Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 458
Filter
1.
J Virol ; : e0046724, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864621

ABSTRACT

Acinetobacter baumannii, an opportunistic pathogen, poses a significant threat in intensive care units, leading to severe nosocomial infections. The rise of multi-drug-resistant strains, particularly carbapenem-resistant A. baumannii, has created formidable challenges for effective treatment. Given the prolonged development cycle and high costs associated with antibiotics, phages have garnered clinical attention as an alternative for combating infections caused by drug-resistant bacteria. However, the utilization of phage therapy encounters notable challenges, including the narrow host spectrum, where each phage targets a limited subset of bacteria, increasing the risk of phage resistance development. Additionally, uncertainties in immune system dynamics during treatment hinder tailoring symptomatic interventions based on patient-specific states. In this study, we isolated two A. baumannii phages from wastewater and conducted a comprehensive assessment of their potential applications. This evaluation included sequencing analysis, genome classification, pH and temperature stability assessments, and in vitro bacterial inhibition assays. Further investigations involved analyzing histological and cytokine alterations in rats undergoing phage cocktail treatment for pneumonia. The therapeutic efficacy of the phages was validated, and transcriptomic studies of rat lung tissue during phage treatment revealed crucial changes in the immune system. The findings from our study underscore the potential of phages for future development as a treatment strategy and offer compelling evidence regarding immune system dynamics throughout the treatment process.IMPORTANCEDue to the growing problem of multi-drug-resistant bacteria, the use of phages is being considered as an alternative to antibiotics, and the genetic safety and application stability of phages determine the potential of phage application. The absence of drug resistance genes and virulence genes in the phage genome can ensure the safety of phage application, and the fact that phage can remain active in a wide range of temperatures and pH is also necessary for application. In addition, the effect evaluation of preclinical studies is especially important for clinical application. By simulating the immune response situation during the treatment process through mammalian models, the changes in animal immunity can be observed, and the effect of phage therapy can be further evaluated. Our study provides compelling evidence that phages hold promise for further development as therapeutic agents for Acinetobacter baumannii infections.

2.
J Pathol ; 263(2): 139-149, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38380548

ABSTRACT

TP53 mutation is one of the most common genetic alterations in urothelial carcinoma (UrCa), and heterogeneity of TP53 mutants leads to heterogeneous clinical outcomes. This study aimed to investigate the clinical relevance of specific TP53 mutations in UrCa. In this study, a total of eight cohorts were enrolled, along with matched clinical annotation. TP53 mutations were classified as disruptive and nondisruptive according to the degree of disturbance of p53 protein function and structure. We evaluated the clinical significance of TP53 mutations in our local datasets and publicly available datasets. The co-occurring events of TP53 mutations in UrCa, along with their therapeutic indications, functional effects, and the tumor immune microenvironment, were also investigated. TP53 mutations were identified in 49.7% of the UrCa patients. Within this group, 25.1% of patients carried TP53Disruptive mutations, a genetic alteration correlated with a significantly poorer overall survival (OS) when compared to individuals with TP53Nondisruptive mutations and those with wild-type TP53. Significantly, patients with TP53Disruptive mutations exhibit an increased probability of responding favorably to PD-1/PD-L1 blockade and chemoimmunotherapy. Meanwhile, there was no noteworthy distinction in OS among patients with varying TP53 mutation status who underwent chemotherapy. Samples with TP53Disruptive mutations showed an enriched APOBEC- and POLE-related mutational signature, as well as an elevated tumor mutation burden. The sensitivity to immunotherapy in tumors carrying TP53Disruptive mutation may be attributed to the inflamed tumor microenvironment characterized by increased CD8+T cell infiltration and interferon-gamma signaling activation. In conclusion, UrCa patients with TP53Disruptive mutations have shown reduced survival rates, yet they may respond well to PD-1/PD-L1 blockade therapy and chemoimmunotherapy. By distinguishing specific TP53 mutations, we can improve risk stratification and offer personalized genomics-guided therapy to UrCa patients. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
B7-H1 Antigen , Immune Checkpoint Inhibitors , Mutation , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Tumor Suppressor Protein p53 , Urinary Bladder Neoplasms , Humans , Tumor Suppressor Protein p53/genetics , Immune Checkpoint Inhibitors/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/immunology , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/immunology , Carcinoma, Transitional Cell/pathology , Carcinoma, Transitional Cell/mortality , Biomarkers, Tumor/genetics , Male , Female , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged , Middle Aged
3.
Plant J ; 116(5): 1309-1324, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37614043

ABSTRACT

Citrus production is severely threatened by the devastating Huanglongbing (HLB) disease globally. By studying and analyzing the defensive behaviors of an HLB-tolerant citrus cultivar 'Shatangju', we discovered that citrus can sense Candidatus Liberibacter asiaticus (CLas) infection and induce immune responses against HLB, which can be further strengthened by both endogenously produced and exogenously applied methyl salicylate (MeSA). This immune circuit is turned on by an miR2977-SAMT (encoding a citrus Salicylate [SA] O-methyltransferase) cascade, by which CLas infection leads to more in planta MeSA production and aerial emission. We provided both transgenic and multi-year trail evidences that MeSA is an effective community immune signal. Ambient MeSA accumulation and foliage application can effectively induce defense gene expression and significantly boost citrus performance. We also found that miRNAs are battle fields between citrus and CLas, and about 30% of the differential gene expression upon CLas infection are regulated by miRNAs. Furthermore, CLas hijacks host key processes by manipulating key citrus miRNAs, and citrus employs miRNAs that coordinately regulate defense-related genes. Based on our results, we proposed that miRNAs and associated components are key targets for engineering or breeding resistant citrus varieties. We anticipate that MeSA-based management, either induced expression or external application, would be a promising tool for HLB control.


Subject(s)
Citrus , MicroRNAs , Rhizobiaceae , Citrus/physiology , Plant Diseases , Plant Breeding , Salicylates/metabolism , Liberibacter/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
4.
Cancer Sci ; 115(4): 1306-1316, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38402640

ABSTRACT

Muscle-invasive bladder cancer (MIBC) is a disease characterized by molecular and clinical heterogeneity, posing challenges in selecting the most appropriate treatment in clinical settings. Considering the significant role of CD4+ T cells, there is an emerging need to integrate CD4+ T cells with molecular subtypes to refine classification. We conducted a comprehensive study involving 895 MIBC patients from four independent cohorts. The Zhongshan Hospital (ZSHS) and The Cancer Genome Atlas (TCGA) cohorts were included to investigate chemotherapeutic response. The IMvigor210 cohort was included to assess the immunotherapeutic response. NCT03179943 was used to evaluate the clinical response to a combination of immune checkpoint blockade (ICB) and chemotherapy. Additionally, we evaluated genomic characteristics and the immune microenvironment to gain deeper insights into the distinctive features of each subtype. We unveiled four immune-molecular subtypes, each exhibiting distinct clinical outcomes and molecular characteristics. These subtypes include luminal CD4+ Thigh, which demonstrated benefits from both immunotherapy and chemotherapy; luminal CD4+ Tlow, characterized by the highest level of fibroblast growth factor receptor 3 (FGFR3) mutation, thus indicating potential responsiveness to FGFR inhibitors; basal CD4+ Thigh, which could benefit from a combination of ICB and chemotherapy; and basal CD4+ Tlow, characterized by an immune suppression microenvironment and likely to benefit from transforming growth factor-ß (TGF-ß) inhibition. This immune-molecular classification offers new possibilities for optimizing therapeutic interventions in MIBC.


Subject(s)
B7-H1 Antigen , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , T-Lymphocytes , CD4-Positive T-Lymphocytes , Muscles , Tumor Microenvironment , Prognosis
5.
Br J Cancer ; 130(5): 852-860, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38212482

ABSTRACT

BACKGROUND: Cyclin-dependent kinase 6 (CDK6) was proved to be an important regulator in the progression of cell cycle and has been a promising therapeutic target in cancer treatment. However, the clinical significance of CDK6 in muscle-invasive bladder cancer (MIBC) remains obscure. Herein, we attempt to explore the clinical relevance of CDK6 and assess the feasibility of the integrative model to predict immune checkpoint blockade (ICB) response. METHODS: This study enrolled 933 patients with muscle-invasive bladder cancer (MIBC) from Zhongshan Hospital (ZSHS), The Cancer Genome Atlas (TCGA), Chemo, IMvigor210 and UC-GENOME cohorts. Kaplan-Meier survival and Cox regression analyses were performed to assess clinical outcomes based on CDK6 expression. RESULTS: High CDK6 expression conferred poor prognosis and superior response to platinum-based chemotherapy but inferior response to ICB in MIBC. Furthermore, the integrative model named response score based on CDK6, PD-L1 and TMB could better predict the response to ICB and chemotherapy. Patients with higher response scores were characterised by inflamed immune microenvironment and genomic instability. CONCLUSIONS: CDK6 expression was correlated with prognosis and therapy response in MIBC. Integration of CDK6, PD-L1 and TMB could better identify patients who were most likely to benefit from ICB and chemotherapy.


Subject(s)
Immune Checkpoint Inhibitors , Urinary Bladder Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/therapeutic use , Platinum/therapeutic use , B7-H1 Antigen , Cyclin-Dependent Kinase 6/genetics , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Muscles/metabolism , Tumor Microenvironment
6.
Am J Hum Genet ; 108(10): 1964-1980, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34547244

ABSTRACT

Congenital diaphragmatic hernia (CDH) is a severe congenital anomaly that is often accompanied by other anomalies. Although the role of genetics in the pathogenesis of CDH has been established, only a small number of disease-associated genes have been identified. To further investigate the genetics of CDH, we analyzed de novo coding variants in 827 proband-parent trios and confirmed an overall significant enrichment of damaging de novo variants, especially in constrained genes. We identified LONP1 (lon peptidase 1, mitochondrial) and ALYREF (Aly/REF export factor) as candidate CDH-associated genes on the basis of de novo variants at a false discovery rate below 0.05. We also performed ultra-rare variant association analyses in 748 affected individuals and 11,220 ancestry-matched population control individuals and identified LONP1 as a risk gene contributing to CDH through both de novo and ultra-rare inherited largely heterozygous variants clustered in the core of the domains and segregating with CDH in affected familial individuals. Approximately 3% of our CDH cohort who are heterozygous with ultra-rare predicted damaging variants in LONP1 have a range of clinical phenotypes, including other anomalies in some individuals and higher mortality and requirement for extracorporeal membrane oxygenation. Mice with lung epithelium-specific deletion of Lonp1 die immediately after birth, most likely because of the observed severe reduction of lung growth, a known contributor to the high mortality in humans. Our findings of both de novo and inherited rare variants in the same gene may have implications in the design and analysis for other genetic studies of congenital anomalies.


Subject(s)
ATP-Dependent Proteases/genetics , ATP-Dependent Proteases/physiology , Craniofacial Abnormalities/genetics , DNA Copy Number Variations , Eye Abnormalities/genetics , Growth Disorders/genetics , Hernias, Diaphragmatic, Congenital/genetics , Hip Dislocation, Congenital/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/physiology , Mutation, Missense , Osteochondrodysplasias/genetics , Tooth Abnormalities/genetics , Animals , Case-Control Studies , Cohort Studies , Craniofacial Abnormalities/pathology , Eye Abnormalities/pathology , Female , Growth Disorders/pathology , Hernias, Diaphragmatic, Congenital/pathology , Hip Dislocation, Congenital/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteochondrodysplasias/pathology , Pedigree , Tooth Abnormalities/pathology
7.
Cancer Immunol Immunother ; 73(7): 121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714579

ABSTRACT

Major histocompatibility complex (MHC) could serve as a potential biomarker for tumor immunotherapy, however, it is not yet known whether MHC could distinguish potential beneficiaries. Single-cell RNA sequencing datasets derived from patients with immunotherapy were collected to elucidate the association between MHC and immunotherapy response. A novel MHCsig was developed and validated using large-scale pan-cancer data, including The Cancer Genome Atlas and immunotherapy cohorts. The therapeutic value of MHCsig was further explored using 17 CRISPR/Cas9 datasets. MHC-related genes were associated with drug resistance and MHCsig was significantly and positively associated with immunotherapy response and total mutational burden. Remarkably, MHCsig significantly enriched 6% top-ranked genes, which were potential therapeutic targets. Moreover, we generated Hub-MHCsig, which was associated with survival and disease-special survival of pan-cancer, especially low-grade glioma. This result was also confirmed in cell lines and in our own clinical cohort. Later low-grade glioma-related Hub-MHCsig was established and the regulatory network was constructed. We provided conclusive clinical evidence regarding the association between MHCsig and immunotherapy response. We developed MHCsig, which could effectively predict the benefits of immunotherapy for multiple tumors. Further exploration of MHCsig revealed some potential therapeutic targets and regulatory networks.


Subject(s)
Immunotherapy , Machine Learning , Major Histocompatibility Complex , Neoplasms , Single-Cell Analysis , Humans , Immunotherapy/methods , Single-Cell Analysis/methods , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/immunology , Major Histocompatibility Complex/genetics , Sequence Analysis, RNA/methods , Biomarkers, Tumor/genetics , Prognosis
8.
Cancer Immunol Immunother ; 73(4): 66, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430246

ABSTRACT

BACKGROUND: Luminal and Basal are the primary intrinsic subtypes of muscle-invasive bladder cancer (MIBC). The presence of CD8+ T cells infiltration holds significant immunological relevance, potentially influencing the efficacy of antitumor responses. This study aims to synergize the influence of molecular subtypes and CD8+ T cells infiltration in MIBC. METHODS: This study included 889 patients with MIBC from Zhongshan Hospital, The Cancer Genome Atlas, IMvigor210 and NCT03179943 cohorts. We classified the patients into four distinct groups, based on the interplay of molecular subtypes and CD8+ T cells and probed into the clinical implications of these subgroups in MIBC. RESULTS: Among patients with Luminal-CD8+Thigh tumors, the confluence of elevated tumor mutational burden and PD-L1 expression correlated with a heightened potential for positive responses to immunotherapy. In contrast, patients featured by Luminal-CD8+Tlow displayed a proclivity for deriving clinical advantages from innovative targeted interventions. The Basal-CD8+Tlow subgroup exhibited the least favorable three-year overall survival outcome, whereas their Basal-CD8+Thigh counterparts exhibited a heightened responsiveness to chemotherapy. CONCLUSIONS: We emphasized the significant role of immune-molecular subtypes in shaping therapeutic approaches for MIBC. This insight establishes a foundation to refine the process of selecting subtype-specific treatments, thereby advancing personalized interventions for patients.


Subject(s)
CD8-Positive T-Lymphocytes , Urinary Bladder Neoplasms , Humans , Prognosis , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Biomarkers, Tumor/genetics , Muscles/pathology
9.
Small ; : e2401059, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775621

ABSTRACT

Nanozymes, as substitutes for natural enzymes, are constructed as cascade catalysis systems for biomedical applications due to their inherent catalytic properties, high stability, tunable physicochemical properties, and environmental responsiveness. Herein, a multifunctional nanozyme is reported to initiate cascade enzymatic reactions specific in acidic environments for resistant Helicobacter pylori (H. pylori) targeting eradication. The cobalt-coated Prussian blue analog based FPB-Co-Ch NPs displays oxidase-, superoxide dismutase-, peroxidase-, and catalase- mimicking activities that trigger • O 2 - ${\mathrm{O}}_2^ - {\bm{\ }}$ and H2O2 to supply O2, thereby killing H. pylori in the stomach. To this end, chitosan is modified on the surface to exert bacterial targeted adhesion and improve the biocompatibility of the composite. In the intestinal environment, the cascade enzymatic activities are significantly inhibited, ensuring the biosafety of the treatment. In vitro, sensitive and resistant strains of H. pylori are cultured and the antibacterial activity is evaluated. In vivo, murine infection models are developed and its success is confirmed by gastric mucosal reculturing, Gram staining, H&E staining, and Giemsa staining. Additionally, the antibacterial capacity, anti-inflammation, repair effects, and biosafety of FPB-Co-Ch NPs are comprehensively investigated. This strategy renders a drug-free approach that specifically targets and kills H. pylori, restoring the damaged gastric mucosa while relieving inflammation.

10.
Chembiochem ; : e202400257, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847484

ABSTRACT

Nitroreductase (NTR) has long been a target of interest for its important role involved in the nitro compounds metabolism. Various probes have been reported for NTR analysis, but rarely able to distinguish the extracellular NTR from intracellular ones. Herein we reported a new NTR sensor, HCyS-NO2, which was a hemicyanine molecule with one nitro and two sulfo groups attached. The nitro group acted as the reporting group to respond NTR reduction. Direct linkage of nitro group into the hemicyanine π conjugate system facilitated the intramolecular electron transfer (IET) process and thus quenched the fluorescence of hemicyanine core. Upon reduction with NTR, the nitro group was rapidly converted into the hydroxylamino and then the amino group, eliminating IET process and thus restoring the fluorescence. The sulfo groups installed significantly increased the hydrophilicity of the molecule, and introduced negative charges at physiological pH, preventing the diffusion into bacteria. Both gram-negative and gram-positive bacteria were able to turn on the fluorescence of HCyS-NO2, without detectable diffusion into cells, providing a useful tool to probe the extracellular reduction process.

11.
Plant Biotechnol J ; 22(5): 1282-1298, 2024 May.
Article in English | MEDLINE | ID: mdl-38124464

ABSTRACT

The repeated emergence of the same trait (convergent evolution) in distinct species is an interesting phenomenon and manifests visibly the power of natural selection. The underlying genetic mechanisms have important implications to understand how the genome evolves under environmental challenges. In cereal crops, both rice and barley can develop black-coloured husk/pericarp due to melanin accumulation. However, it is unclear if this trait shares a common origin. Here, we fine-mapped the barley HvBlp gene controlling the black husk/pericarp trait and confirmed its function by gene silencing. The result was further supported by a yellow husk/pericarp mutant with deletion of the HvBlp gene, derived from gamma ray radiation of the wild-type W1. HvBlp encodes a putative tyrosine transporter homologous to the black husk gene OsBh4 in rice. Surprisingly, synteny and phylogenetic analyses showed that HvBlp and OsBh4 belonged to different lineages resulted from dispersed and tandem duplications, respectively, suggesting that the black husk/pericarp trait has emerged independently. The dispersed duplication (dated at 21.23 MYA) yielding HvBlp occurred exclusively in the common ancestor of Triticeae. HvBlp and OsBh4 displayed converged transcription in husk/pericarp tissues, contributing to the black husk/pericarp trait. Further transcriptome and metabolome data identified critical candidate genes and metabolites related to melanin production in barley. Taken together, our study described a compelling case of convergent evolution resulted from transcriptional convergence after repeated gene duplication, providing valuable genetic insights into phenotypic evolution. The identification of the black husk/pericarp genes in barley also has great potential in breeding for stress-resilient varieties with higher nutritional values.


Subject(s)
Hordeum , Oryza , Hordeum/genetics , Hordeum/metabolism , Oryza/genetics , Oryza/metabolism , Phylogeny , Genes, Plant , Melanins/genetics , Melanins/metabolism , Plant Breeding , Amino Acid Transport Systems/genetics
12.
Mol Hum Reprod ; 30(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38407339

ABSTRACT

The pathogenesis of adenomyosis is closely related to the epithelial-mesenchymal transition and macrophages. MicroRNAs have been extensively investigated in relation to the epithelial-mesenchymal transition in a range of malignancies. However, there is a paucity of research on extracellular vesicles derived from the eutopic endometrium of adenomyosis and their encapsulated microRNAs. In this study, we investigated the role of microRNA-25-3p derived from extracellular vesicles in inducing macrophage polarization and promoting the epithelial-mesenchymal transition in endometrial epithelial cells of patients with adenomyosis and controls. We obtained eutopic endometrial samples and isolated extracellular vesicles from the culture supernatant of primary endometrial cells. Real-time quantitative PCR analysis demonstrated that microRNA-25-3p was highly expressed in extracellular vesicles, as well as in macrophages stimulated by extracellular vesicles from eutopic endometrium of adenomyosis; and macrophages transfected with microRNA-25-3p exhibited elevated levels of M2 markers, while displaying reduced levels of M1 markers. After co-culture with the above polarized macrophages, endometrial epithelial cells expressed higher levels of N-cadherin and Vimentin, and lower protein levels of E-cadherin and Cytokeratin 7. It was revealed that microRNA-25-3p encapsulated in extracellular vesicles from eutopic endometrial cells could induce macrophage polarization toward M2, and the polarized macrophages promote epithelial-mesenchymal transition in epithelial cells. However, in vitro experiments revealed no significant disparity in the migratory capacity of endometrial epithelial cells between the adenomyosis group and the control group. Furthermore, it was observed that microRNA-25-3p-stimulated polarized macrophages also facilitated the epithelial-mesenchymal transition and migration of endometrial epithelial cells within the control group. Thus, the significance of microRNA-25-3p-induced polarized macrophages in promoting the development of adenomyosis is unclear, and macrophage infiltration alone may be adequate for this process. We emphasize the specificity of the local eutopic endometrial microenvironment and postulate its potential significance in the pathogenesis of adenomyosis.


Subject(s)
Adenomyosis , Extracellular Vesicles , MicroRNAs , Female , Humans , Adenomyosis/genetics , Adenomyosis/metabolism , Endometrium/metabolism , Epithelial-Mesenchymal Transition/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Epithelial Cells/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Macrophages/metabolism
13.
Appl Microbiol Biotechnol ; 108(1): 46, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38183474

ABSTRACT

Fecal microbiota transplantation (FMT) has been shown to improve gut dysbiosis in dogs; however, it has not completely been understood in police dogs. This study aimed to investigate the effects of FMT on performance and gut microflora in Kunming police dogs. Twenty Wolf Cyan dogs were randomly assigned to receive physiological saline or fecal suspension at low, medium, or high doses through oral gavage for 14 days. Growth performance, police performance, serum biochemical profiling, and gut microflora were determined 2-week post-FMT. Dogs after FMT treatment were also subjected to an hour road transportation and then were evaluated for serum stress indicators. Overall, FMT enhanced the growth performance and alleviated diarrhea rate in Kunming dogs with the greatest effects occurring in the low dose FMT (KML) group. The improvement of FMT on police performance was also determined. These above alterations were accompanied by changed serum biochemical parameters as indicated by elevated total protein and albumin and reduced total cholesterol and glycerol. Furthermore, the serum stress indicators after road transportation in dog post-FMT significantly decreased. Increased bacterial diversity and modified bacterial composition were found in the feces of dogs receiving FMT. The fecal samples from FMT dogs were characterized by higher abundances of the genera Lactobacillus, Prevotella, and Fusobacterium and lower concentrations of Cetobacterium, Allobaculum, Bifidobacterium, and Streptococcus. The present study supports a potential benefit of FMT on police performance in Kunming dogs. KEY POINTS: • FMT improves the growth performance and reduces diarrhea rates in Kunming police dogs. • FMT alleviates the serum stress profiles after road transportation in Kunming police dogs. • FMT modifies the gut microbiota composition of Kunming police dogs.


Subject(s)
Fecal Microbiota Transplantation , Working Dogs , Dogs , Animals , Feces , Bifidobacterium , Diarrhea
14.
BMC Pregnancy Childbirth ; 24(1): 44, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191339

ABSTRACT

BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP) is an idiopathic disease of pregnancy. Little is known about how it specifically affects pregnancies resulting from in vitro fertilization (IVF). Our aim is to evaluate the impact of IVF on the perinatal outcomes of ICP. METHODS: A retrospective study of 242 patients with intrahepatic cholestasis of pregnancy, comprising 36 conceived through IVF and 206 spontaneous conceptions (SC), enrolled between 2019 and 2021 was carried out. Data were analyzed from the medical archives of the Huazhong University of Science and Technology, Tongji Hospital. RESULTS: Numerical values of transaminases (ALT, alanine aminotransferase; AST, aspartate aminotransferase) and serum total bile acid (TBA) are significantly lower in the IVF group than that in the spontaneous conceived group (p < 0.05). The incidence of gestational diabetes mellitus (GDM) was higher in the IVF group than in SC group (30.6% vs. 16%, p = 0.037). The cesarean section (CS) rates are higher in the IVF group (97.2% vs. 85.4%, p = 0.023). On the other hand, the prevalence of premature rupture of membranes (PROM) was higher in the SC group (10.7%) while none was reported in the IVF-ICP group. Other maternal comorbidities and neonatal outcomes were similar between the two groups. CONCLUSION: ICP patients who underwent IVF are more likely to suffer from GDM. Therefore, monitoring and management of blood glucose should be strengthened during pregnancy. Fortunately, IVF does not seem to worsen the progression or outlook of ICP, so sticking to standard management practices is recommended.


Subject(s)
Diabetes, Gestational , Fetal Membranes, Premature Rupture , Pregnancy , Infant, Newborn , Humans , Female , Cesarean Section , Retrospective Studies , Fertilization in Vitro , Fertilization
15.
Sensors (Basel) ; 24(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38610242

ABSTRACT

Current real-time direction judgment systems are inaccurate and insensitive, as well as limited by the sampling rate of analog-to-digital converters. To address this problem, we propose a dynamic real-time direction judgment system based on an integral dual-frequency laser interferometer and field-programmable gate array technology. The optoelectronic signals resulting from the introduction of a phase subdivision method based on the amplitude resolution of the laser interferometer when measuring displacement are analyzed. The proposed system integrates the optoelectronic signals to increase the accuracy of its direction judgments and ensures these direction judgments are made in real time by dynamically controlling the integration time. Several experiments were conducted to verify the performance of the proposed system. The results show that, compared with current real-time direction judgment systems, the proposed system makes accurate judgements during low-speed motions and can update directions within 0.125 cycles of the phase difference change at different speeds. Moreover, a sweep frequency experiment confirmed the system's ability to effectively judge dynamic directions. The proposed system is capable of accurate and real-time directional judgment during low-speed movements of a table in motion.

16.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612785

ABSTRACT

Trueperella pyogenes can cause various infections in the organs and tissues of different livestock (including pigs, cows, goats, and sheep), including mastitis, endometritis, pneumonia, or abscesses. Moreover, diseases induced by T. pyogenes cause significant economic losses in animal husbandry. In recent large-scale investigations, T. pyogenes has been identified as one of the main pathogens causing endometritis in lactating cows. However, the main treatment for the above-mentioned diseases is still currently antibiotic therapy. Understanding the impact of endometritis associated with T. pyogenes on the fertility of cows can help optimize antibiotic treatment for uterine diseases, thereby strategically concentrating the use of antimicrobials on the most severe cases. Therefore, it is particularly important to continuously monitor the prevalence of T. pyogenes and test its drug resistance. This study compared the uterine microbiota of healthy cows and endometritis cows in different cattle farms, investigated the prevalence of T. pyogenes, evaluated the genetic characteristics and population structure of isolated strains, and determined the virulence genes and drug resistance characteristics of T. pyogenes. An amount of 186 dairy cows were involved in this study and 23 T. pyogenes strains were isolated and identified from the uterine lavage fluid of dairy cows with or without endometritis.


Subject(s)
Endometritis , Female , Humans , Cattle , Animals , Sheep , Swine , Endometritis/veterinary , Lactation , Virulence/genetics , Genotype , Uterus , Goats
17.
Physiol Mol Biol Plants ; 30(5): 687-704, 2024 May.
Article in English | MEDLINE | ID: mdl-38846458

ABSTRACT

Heat shock proteins (HSPs) are known to play a crucial role in the response of plants to environmental stress, particularly heat stress. Nevertheless, the function of HSPs in salt stress tolerance in plants, especially in barley, remains largely unexplored. Here, we aimed to investigate and compare the salt tolerance mechanisms between wild barley EC_S1 and cultivated barley RGT Planet through a comprehensive analysis of physiological parameters and transcriptomic profiles. Results demonstrated that the number of differentially expressed genes (DEGs) in EC_S1 was significantly higher than in RGT Planet, indicating that wild barley gene regulation is more adaptive to salt stress. KEGG enrichment analysis revealed that DEGs were mainly enriched in the processes of photosynthesis, plant hormone signal transduction, and reactive oxygen species metabolism. Furthermore, the application of weighted gene correlation network analysis (WGCNA) enabled the identification of a set of key genes, including small heat shock protein (sHSP), Calmodulin-like proteins (CML), and protein phosphatases 2C (PP2C). Subsequently, a novel sHSP gene, HvHSP16.9 encoding a protein of 16.9 kDa, was cloned from wild barley, and its role in plant response to salt stress was elucidated. In Arabidopsis, overexpression of HvHSP16.9 increased the salt tolerance. Meanwhile, barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) of HvHSP16.9 significantly reduced the salt tolerance in wild barley. Overall, this study offers a new theoretical framework for comprehending the tolerance and adaptation mechanisms of wild barley under salt stress. It provides valuable insights into the salt tolerance function of HSP, and identifies new candidate genes for enhancing cultivated barley varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01455-4.

18.
Plant Biotechnol J ; 21(1): 46-62, 2023 01.
Article in English | MEDLINE | ID: mdl-36054248

ABSTRACT

Divergent selection of populations in contrasting environments leads to functional genomic divergence. However, the genomic architecture underlying heterogeneous genomic differentiation remains poorly understood. Here, we de novo assembled two high-quality wild barley (Hordeum spontaneum K. Koch) genomes and examined genomic differentiation and gene expression patterns under abiotic stress in two populations. These two populations had a shared ancestry and originated in close geographic proximity but experienced different selective pressures due to their contrasting micro-environments. We identified structural variants that may have played significant roles in affecting genes potentially associated with well-differentiated phenotypes such as flowering time and drought response between two wild barley genomes. Among them, a 29-bp insertion into the promoter region formed a cis-regulatory element in the HvWRKY45 gene, which may contribute to enhanced tolerance to drought. A single SNP mutation in the promoter region may influence HvCO5 expression and be putatively linked to local flowering time adaptation. We also revealed significant genomic differentiation between the two populations with ongoing gene flow. Our results indicate that SNPs and small SVs link to genetic differentiation at the gene level through local adaptation and are maintained through divergent selection. In contrast, large chromosome inversions may have shaped the heterogeneous pattern of genomic differentiation along the chromosomes by suppressing chromosome recombination and gene flow. Our research offers novel insights into the genomic basis underlying local adaptation and provides valuable resources for the genetic improvement of cultivated barley.


Subject(s)
Hordeum , Hordeum/genetics , Genomics , Adaptation, Physiological/genetics , Genes, Plant
19.
Mol Hum Reprod ; 29(6)2023 05 31.
Article in English | MEDLINE | ID: mdl-37079746

ABSTRACT

The development of endometriosis is closely linked to macrophages, and the type M1 macrophage has been hypothesized to play an inhibitory role in its progression. Escherichia coli induces macrophage polarization toward M1 in numerous diseases and differs in the reproductive tract of patients with and without endometriosis; however, its specific role in endometriosis development remains unknown. Therefore, in this study, E. coli was selected as a stimulator to induce macrophages, and its effects on the growth of endometriosis lesions in vitro and in vivo were investigated using C57BL/6N female mice and endometrial cells. It was revealed that E. coli inhibited the migration and proliferation of co-cultured endometrial cells by IL-1 in vitro and prevented the growth of lesions and induced macrophage polarization toward M1 in vivo. However, this change was counteracted by C-C motif chemokine receptor 2 inhibitors, suggesting that it was associated with bone marrow-derived macrophages. Overall, the presence of E. coli in the abdominal cavity may be a protective factor for endometriosis.


Subject(s)
Endometriosis , Macrophages, Peritoneal , Mice , Humans , Animals , Female , Escherichia coli , Endometriosis/metabolism , Mice, Inbred C57BL , Signal Transduction , Interleukin-1
20.
Mol Hum Reprod ; 30(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38113413

ABSTRACT

Ferroptosis is an iron-dependent programmed cell death process characterized by the accumulation of lethal oxidative damage. Localized iron overload is a unique clinical phenomenon in ovarian endometriosis (EM). However, the role and mechanism of ferroptosis in the course of ovarian EM remain unclear. Traditionally, autophagy promotes cell survival. However, a growing body of research suggests that autophagy promotes ferroptosis under certain conditions. This study aimed to clarify the status of ferroptosis in ovarian EM and explore the mechanism(s) by which iron overload causes ferroptosis and ectopic endometrial resistance to ferroptosis in human. The results showed increased levels of iron and reactive oxygen species in ectopic endometrial stromal cells (ESCs). Some ferroptosis and autophagy proteins in the ectopic tissues differed from those in the eutopic endometrium. In vitro, iron overload caused decreased cellular activity, increased lipid peroxidation levels, and mitochondrial morphological changes, whereas ferroptosis inhibitors alleviated these phenomena, illustrating activated ferroptosis. Iron overload increased autophagy, and ferroptosis caused by iron overload was inhibited by autophagy inhibitors, indicating that ferroptosis caused by iron overload was autophagy-dependent. We also confirmed the effect of iron overload and autophagy on lesion growth in vivo by constructing a mouse EM model; the results were consistent with those of the in vitro experiments of human tissue and endometrial stomal cells. However, ectopic lesions in patients can resist ferroptosis caused by iron overload, which can promote cystine/glutamate transporter hyperexpression by highly expressing activating transcription factor 4 (ATF4). In summary, local iron overload in ovarian EM can activate autophagy-related ferroptosis in ESCs, and ectopic lesions grow in a high-iron environment via ATF4-xCT while resisting ferroptosis. The effects of iron overload on other cells in the EM environment require further study. This study deepens our understanding of the role of ferroptosis in ovarian EM.


Subject(s)
Endometriosis , Ferroptosis , Iron Overload , Female , Animals , Mice , Humans , Activating Transcription Factor 4/metabolism , Endometriosis/metabolism , Ferroptosis/genetics , Iron Overload/complications , Iron Overload/metabolism , Iron Overload/pathology , Iron/metabolism , Autophagy/genetics , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL