Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Publication year range
1.
Int J Mol Sci ; 13(5): 6320-6333, 2012.
Article in English | MEDLINE | ID: mdl-22754367

ABSTRACT

In the present study, we firstly compared rat intestinal α-glucosidase inhibitory activity by different ethanol-aqueous extractions from the dried fruits of Terminalia chebula Retz. The enzymatic assay showed that the 80% ethanol extract was more potent against maltase activity than both 50% and 100% ethanol extracts. By HPLC analysis, it was determined that the 80% ethanol extract had a higher content of chebulagic acid than each of 50% or 100% ethanol extract. Next, we investigated how efficiently chebulagic acid could inhibit sugar digestion by determining the glucose level on the apical side of the Caco-2 cell monolayer. The result showed that the maltose-hydrolysis activity was down-regulated by chebulagic acid, which proved to be a reversible inhibitor of maltase in Caco-2 cells. On the other hand, chebulagic acid showed a weak inhibition of sucrose-hydrolysis activity. Meanwhile, chebulagic acid did not have an obvious influence on intestinal glucose uptake and was not effective on glucose transporters. Further animal studies revealed that the oral administration of chebulagic acid (100 mg/kg body weight) significantly reduced postprandial blood glucose levels by 11.1% in maltose-loaded Sprague-Dawley (SD) rats compared with the control group, whereas the oral administration of chebulagic acid did not show a suppressive effect on postprandial hyperglycemia in sucrose- or glucose-loaded SD-rats. The results presented here suggest that chebulagic acid from T. chebula can be used to control blood glucose and manage type 2 diabetes, although clinical trials are needed.


Subject(s)
Benzopyrans/administration & dosage , Fruit/chemistry , Glucosides/administration & dosage , Hyperglycemia/drug therapy , Hypoglycemic Agents/administration & dosage , Plant Extracts/administration & dosage , Terminalia/chemistry , Administration, Oral , Animals , Benzopyrans/pharmacology , Caco-2 Cells , Down-Regulation , Drug Evaluation, Preclinical , Glucosides/pharmacology , Humans , Hyperglycemia/metabolism , Hypoglycemic Agents/pharmacology , Male , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley , alpha-Glucosidases/metabolism
2.
Article in Zh | MEDLINE | ID: mdl-35634665

ABSTRACT

Objective: To investigate the effects of Zhongfeng capsule on the autophagy-related proteins expression in rats with cerebral ischemia/reperfusion injury (CI/ RI), and to explore its neural protection mechanisms of the decoction. Methods: Rat middle cerebral artery ischemia/reperfusion injury model (ischemia for 2 h, reperfusion for 24 h) was prepared by the improved line plug method. Sixty male SD rats were randomly divided into sham operation group, model group, butylphthalide group(0.054 g/kg), Zhongfeng capsule high-dose groups (1.08 g/kg), Zhongfeng capsule middle-dose groups (0.54 g/kg), Zhongfeng capsule low-dose groups (0.27 g/kg), with 10 rats in each group. Rats were treated with Zhongfeng capsule by gavage once a day for 10 days. The rats were sacrificed and the brain tissue was obtained after the experiment in each group. Score neurological deficit was evaluated after 24 h of the last intervention in rat of each group. The pathological changes of brain tissue were observed by HE staining. The serum levels of estradiol (E2) and follicle stimulating hormone (FSH) were determined by ELISA. The expressions of key genes and proteins of PI3K/Akt/Beclin1 signaling pathway in brain tissue were detected by qRT-PCR and Western blot respectively. Results: Compared with the sham operation group, the body weight and protein expressions of p-PI3k and p-Akt in brain tissue of rats were decreased significantly in the model group, while the brain index, neurological deficit score, gene and protein expressions of Beclin1 and LC3 were increased markedly in the model group(P<0.05 or P<0.01). In the model group, nerve cells of brain tissue were loosely packed, interstitial edema, triangular in shape, nuclear pyknosis and dark-blue staining were observed. Compared with the model group, the body weight of rats was increased obviously, the neurological deficit score was decreased significantly and the pathological injury of brain tissue was alleviated evidently in high-dose of Zhongfeng capsule group (P<0.05). The brain index, the gene and protein expressions of Beclin1 and LC3 were decreased apparently in Zhongfeng capsule treatment groups(P<0.05 or P<0.01), while the expressions of p-PI3k and p-Akt in brain tissue were increased evidently in Zhongfeng capsule treatment groups(P<0.05 or P<0.01). Conclusion: Zhongfeng capsule can inhibit autophagy and improve brain neurons lesion of CIRI rats, the mechanism may be related to regulate the expression of Beclin1 and LC3 in PI3K/Akt/Beclin1 signaling pathway.


Subject(s)
Brain Ischemia , Reperfusion Injury , Animals , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/pharmacology , Beclin-1/metabolism , Body Weight , Brain , Brain Ischemia/metabolism , Male , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL