite surface chemistry. These factors may explain why most laboratory experiments have observed incomplete U(VI) reduction on Fe(II)-bearing minerals.


Subject(s)
Iron/chemistry , Sulfides/chemistry , Uranium/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Oxidation-Reduction , Photoelectron Spectroscopy , Solutions , Thermodynamics , Water/chemistry
16.
Elife ; 122023 Oct 27.
Article in English | MEDLINE | ID: mdl-37888959

ABSTRACT

Candida albicans, an opportunistic human pathogen, poses a significant threat to human health and is associated with significant socio-economic burden. Current antifungal treatments fail, at least in part, because C. albicans can initiate a strong drug tolerance response that allows some cells to grow at drug concentrations above their minimal inhibitory concentration. To better characterize this cytoprotective tolerance program at the molecular single-cell level, we used a nanoliter droplet-based transcriptomics platform to profile thousands of individual fungal cells and establish their subpopulation characteristics in the absence and presence of antifungal drugs. Profiles of untreated cells exhibit heterogeneous expression that correlates with cell cycle stage with distinct metabolic and stress responses. At 2 days post-fluconazole exposure (a time when tolerance is measurable), surviving cells bifurcate into two major subpopulations: one characterized by the upregulation of genes encoding ribosomal proteins, rRNA processing machinery, and mitochondrial cellular respiration capacity, termed the Ribo-dominant (Rd) state; and the other enriched for genes encoding stress responses and related processes, termed the Stress-dominant (Sd) state. This bifurcation persists at 3 and 6 days post-treatment. We provide evidence that the ribosome assembly stress response (RASTR) is activated in these subpopulations and may facilitate cell survival.


Many drugs currently used to treat fungal diseases are becoming less effective. This is partly due to the rise of antifungal resistance, where certain fungal cells acquire mutations that enable them to thrive and proliferate despite the medication. Antifungal tolerance also contributes to this problem, wherein certain cells can continue to grow and multiply, while other ­ genetically identical ones ­ cannot. This variability is partly due to differences in gene expression within the cells. The specific nature of these differences has remained elusive, mainly because their study requires the use of expensive and challenging single-cell technologies. To address this challenge, Dumeaux et al. adapted an existing technique to perform single-cell transcriptomics in the pathogenic yeast Candida albicans. Their approach was cost effective and made it possible to examine the gene expression in thousands of individual cells within a population that had either been treated with antifungal drugs or were left untreated. After two to three days following exposure to the antifungal treatment, C. albicans cells commonly exhibited one of two states: one subgroup, the 'Ribo-dominant' cells, predominantly expressed genes for ribosomal proteins, while the other group, the 'Stress-dominant' cells, upregulated their expression of stress-response genes. This suggests that drug tolerance may be related to different gene expression patterns in growing cell subpopulations compared with non-growing subpopulations. The findings also indicate that the so-called 'ribosome assembly stress response' known to help baker's yeast cells to survive, might also aid C. albicans in surviving exposure to antifungal treatments. The innovative use of single-cell transcriptomics in this study could be applied to other species of fungi to study differences in cell communication under diverse growth conditions. Moreover, the unique gene expression patterns in C. albicans identified by Dumeaux et al. may help to design new antifungal treatments that target pathways linked to drug resistance.


Subject(s)
Antifungal Agents , Candida albicans , Humans , Antifungal Agents/pharmacology , Candida albicans/genetics , Fluconazole/pharmacology , Microbial Sensitivity Tests , Mitochondria , Drug Resistance, Fungal
17.
J Bacteriol ; 194(2): 413-25, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22081389

ABSTRACT

Elongation factor P (EF-P) is posttranslationally modified at a conserved lysyl residue by the coordinated action of two enzymes, PoxA and YjeK. We have previously established the importance of this modification in Salmonella stress resistance. Here we report that, like poxA and yjeK mutants, Salmonella strains lacking EF-P display increased susceptibility to hypoosmotic conditions, antibiotics, and detergents and enhanced resistance to the compound S-nitrosoglutathione. The susceptibility phenotypes are largely explained by the enhanced membrane permeability of the efp mutant, which exhibits increased uptake of the hydrophobic dye 1-N-phenylnaphthylamine (NPN). Analysis of the membrane proteomes of wild-type and efp mutant Salmonella strains reveals few changes, including the prominent overexpression of a single porin, KdgM, in the efp mutant outer membrane. Removal of KdgM in the efp mutant background ameliorates the detergent, antibiotic, and osmosensitivity phenotypes and restores wild-type permeability to NPN. Our data support a role for EF-P in the translational regulation of a limited number of proteins that, when perturbed, renders the cell susceptible to stress by the adventitious overexpression of an outer membrane porin.


Subject(s)
Cell Membrane/physiology , Gene Expression Regulation, Bacterial/physiology , Peptide Elongation Factors/metabolism , Salmonella typhimurium/cytology , Salmonella typhimurium/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Detergents , Drug Resistance, Bacterial , Escherichia coli/genetics , Escherichia coli/metabolism , Mutation , Osmolar Concentration , Peptide Elongation Factors/genetics , Permeability , Plasmids , Salmonella typhimurium/genetics , Up-Regulation
18.
Natl Sci Rev ; 9(6): nwac079, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35673533

ABSTRACT

The effects of nanoconfined water and the charge storage mechanism are crucial to achieving the ultrahigh electrochemical performance of two-dimensional transition metal carbides (MXenes). We propose a facile method to manipulate nanoconfined water through surface chemistry modification. By introducing oxygen and nitrogen surface groups, more active sites were created for Ti3C2 MXene, and the interlayer spacing was significantly increased by accommodating three-layer nanoconfined water. Exceptionally high capacitance of 550 F g-1 (2000 F cm-3) was obtained with outstanding high-rate performance. The atomic scale elucidation of the layer-dependent properties of nanoconfined water and pseudocapacitive charge storage was deeply probed through a combination of 'computational and experimental microscopy'. We believe that an understanding of, and a manipulation strategy for, nanoconfined water will shed light on ways to improve the electrochemical performance of MXene and other two-dimensional materials.

19.
Langmuir ; 26(14): 12330-5, 2010 Jul 20.
Article in English | MEDLINE | ID: mdl-20503996

ABSTRACT

Unique, porous gold nanobelts consisting of self-organized nanoparticles were synthesized in a high yield by morphology-preserved transformation from metal-surfactant complex precursor nanobelts formed by a bolaform surfactant dodecane-1,12-bis(trimethylammonium bromide) (N-C(12)-NBr(2)) and HAuCl(4). It was revealed that the precursor nanobelts of the stoichiometric N-C(12)-N(AuCl(4))(2) complex formed through electrostatic combination of the positively charged quaternary ammonium headgroups of N-C(n)-NBr(2) and the negatively charged AuCl(4)(-) ions. They were subsequently converted into porous gold nanobelts with shrunken sizes upon reduction by NaBH(4). The morphology of the produced gold nanostructures could be adjusted by changing the mixing ratio between N-C(12)-NBr(2) and HAuCl(4) in the reaction solution. It was found that the obtained porous Au nanobelts exhibited enhanced catalytic activity toward reduction of 4-nitrophenol compared with solid gold nanobelts, probably owing to their larger surface area and more active sites.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Surface-Active Agents/chemistry , Chlorides/chemistry , Gold Compounds/chemistry , Microscopy, Electron, Scanning , Porosity , Quaternary Ammonium Compounds/chemistry , Spectrophotometry, Ultraviolet , X-Ray Diffraction
20.
Nat Commun ; 10(1): 4431, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31570716

ABSTRACT

The design of cheap, non-toxic, and earth-abundant transition metal catalysts for selective hydrogenation of alkynes remains a challenge in both industry and academia. Here, we report a new atomically dispersed copper (Cu) catalyst supported on a defective nanodiamond-graphene (ND@G), which exhibits excellent catalytic performance for the selective conversion of acetylene to ethylene, i.e., with high conversion (95%), high selectivity (98%), and good stability (for more than 60 h). The unique structural feature of the Cu atoms anchored over graphene through Cu-C bonds ensures the effective activation of acetylene and easy desorption of ethylene, which is the key for the outstanding activity and selectivity of the catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL