Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Regul Toxicol Pharmacol ; 114: 104665, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32334036

ABSTRACT

BPC157 displays protective activity in various organs and tissues. This report presents preclinical toxicity studies with BPC157 in mice, rats, rabbits and dogs. The single-dose toxicity study did not show any test-related effects that could be attributed to the test article. In repeated-dose toxicity evaluations, BPC157 was well tolerated in dogs, with no abnormal changes between the BPC157-treated groups and the solvent control group, with the exception of a decrease in creatinine level at a dose of 2 mg/kg but not at lower doses. The animals recovered spontaneously after 2 weeks of withdrawal. This may be due to the pharmacological activity of BPC157. A local tolerance test showed that the irritation caused by BPC157 was mild. BPC157 also showed no genetic or embryo-fetal toxicity. In summary, BPC157 was well tolerated and did not cause any serious toxicity in mice, rats, rabbits and dogs. These preclinical safety data contribute to the initiation of an ongoing clinical study. Based on the stability and protective effect of BPC157, which has been widely reported, BPC157 may have a better application prospect than the widely used cytokine drugs in wound therapy.


Subject(s)
Peptide Fragments/pharmacology , Protective Agents/pharmacology , Wound Healing/drug effects , Administration, Oral , Animals , Dogs , Dose-Response Relationship, Drug , Female , Injections, Intramuscular , Male , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Peptide Fragments/administration & dosage , Protective Agents/administration & dosage , Rabbits , Rats , Rats, Sprague-Dawley
2.
IUBMB Life ; 71(9): 1302-1312, 2019 09.
Article in English | MEDLINE | ID: mdl-30900390

ABSTRACT

N-Acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a critical negative regulator of fibrosis development in the liver. However, its extremely short half-life in vivo greatly compromises its potential applications. Here, we report an Ac-SDKP analog peptide with d-amino acid replacement (Ac-SDD KD P). The stability of Ac-SDD KD P and its prevention of liver fibrosis were investigated in vitro and in vivo. The stabilities of Ac-SDKP and Ac-SDD KD P exposed to angiotensin-1-converting enzyme (ACE) and their half-lives in rats and human sera were determined by high-performance liquid chromatography. The inhibitory effects of Ac-SDKP and Ac-SDD KD P on the proliferation and activation of hepatic stellate cells (HSC-T6) were evaluated using the Cell Counting Kit-8, Western blotting, reverse transcription quantitative polymerase chain reaction, and immunofluorescence assays. Finally, the protective effects of Ac-SDKP and Ac-SDD KD P on carbon tetrachloride (CCl4 )-induced liver fibrosis in rats were compared. d-Amino acid replacement significantly enhanced the stability of the peptide to ACE and prolonged the half-life of Ac-SDKP in rats and human sera. The Ac-SDKP-mediated inhibition of HSC-T6 cell proliferation was well preserved, and Ac-SDD KD P exerted inhibitory effects comparable to Ac-SDKP on α-smooth muscle actin (α-SMA), collagen I and III expression, and phosphorylated-Smad-2 expression. After intraperitoneal (i.p.) administration, Ac-SDD KD P exhibited significantly greater protection than Ac-SDKP against CCl4 -induced liver fibrosis in rats. The serum alanine aminotransferase, aspartate aminotransferase, albumin, and total protein levels of the Ac-SDD KD P-treated rats were significantly lower than those of the Ac-SDKP-treated rats. α-SMA, CD45, and collagen I and III expression, as well as Smad-2 phosphorylation were significantly attenuated in the livers of the Ac-SDD KD P-treated rats compared to those of the Ac-SDKP-treated rats. Furthermore, we showed that the Ac-SDD KD P concentration in the rat liver increased to a physiological level of 60 min after i.p. administration, although i.p. administration of Ac-SDKP failed to enhance the peptide concentration in the rat liver. Our findings indicate that d-amino acid replacement is a simple and effective method to enhance the stability of Ac-SDKP. Ac-SDD KD P represents potential application of Ac-SDKP in fibrosis treatment and provides a new potential treatment strategy for liver fibrosis. © 2019 IUBMB Life, 71(9):1302-1312, 2019.


Subject(s)
Amino Acids/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Liver Cirrhosis/drug therapy , Oligopeptides/pharmacology , Actins/genetics , Amino Acids/genetics , Angiotensin-Converting Enzyme Inhibitors/chemistry , Animals , Carbon Tetrachloride/toxicity , Cell Proliferation , Chromatography, Liquid , Disease Models, Animal , Hepatic Stellate Cells/drug effects , Humans , Hydroxylation/drug effects , Liver/drug effects , Liver/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Oligopeptides/chemistry , Peptidyl-Dipeptidase A/genetics , Phosphorylation/drug effects , Protective Agents/chemistry , Protective Agents/pharmacology , Rats , Smad2 Protein/genetics
3.
Front Pharmacol ; 12: 655652, 2021.
Article in English | MEDLINE | ID: mdl-34093188

ABSTRACT

The development of an effective pharmacological countermeasure is needed to reduce the morbidity and mortality in high-dose ionizing radiation-induced acute damage. Genistein has shown bioactivity in alleviating radiation damage and is currently synthesized by chemosynthetic methods. Due to concerns about chemical residues and high costs, the clinical application of genistein is still a major challenge. In this study, we aimed to establish an efficient method for the extraction of genistein from Fructus sophorae. The effects of extracted genistein (FSGen) on preventing intestinal injury from radiation were further investigated in this study. C57/BL mice were exposed to 7.5 Gy whole body irradiation with and without FSGen treatments. Histological analysis demonstrated significant structural and functional restitution of the intestine and bone marrow in FSGen-pretreated cohorts after irradiation. Through mRNA expression, protein expression, and small interfering RNA analyses, we demonstrated that FSGen protects IEC-6 cells against radiation damage by upregulating the Rassf1a and Ercc1 genes to effectively attenuate DNA irradiation damage. Together, our data established an effective method to extract genistein from the Fructus sophorae plant with high purity, and validated the beneficial roles of the FSGen in protecting the radiation damage. These results promise the future applications of Fructus sophorae extracted genistein in the protection of radiation related damages.

4.
J Immunother Cancer ; 9(9)2021 09.
Article in English | MEDLINE | ID: mdl-34489334

ABSTRACT

BACKGROUND: A better understanding of the molecular mechanisms that manifest in the immunosuppressive tumor microenvironment (TME) is crucial for developing more efficacious immunotherapies for hepatocellular carcinoma (HCC), which has a poor response to current immunotherapies. Regulatory T (Treg) cells are key mediators of HCC-associated immunosuppression. We investigated the selective mechanism exploited by HCC that lead to Treg cells expansion and to find more efficacious immunotherapies. METHODS: We used matched tumor tissues and blood samples from 150 patients with HCC to identify key factors of Treg cells expansion. We used mass cytometry (CyTOF) and orthotopic cancer mouse models to analyze overall immunological changes after growth differentiation factor 15 (GDF15) gene ablation in HCC. We used flow cytometry, coimmunoprecipitation, RNA sequencing, mass spectrum, chromatin immunoprecipitation and Gdf15-/-, OT-I and GFP transgenic mice to demonstrate the effects of GDF15 on Treg cells and related molecular mechanism. We used hybridoma technology to generate monoclonal antibody to block GDF15 and evaluate its effects on HCC-associated immunosuppression. RESULTS: GDF15 is positively associated with the elevation of Treg cell frequencies in patients wih HCC. Gene ablation of GDF15 in HCC can convert an immunosuppressive TME to an inflammatory state. GDF15 promotes the generation of peripherally derived inducible Treg (iTreg) cells and enhances the suppressive function of natural Treg (nTreg) cells by interacting with a previously unrecognized receptor CD48 on T cells and thus downregulates STUB1, an E3 ligase that mediates forkhead box P3 (FOXP3) protein degradation. GDF15 neutralizing antibody effectively eradicates HCC and augments the antitumor immunity in mouse. CONCLUSIONS: Our results reveal the generation and function enhancement of Treg cells induced by GDF15 is a new mechanism for HCC-related immunosuppression. CD48 is the first discovered receptor of GDF15 in the immune system which provide the possibility to solve the molecular mechanism of the immunomodulatory function of GDF15. The therapeutic GDF15 blockade achieves HCC clearance without obvious adverse events.


Subject(s)
CD48 Antigen/immunology , Carcinoma, Hepatocellular/immunology , Growth Differentiation Factor 15/immunology , Liver Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Immune Tolerance , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL