Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.017
Filter
1.
Nature ; 598(7879): 174-181, 2021 10.
Article in English | MEDLINE | ID: mdl-34616072

ABSTRACT

Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.


Subject(s)
Brain/cytology , Cell Shape , Neurons/classification , Neurons/metabolism , Single-Cell Analysis , Atlases as Topic , Biomarkers/metabolism , Brain/anatomy & histology , Brain/embryology , Brain/metabolism , Gene Expression Regulation, Developmental , Humans , Neocortex/anatomy & histology , Neocortex/cytology , Neocortex/embryology , Neocortex/metabolism , Neurogenesis , Neuroglia/cytology , Neurons/cytology , RNA-Seq , Reproducibility of Results
2.
Nature ; 598(7879): 159-166, 2021 10.
Article in English | MEDLINE | ID: mdl-34616071

ABSTRACT

An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted1. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization. We defined around two dozen projection neuron types in the MOp-ul and derived an input-output wiring diagram, which will facilitate future analyses of motor control circuitry across molecular, cellular and system levels. This work provides a roadmap towards a comprehensive cellular-resolution description of mammalian brain architecture.


Subject(s)
Motor Cortex/anatomy & histology , Motor Cortex/cytology , Neurons/classification , Animals , Atlases as Topic , Female , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Glutamates/metabolism , Male , Mice , Mice, Inbred C57BL , Neuroimaging , Neurons/cytology , Neurons/metabolism , Organ Specificity , Sequence Analysis, RNA , Single-Cell Analysis
3.
Proc Natl Acad Sci U S A ; 120(1): e2209062120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36577070

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) are a heterogeneous group of cells with expansion, differentiation, and repopulation capacities. How HSPCs orchestrate the stemness state with diverse lineage differentiation at steady condition or acute stress remains largely unknown. Here, we show that zebrafish mutants that are deficient in an epigenetic regulator Atf7ip or Setdb1 methyltransferase undergo excessive myeloid differentiation with impaired HSPC expansion, manifesting a decline in T cells and erythroid lineage. We find that Atf7ip regulates hematopoiesis through Setdb1-mediated H3K9me3 modification and chromatin remodeling. During hematopoiesis, the interaction of Atf7ip and Setdb1 triggers H3K9me3 depositions in hematopoietic regulatory genes including cebpß and cdkn1a, preventing HSPCs from loss of expansion and premature differentiation into myeloid lineage. Concomitantly, loss of Atf7ip or Setdb1 derepresses retrotransposons that instigate the viral sensor Mda5/Rig-I like receptor (RLR) signaling, leading to stress-driven myelopoiesis and inflammation. We find that ATF7IP or SETDB1 depletion represses human leukemic cell growth and induces myeloid differentiation with retrotransposon-triggered inflammation. These findings establish that Atf7ip/Setdb1-mediated H3K9me3 deposition constitutes a genome-wide checkpoint that impedes the myeloid potential and maintains HSPC stemness for diverse blood cell production, providing unique insights into potential intervention in hematological malignancy.


Subject(s)
Hematopoietic Stem Cells , Histone-Lysine N-Methyltransferase , Zebrafish , Animals , Humans , Cell Differentiation , Cell Lineage , Hematopoiesis , Hematopoietic Stem Cells/pathology , Histone-Lysine N-Methyltransferase/genetics , Inflammation/pathology , Zebrafish/genetics , Zebrafish/metabolism
4.
Nat Methods ; 19(1): 111-118, 2022 01.
Article in English | MEDLINE | ID: mdl-34887551

ABSTRACT

Recent whole-brain mapping projects are collecting large-scale three-dimensional images using modalities such as serial two-photon tomography, fluorescence micro-optical sectioning tomography, light-sheet fluorescence microscopy, volumetric imaging with synchronous on-the-fly scan and readout or magnetic resonance imaging. Registration of these multi-dimensional whole-brain images onto a standard atlas is essential for characterizing neuron types and constructing brain wiring diagrams. However, cross-modal image registration is challenging due to intrinsic variations of brain anatomy and artifacts resulting from different sample preparation methods and imaging modalities. We introduce a cross-modal registration method, mBrainAligner, which uses coherent landmark mapping and deep neural networks to align whole mouse brain images to the standard Allen Common Coordinate Framework atlas. We build a brain atlas for the fluorescence micro-optical sectioning tomography modality to facilitate single-cell mapping, and used our method to generate a whole-brain map of three-dimensional single-neuron morphology and neuron cell types.


Subject(s)
Brain/cytology , Brain/diagnostic imaging , Imaging, Three-Dimensional/methods , Algorithms , Animals , Deep Learning , Magnetic Resonance Imaging , Male , Mice, Inbred C57BL , Workflow
5.
EMBO Rep ; 24(3): e55699, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36629390

ABSTRACT

Release of promoter-proximally paused RNA Pol II into elongation is a tightly regulated and rate-limiting step in metazoan gene transcription. However, the biophysical mechanism underlying pause release remains unclear. Here, we demonstrate that the pausing and elongation regulator SPT5 undergoes phase transition during transcriptional pause release. SPT5 per se is prone to form clusters. The disordered domain in SPT5 is required for pause release and gene activation. During early elongation, the super elongation complex (SEC) induces SPT5 transition into elongation droplets. Depletion of SEC increases SPT5 pausing clusters. Furthermore, disease-associated SEC mutations impair phase properties of elongation droplets and transcription. Our study suggests that SEC-mediated SPT5 phase transition might be essential for pause release and early elongation and that aberrant phase properties could contribute to transcription abnormality in diseases.


Subject(s)
RNA Polymerase II , Transcriptional Elongation Factors , Animals , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism , RNA Polymerase II/metabolism , Transcriptional Activation , Transcription, Genetic
6.
J Gene Med ; 26(1): e3570, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37482968

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with limited treatment options. The PI3K/AKT/mTOR pathway is commonly activated in PDAC and plays a critical role in its progression. METHODS AND RESULTS: In this study, the effect of taselisib (a selective PI3K inhibitor) on PDAC cell proliferation was investigated, and a significant decrease in viability was observed with increasing concentrations of taselisib. Differential analysis on samples from the Genotype-Tissue Expression and The Cancer Genome Atlas databases revealed 24 dysregulated PI3K/AKT/mTOR pathway-related genes (PRGs). Unsupervised clustering-based analysis of transcriptome cohorts revealed two clusters with high consistency between RNA-seq and microarray cohorts. Cluster B had higher enrichment of immune cells, particularly CD8+ T cells, and lower levels of immunosuppressive Treg cells. Moreover, we investigated the relationship between drug sensitivity and different clusters and found that cluster A had a better response to PI3K/AKT/mTOR pathway-related inhibitors and chemotherapy. Finally, cluster A exhibited significant activation of PI3K/AKT/mTOR and related oncogenic pathways, contributing to poor prognosis. The study also developed a risk score based on the expression profiles of PRGs and machine learning, which showed a significant increase in overall survival time among patients in the low-risk group. Importantly, the PI3K/AKT/mTOR pathway could be used to better predict individual risk scores, as evidenced by stratified survival analysis. CONCLUSIONS: These findings suggest that targeting the PI3K/AKT/mTOR pathway may have therapeutic potential in PDAC, and distinct pathway states, immune modulation and tumor microenvironments have prognostic value.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Transcriptome , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation/genetics , Tumor Microenvironment
7.
J Med Virol ; 96(1): e29336, 2024 01.
Article in English | MEDLINE | ID: mdl-38193530

ABSTRACT

Based on the forefront of clinical research, there is a growing recognition that the gut microbiota, which plays a pivotal role in shaping both the innate and adaptive immune systems, may significantly contribute to the pathogenesis of coronavirus disease 2019 (COVID-19). Although an association between altered gut microbiota and COVID-19 pathogenesis has been established, the causative mechanisms remain incompletely understood. Additionally, the validation of the precise functional alterations within the gut microbiota relevant to COVID-19 pathogenesis has been limited by a scarcity of suitable animal experimental models. In the present investigation, we employed a newly developed humanized ACE2 knock-in (hACE2-KI) mouse model, capable of recapitulating critical aspects of pulmonary and intestinal infection, to explore the modifications in the gut microbiota following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Examination of fecal samples using 16S rRNA gene profiling unveiled a notable reduction in species richness and conspicuous alterations in microbiota composition at 6 days postinfection (dpi). These alterations were primarily characterized by a decline in beneficial bacterial species and an escalation in certain opportunistic pathogens. Moreover, our analysis entailed a correlation study between the gut microbiota and plasma cytokine concentrations, revealing the potential involvement of the Lachnospiraceae_NK4A136_group and unclassified_f_Lachnospiraceae genera in attenuating hyperinflammatory responses triggered by the infection. Furthermore, integration of gut microbiota data with RNA-seq analysis results suggested that the increased presence of Staphylococcus in fecal samples may signify the potential for bacterial coinfection in lung tissues via gut translocation. In summary, our hACE2-KI mouse model effectively recapitulated the observed alterations in the gut microbiota during SARS-CoV-2 infection. This model presents a valuable tool for elucidating gut microbiota-targeted strategies aimed at mitigating COVID-19.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Animals , Mice , SARS-CoV-2 , RNA, Ribosomal, 16S/genetics , Disease Models, Animal
8.
Opt Lett ; 49(11): 3122-3125, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824343

ABSTRACT

Self-hybridizing structures based on transition metal dichalcogenides (TMDCs) are becoming promising candidates for the study of an intrinsic strong light-matter coupling because of the efficient mode overlap with much simplified geometries. However, realizing flexible tuning of intrinsic strong coupling in such TMDC-based structures is still challenging. Here, we propose a strategy for flexible tuning of the intrinsic strong light-matter coupling based on a bulk TMDC material. We report the first demonstration of the strong coupling of intrinsic excitons to whispering gallery modes (WGMs) supported by an all-TMDC nanocavity. Importantly, by simply controlling angles of incidence, a selective excitation of WGMs and an anapole can be realized, which enables a direct modulation of self-hybridized interactions from a bright WGM-exciton coupling to a dark anapole-exciton coupling. Our work is expected to provide unique opportunities for engineering a strong light-matter coupling and to open exciting avenues for highly integrated novel nanophotonic devices.

9.
Mol Psychiatry ; 28(4): 1611-1621, 2023 04.
Article in English | MEDLINE | ID: mdl-36914812

ABSTRACT

Clinical and animal studies have shown that gut microbiome disturbances can affect neural function and behaviors via the microbiota-gut-brain axis, and may be implicated in the pathogenesis of several brain diseases. However, exactly how the gut microbiome modulates nervous system activity remains obscure. Here, using a single-cell nucleus sequencing approach, we sought to characterize the cell type-specific transcriptomic changes in the prefrontal cortex and hippocampus derived from germ-free (GF), specific pathogen free, and colonized-GF mice. We found that the absence of gut microbiota resulted in cell-specific transcriptomic changes. Furthermore, microglia transcriptomes were preferentially influenced, which could be effectively reversed by microbial colonization. Significantly, the gut microbiome modulated the mutual transformation of microglial subpopulations in the two regions. Cross-species analysis showed that the transcriptome changes of these microglial subpopulations were mainly associated with Alzheimer's disease (AD) and major depressive disorder (MDD), which were further supported by animal behavioral tests. Our findings demonstrate that gut microbiota mainly modulate the mutual transformation of microglial subtypes, which may lead to new insights into the pathogenesis of AD and MDD.


Subject(s)
Alzheimer Disease , Depressive Disorder, Major , Gastrointestinal Microbiome , Mice , Animals , Gastrointestinal Microbiome/physiology , Microglia , Depression , Prefrontal Cortex
10.
Circ Res ; 130(6): 887-903, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35152717

ABSTRACT

BACKGROUND: CaMKII (Ca2+/calmodulin-dependent kinase II) plays a central role in cardiac ischemia/reperfusion (I/R) injury-an important therapeutic target for ischemic heart disease. In the heart, CaMKII-δ is the predominant isoform and further alternatively spliced into 11 variants. In humans, CaMKII-δ9 and CaMKII-δ3, the major cardiac splice variants, inversely regulate cardiomyocyte viability with the former pro-death and the latter pro-survival. However, it is unknown whether specific inhibition of the detrimental CaMKII-δ9 prevents cardiac I/R injury and, if so, what is the underlying mechanism. Here, we aim to investigate the cardioprotective effect of specific CaMKII-δ9 inhibition against myocardial I/R damage and determine the underlying mechanisms. METHODS: The role and mechanism of CaMKII-δ9 in cardiac I/R injury were investigated in mice in vivo, neonatal rat ventricular myocytes, and human embryonic stem cell-derived cardiomyocytes. RESULTS: We demonstrate that CaMKII-δ9 inhibition with knockdown or knockout of its feature exon, exon 16, protects the heart against I/R-elicited injury and subsequent heart failure. I/R-induced cardiac inflammation was also ameliorated by CaMKII-δ9 inhibition, and compared with the previously well-studied CaMKII-δ2, CaMKII-δ9 overexpression caused more profound cardiac inflammation. Mechanistically, in addition to IKKß (inhibitor of NF-κB [nuclear factor-κB] kinase subunit ß), CaMKII-δ9, but not δ2, directly interacted with IκBα (NF-κB inhibitor α) with its feature exon 13-16-17 combination and increased IκBα phosphorylation and consequently elicited more pronounced activation of NF-κB signaling and inflammatory response. Furthermore, the essential role of CaMKII-δ9 in myocardial inflammation and damage was confirmed in human cardiomyocytes. CONCLUSIONS: We not only identified CaMKII-δ9-IKK/IκB-NF-κB signaling as a new regulator of human cardiomyocyte inflammation but also demonstrated that specifically targeting CaMKII-δ9, the most abundant CaMKII-δ splice variant in human heart, markedly suppresses I/R-induced cardiac NF-κB activation, inflammation, and injury and subsequently ameliorates myocardial remodeling and heart failure, providing a novel therapeutic strategy for various ischemic heart diseases.


Subject(s)
Heart Failure , Myocardial Reperfusion Injury , Myocarditis , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Inflammation/genetics , Inflammation/prevention & control , Ischemia , Mice , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac , NF-KappaB Inhibitor alpha , NF-kappa B , Rats
11.
Pharmacol Res ; 204: 107214, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763328

ABSTRACT

Studies have shown that the microbiota-gut-brain axis is highly correlated with the pathogenesis of depression in humans. However, whether independent oral microbiome that do not depend on gut microbes could affect the progression of depression in human beings remains unclear, neither does the presence and underlying mechanisms of the microbiota-oral-brain axis in the development of the condition. Hence this study that encompasses clinical and animal experiments aims at investigating the correlation between oral microbiota and the onset of depression via mediating the microbiota-oral-brain axis. We compared the oral microbial compositions and metabolomes of 87 patients with depressive symptoms versus 70 healthy controls. We found that the oral microbial and metabolic signatures were significantly different between the two groups. Significantly, germ-free (GF) mice transplanted with saliva from mice exposing to chronic restraint stress (CRS) displayed depression-like behavior and oral microbial dysbiosis. This was characterized by a significant differential abundance of bacterial species, including the enrichment of Pseudomonas, Pasteurellaceae, and Muribacter, as well as the depletion of Streptococcus. Metabolomic analysis showed the alternation of metabolites in the plasma of CRS-exposed GF mice, especially Eicosapentaenoic Acid. Furthermore, oral and gut barrier dysfunction caused by CRS-induced oral microbiota dysbiosis may be associated with increased blood-brain barrier permeability. Pseudomonas aeruginosa supplementation exacerbated depression-like behavior, while Eicosapentaenoic Acid treatment conferred protection against depression-like states in mice. These results suggest that oral microbiome and metabolic function dysbiosis may be relevant to the pathogenesis and pathophysiology of depression. The proposed microbiota-oral-brain axis provides a new way and targets for us to study the pathogenesis of depression.


Subject(s)
Depression , Dysbiosis , Stress, Psychological , Animals , Dysbiosis/metabolism , Depression/metabolism , Depression/microbiology , Depression/psychology , Depression/etiology , Male , Humans , Stress, Psychological/metabolism , Stress, Psychological/microbiology , Stress, Psychological/psychology , Female , Adult , Mice , Restraint, Physical/psychology , Mice, Inbred C57BL , Gastrointestinal Microbiome , Brain-Gut Axis , Mouth/microbiology , Middle Aged , Saliva/metabolism , Saliva/microbiology , Behavior, Animal , Blood-Brain Barrier/metabolism
12.
Article in English | MEDLINE | ID: mdl-38809239

ABSTRACT

Strain HUAS 3-15T was isolated from the leaves of Cathaya argyrophylla collected from Chenzhou, Hunan Province, PR China. The main fatty acids (>5.0 %) of the strain were anteiso-C15 : 0, C16 : 0, C18 : 1 ω9c, iso-C16 : 0, summed feature 5 (C18 : 2 ω6,9c/C18 : 0 ante), iso-C15 : 0 and anteiso-C17 : 0. MK-9(H6), MK-9(H8) and MK-9(H4) were detected as respiratory quinones. The diagnostic cell-wall diamino acid was meso-diaminopimelic acid. Galactose, glucose and ribose were also present in the cell wall. The major polar lipids consisted of diphosphatidylglycerol, phosphatidyl ethanolamine, phosphatidylinositol mannosides and unidentified phospholipids. The DNA G+C content of the genome sequence, consisting of 8 860 963 bp, is 72.4 mol%. blast analysis based on 16S rRNA gene sequences revealed that the strain belongs to the genus Kitasatospora, with 99.37, 99.03, 98.95, 98.68 and 98.67 % sequence similarity to Kitasatospora aureofaciens ATCC 10762T, Kitasatospora viridis DSM 44826T, Kitasatospora xanthocidica NBRC 13469T, Kitasatospora aburaviensis NRRL B-2218T and Kitasatospora kifunensis IFO 15206T, respectively. Phylogenetic trees based on 16S rRNA gene and whole-genome sequences demonstrated that strain HUAS 3-15T formed a well-supported cluster with K. aureofaciens ATCC 10762T. Further genomic characterization through average nucleotide identity (ANIb/m) and digital DNA-DNA hybridization analysis between strain HUAS 3-15T and K. aureofaciens ATCC 10762T showed values of 90.62/92.55 % and 45.3 %, respectively, lower than the 95-96 % ANI threshold and 70.0 % cutoff used as guideline values for species delineation in bacteria. Furthermore, the differences between the strain and its phylogenomic neighbour in terms of physiological (e.g. sole carbon source growth) and chemotaxonomic (e.g. cellular fatty composition) characteristics further supported this conclusion. Consequently, we concluded that strain HUAS 3-15T represents a novel species of the genus Kitasatospora, for which the name Kitasatospora cathayae sp. nov. is proposed. The type strain is HUAS 3-15T (=MCCC 1K08542T=JCM 36274T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Endophytes , Fatty Acids , Phospholipids , Phylogeny , Plant Leaves , RNA, Ribosomal, 16S , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Plant Leaves/microbiology , DNA, Bacterial/genetics , China , Endophytes/isolation & purification , Endophytes/genetics , Endophytes/classification , Phospholipids/chemistry , Vitamin K 2/analogs & derivatives , Cell Wall/chemistry , Diaminopimelic Acid , Nucleic Acid Hybridization , Actinomycetales/isolation & purification , Actinomycetales/genetics , Actinomycetales/classification
13.
Prev Med ; 182: 107942, 2024 May.
Article in English | MEDLINE | ID: mdl-38548025

ABSTRACT

OBJECTIVE: Genetic and lifestyles contribute to cholelithiasis, but the impact of adhering to healthy lifestyle on cholelithiasis risk remains uncertain. We aimed to assess combined lifestyle factors and a polygenic risk score on incident cholelithiasis. METHODS: We utilized cholelithiasis genome-wide association study (GWAS) data from FinnGen study, constructing varied polygenic risk score (PRS), and applied them to 317,640 UK Biobank participants. The relative and absolute risk of incident cholelithiasis associated with six well-established lifestyle risk factors, was evaluated and stratified by PRS (low risk [quintile 1], intermediate risk [quintiles 2-4] and high risk [quintile 5]). Lifestyle score was also categorized into favorable, intermediate, and unfavorable groups. RESULTS: The PRS derived from 13 single nucleotide polymorphisms (p ≤ 5 × 10-6, r2 < 0.001) showed the best performance. A significant gradient of increase in risk of cholelithiasis was observed across the quintiles of the polygenic risk score (p < 0.001). Compared to participants with low genetic risk, those with intermediate or high genetic risk had a 10% (95% confidence interval [CI] = 1.05-1.17) and 24% (95% CI = 1.16-1.32) higher risk of cholelithiasis. An unfavorable lifestyle was associated with an approximately 50% higher risk of cholelithiasis than a favorable lifestyle. Participants with high genetic risk and an unfavorable lifestyle had 98% (Hazard ratio [HR]: 1.98; 95% CI: 1.67-2.35) higher risk of cholelithiasis than those with low genetic risk and a favorable lifestyle. CONCLUSIONS: Our study highlights the importance of lifestyle behaviors intervention on cholelithiasis risk regardless of the genetic risk in White European population.

14.
Bioorg Chem ; 150: 107539, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38861912

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignant tumor that occurs in the liver, with a high degree of malignancy and relatively poor prognosis. Gypenoside L has inhibitory effects on liver cancer cells. However, its mechanism of action is still unclear. This study aims to investigate the inhibitory effects of gypenoside L on HCC in vitro and in vivo, and explore its potential mechanisms. The results showed that gypenoside L reduced the cholesterol and triglyceride content in HepG2 and Huh-7 cells, inhibited cell proliferation, invasion and metastasis, arrested cell cycle at G0/G1 phase, promoted cell apoptosis. Mechanistically, it targeted the transcription factor SREPB2 to inhibit the expression of HMGCS1 protein and inhibited the downstream proteins HMGCR and MVK, thereby regulating the mevalonate (MVA) pathway. Overexpression HMGCS1 led to significant alterations in the cholesterol metabolism pathway of HCC, which mediated HCC cell proliferation and conferred resistance to the therapeutic effect of gypenoside L. In vivo, gypenoside L effectively suppressed HCC growth in tumor-bearing mice by reducing cholesterol production, exhibiting favorable safety profiles and minimal toxic side effects. Gypenoside L modulated cholesterol homeostasis, enhanced expression of inflammatory factors by regulating MHC I pathway-related proteins to augment anticancer immune responses. Clinical samples from HCC patients also exhibited high expression levels of MVA pathway-related genes in tumor tissues. These findings highlight gypenoside L as a promising agent for targeting cholesterol metabolism in HCC while emphasizing the effectiveness of regulating the SREBP2-HMGCS1 axis as a therapeutic strategy.

15.
Article in English | MEDLINE | ID: mdl-38409880

ABSTRACT

Sepsis-associated encephalopathy (SAE) is characterized by high incidence and mortality rates, with limited treatment options available. The underlying mechanisms and pathogenesis of SAE remain unclear. Annexin A1 (ANXA1), a membrane-associated protein, is involved in various in vivo pathophysiological processes. This study aimed to explore the neuroprotective effects and mechanisms of a novel bioactive ANXA1 tripeptide (ANXA1sp) in SAE. Forty Sprague-Dawley rats were randomly divided into four groups (n = 10 each): control, SAE (intraperitoneal injection of lipopolysaccharide), vehicle (SAE + normal saline), and ANXA1sp (SAE + ANXA1sp) groups. Changes in serum inflammatory factors (interleukin-6 [IL-6], tumor necrosis factor-α [TNF-α]), hippocampal reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) levels were measured. The Morris water maze and Y maze tests were used to assess learning and memory capabilities in the rats. Further, changes in peroxisome proliferator-activated receptor-gamma (PPAR-γ) and apoptosis-related protein expression were detected using western blot. The IL-6, TNF-α, and ROS levels were significantly increased in the SAE group compared with the levels in the control group. Intraperitoneal administration of ANXA1sp led to a significant decrease in the IL-6, TNF-α, and ROS levels (p < 0.05). Compared with the SAE group, the ANXA1sp group exhibited reduced escape latency on day 5, a significant increase in the number of platform crossings and the percent spontaneous alternation, and significantly higher hippocampal MMP and ATP levels (p < 0.05). Meanwhile, the expression level of PPAR-γ protein in the ANXA1sp group was significantly increased compared with that in the other groups (p < 0.05). The expressions of apoptosis-related proteins (nuclear factor-kappa B [NF-κB], Bax, and Caspase-3) in the SAE and vehicle groups were significantly increased, with a noticeable decrease in Bcl-2 expression, compared with that noted in the control group. Moreover, the expressions of NF-κB, Bax, and Caspase-3 were significantly decreased in the ANXA1sp group, and the expression of Bcl-2 was markedly increased (p < 0.05). ANXA1sp can effectively reverse cognitive impairment in rats with SAE. The neuroprotective effect of ANXA1sp may be attributed to the activation of the PPAR-γ pathway, resulting in reduced neuroinflammatory response and inhibition of apoptosis.

16.
Antonie Van Leeuwenhoek ; 117(1): 31, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319408

ABSTRACT

An endophytic actinobacterium, designated strain HUAS 5T, was isolated from the root tissue of Cathaya argyrophylla collected in Chenzhou city of Hunan Province, PR China. This strain produced grey aerial mycelium that differentiated into spiral spore chains with spiny-surfaced ellipsoidal spores on Gause's synthetic No. 1 medium. Strain HUAS 5T grew well on Gause's synthetic No. 1, Reasoner'2 and ISP serial media. This strain grew at 15-40 °C (optimum, 28 °C), pH 6.0-9.0 (optimum, pH 7.0) and in presence of 0-5.0% (w/v) NaCl. The predominant cellular fatty acids of strain HUAS 5T (> 5.0%) were iso-C16:0, iso-C14:0, anteiso-C15:0, iso-C15:0, C16:0, iso-C16:1 H and Sum in Feature 3 (C16:1 ω7c/C16:1 ω6c). Sequence analysis of the 16S rRNA gene indicated that this strain belonged to the genus Streptomyces and exhibited highest sequence similarity to Streptomyces hirsutus NRRL B-2713T (97.3%), which is much less than 98.7% cut-off point of species definitions for bacteria and archaea. Phylogenetic analysis of 16S rRNA gene sequence and whole genome indicated that strain HUAS 5T formed an independent lineage, which suggested that it belonged to a potential novel species. Based on the morphological, cultural, physio-biochemical properties and chemotaxonomy, strain HUAS 5T (= MCCC 1K08552T = JCM 36055T) is deemed to represent a novel Streptomyces species, for which we put forward the name Streptomyces cathayae sp. nov.


Subject(s)
Archaea , Streptomyces , Phylogeny , RNA, Ribosomal, 16S/genetics , China , Streptomyces/genetics
17.
Neurol Sci ; 45(1): 27-36, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37639023

ABSTRACT

PURPOSE: The relationship between varicella zoster virus (VZV) infection and the risk of dementia has not been previously studied specifically. Therefore, this study sought to determine the relationship between studying VZV infection and dementia occurring in the general population by conducting an extensive meta-analysis of published cases. METHOD: A systematic literature search was conducted in seven online databases by October 31, 2022. Heterogeneity was tested by the I2 index. Pooled HR and 95% CI were used to estimate the effect of VZV infection on dementia. Sensitivity analyses and publication bias were also performed. RESULT: Nine studies involving 3,326,673 subjects were included. VZV infection was associated with an increased risk of dementia (HR = 1.11, 95% CI: 1.02-1.21). The risk of dementia was reduced in those who received antiviral therapy compared to those who did not (HR = 0.84, 95% CI: 0.71-0.99). In addition, VZV infection was found to be associated with an increased risk of developing dementia in the pooled results of the moderate quality study (HR = 1.81,95% CI: 1.27-2.59), and this association persisted when subgroup analyses were performed based on region (Asia: HR = 1.18,95% CI: 1.04-1.33). CONCLUSIONS: Our results suggest that VZV infection might increase the risk of developing dementia, but there is no clear mechanism about the true relationship, and since there is no effective treatment for dementia, and our results suggest that some populations can benefit from antiviral therapy, it is at least arguable that patients who develop VZV infection should be treated with appropriate antiviral medications.


Subject(s)
Dementia , Herpes Zoster , Humans , Antiviral Agents/therapeutic use , Dementia/epidemiology , Dementia/etiology , Dementia/drug therapy , Herpes Zoster/complications , Herpes Zoster/epidemiology , Herpesvirus 3, Human
18.
BMC Public Health ; 24(1): 233, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38243159

ABSTRACT

OBJECTIVE: The association between Metabolic Syndrome (MetS), its components, and the risk of osteoarthritis (OA) has been a topic of conflicting evidence in different studies. The aim of this present study is to investigate the association between MetS, its components, and the risk of OA using data from the UK Biobank. METHODS: A prospective cohort study was conducted in the UK Biobank to assess the risk of osteoarthritis (OA) related to MetS. MetS was defined according to the criteria set by the International Diabetes Federation (IDF). Additionally, lifestyle factors, medications, and the inflammatory marker C-reactive protein (CRP) were included in the model. Cox proportional hazards regression was used to calculate hazard ratios (HR) and 95% confidence intervals (CI). The cumulative risk of OA was analyzed using Kaplan-Meier curves and log-rank tests. To explore potential nonlinear associations between MetS components and OA risk, a restricted cubic splines (RCS) model was employed. In addition, the polygenic risk score (PRS) of OA was calculated to characterize individual genetic risk. RESULTS: A total of 45,581 cases of OA were identified among 370,311 participants, with a median follow-up time of 12.48 years. The study found that individuals with MetS had a 15% higher risk of developing OA (HR = 1.15, 95%CI:1.12-1.19). Additionally, central obesity was associated with a 58% increased risk of OA (HR = 1.58, 95%CI:1.5-1.66), while hyperglycemia was linked to a 13% higher risk (HR = 1.13, 95%CI:1.1-1.15). Dyslipidemia, specifically in triglycerides (HR = 1.07, 95%CI:1.05-1.09) and high-density lipoprotein (HR = 1.05, 95%CI:1.02-1.07), was also found to be slightly associated with OA risk. When stratified by PRS, those in the high PRS group had a significantly higher risk of OA compared to those with a low PRS, whereas no interaction was found between MetS and PRS on OA risks. Furthermore, the presence of MetS significantly increased the risk of OA by up to 35% in individuals with elevated CRP levels (HR = 1.35, 95% CI:1.3-1.4). CONCLUSION: MetS and its components have been found to be associated with an increased risk of OA, particularly in individuals with elevated levels of CRP. These findings highlight the significance of managing MetS as a preventive and intervention measure for OA.


Subject(s)
Metabolic Syndrome , Osteoarthritis , Humans , Metabolic Syndrome/epidemiology , Metabolic Syndrome/complications , Prospective Studies , Biological Specimen Banks , UK Biobank , Osteoarthritis/epidemiology , Osteoarthritis/complications , Risk Factors , C-Reactive Protein
19.
Hereditas ; 161(1): 4, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38233949

ABSTRACT

BACKGROUND: Fibrinogen plays pivotal roles in multiple biological processes. Genetic mutation of the fibrinogen coding genes can result in congenital fibrinogen disorders (CFDs). We identified a novel heterozygous missense mutation, FGG c.1168G > T (NCBI NM_000509.6), and conducted expression studies and functional analyses to explore the influence on fibrinogen synthesis, secretion, and polymerization. METHODS: Coagulation tests were performed on the patients to detect the fibrinogen concentration. Whole-exome sequencing (WES) and Sanger sequencing were employed to detect the novel mutation. Recombinant fibrinogen-producing Chinese hamster ovary (CHO) cell lines were built to examine the recombinant fibrinogen synthesis and secretion by western blotting and enzyme-linked immunosorbent assay (ELISA). The functional analysis of fibrinogen was performed by thrombin-catalyzed fibrin polymerization assay. In silico molecular analyses were carried out to elucidate the potential molecular mechanisms. RESULTS: The clinical manifestations, medical history, and laboratory tests indicated the diagnosis of hypodysfibrinogenemia with bleeding phenotype in two patients. The WES and Sanger sequencing revealed that they shared the same heterozygous missense mutation, FGG c.1168G > T. In the expression studies and functional analysis, the missense mutation impaired the recombinant fibrinogen's synthesis, secretion, and polymerization. Furthermore, the in silico analyses indicated novel mutation led to the hydrogen bond substitution. CONCLUSION: The study highlighted that the novel heterozygous missense mutation, FGG c.1168G > T, would change the protein secondary structure, impair the "A: a" interaction, and consequently deteriorate the fibrinogen synthesis, secretion, and polymerization.


Subject(s)
Afibrinogenemia , Fibrinogen , Mutation, Missense , Animals , Cricetinae , Humans , CHO Cells , Cricetulus , Fibrinogen/genetics , Mutation , Phenotype
20.
BMC Med Inform Decis Mak ; 24(1): 48, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38350899

ABSTRACT

BACKGROUND: Secondary immunodeficiency can arise from various clinical conditions that include HIV infection, chronic diseases, malignancy and long-term use of immunosuppressives, which makes the suffering patients susceptible to all types of pathogenic infections. Other than HIV infection, the possible pathogen profiles in other aetiology-induced secondary immunodeficiency are largely unknown. METHODS: Medical records of the patients with secondary immunodeficiency caused by various aetiologies were collected from the First Affiliated Hospital of Nanchang University, China. Based on these records, models were developed with the machine learning method to predict the potential infectious pathogens that may inflict the patients with secondary immunodeficiency caused by various disease conditions other than HIV infection. RESULTS: Several metrics were used to evaluate the models' performance. A consistent conclusion can be drawn from all the metrics that Gradient Boosting Machine had the best performance with the highest accuracy at 91.01%, exceeding other models by 13.48, 7.14, and 4.49% respectively. CONCLUSIONS: The models developed in our study enable the prediction of potential infectious pathogens that may affect the patients with secondary immunodeficiency caused by various aetiologies except for HIV infection, which will help clinicians make a timely decision on antibiotic use before microorganism culture results return.


Subject(s)
HIV Infections , Humans , HIV Infections/complications , Benchmarking , China , Hospitals , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL