Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Cell ; 165(3): 690-703, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27062925

ABSTRACT

Pili are proteinaceous polymers of linked pilins that protrude from the cell surface of many bacteria and often mediate adherence and virulence. We investigated a set of 20 Bacteroidia pilins from the human microbiome whose structures and mechanism of assembly were unknown. Crystal structures and biochemical data revealed a diverse protein superfamily with a common Greek-key ß sandwich fold with two transthyretin-like repeats that polymerize into a pilus through a strand-exchange mechanism. The assembly mechanism of the central, structural pilins involves proteinase-assisted removal of their N-terminal ß strand, creating an extended hydrophobic groove that binds the C-terminal donor strands of the incoming pilin. Accessory pilins at the tip and base have unique structural features specific to their location, allowing initiation or termination of the assembly. The Bacteroidia pilus, therefore, has a biogenesis mechanism that is distinct from other known pili and likely represents a different type of bacterial pilus.


Subject(s)
Fimbriae Proteins/chemistry , Fimbriae, Bacterial , Gastrointestinal Microbiome , Amino Acid Sequence , Crystallography, X-Ray , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Humans , Lipoproteins/chemistry , Lipoproteins/metabolism , Models, Molecular , Molecular Sequence Data , Sequence Alignment
2.
Cell ; 161(4): 833-44, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25913193

ABSTRACT

Angiotensin II type 1 receptor (AT(1)R) is a G protein-coupled receptor that serves as a primary regulator for blood pressure maintenance. Although several anti-hypertensive drugs have been developed as AT(1)R blockers (ARBs), the structural basis for AT(1)R ligand-binding and regulation has remained elusive, mostly due to the difficulties of growing high-quality crystals for structure determination using synchrotron radiation. By applying the recently developed method of serial femtosecond crystallography at an X-ray free-electron laser, we successfully determined the room-temperature crystal structure of the human AT(1)R in complex with its selective antagonist ZD7155 at 2.9-Å resolution. The AT(1)R-ZD7155 complex structure revealed key structural features of AT(1)R and critical interactions for ZD7155 binding. Docking simulations of the clinically used ARBs into the AT(1)R structure further elucidated both the common and distinct binding modes for these anti-hypertensive drugs. Our results thereby provide fundamental insights into AT(1)R structure-function relationship and structure-based drug design.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Receptor, Angiotensin, Type 1/chemistry , Amino Acid Sequence , Angiotensin II Type 1 Receptor Blockers/chemistry , Crystallography, X-Ray , Humans , Molecular Sequence Data , Mutagenesis , Naphthyridines/chemistry , Naphthyridines/pharmacology , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Sequence Alignment
3.
J Biol Chem ; 296: 100519, 2021.
Article in English | MEDLINE | ID: mdl-33684445

ABSTRACT

Endo-ß-N-acetylmuramidases, commonly known as lysozymes, are well-characterized antimicrobial enzymes that catalyze an endo-lytic cleavage of peptidoglycan; i.e., they hydrolyze the ß-1,4-glycosidic bonds connecting N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc). In contrast, little is known about exo-ß-N-acetylmuramidases, which catalyze an exo-lytic cleavage of ß-1,4-MurNAc entities from the non-reducing ends of peptidoglycan chains. Such an enzyme was identified earlier in the bacterium Bacillus subtilis, but the corresponding gene has remained unknown so far. We now report that ybbC of B. subtilis, renamed namZ, encodes the reported exo-ß-N-acetylmuramidase. A ΔnamZ mutant accumulated specific cell wall fragments and showed growth defects under starvation conditions, indicating a role of NamZ in cell wall turnover and recycling. Recombinant NamZ protein specifically hydrolyzed the artificial substrate para-nitrophenyl ß-MurNAc and the peptidoglycan-derived disaccharide MurNAc-ß-1,4-GlcNAc. Together with the exo-ß-N-acetylglucosaminidase NagZ and the exo-muramoyl-l-alanine amidase AmiE, NamZ degraded intact peptidoglycan by sequential hydrolysis from the non-reducing ends. A structure model of NamZ, built on the basis of two crystal structures of putative orthologs from Bacteroides fragilis, revealed a two-domain structure including a Rossmann-fold-like domain that constitutes a unique glycosidase fold. Thus, NamZ, a member of the DUF1343 protein family of unknown function, is now classified as the founding member of a new family of glycosidases (CAZy GH171; www.cazy.org/GH171.html). NamZ-like peptidoglycan hexosaminidases are mainly present in the phylum Bacteroidetes and less frequently found in individual genomes within Firmicutes (Bacilli, Clostridia), Actinobacteria, and γ-proteobacteria.


Subject(s)
Acetylglucosamine/metabolism , Bacillus subtilis/enzymology , Glycoside Hydrolases/metabolism , Muramic Acids/metabolism , Peptidoglycan/metabolism , Crystallography, X-Ray , Glycoside Hydrolases/chemistry , Hydrolysis , Protein Conformation
4.
Nat Chem Biol ; 15(12): 1199-1205, 2019 12.
Article in English | MEDLINE | ID: mdl-31659318

ABSTRACT

The CB1 receptor mediates the central nervous system response to cannabinoids, and is a drug target for pain, anxiety and seizures. CB1 also responds to allosteric modulators, which influence cannabinoid binding and efficacy. To understand the mechanism of these compounds, we solved the crystal structure of CB1 with the negative allosteric modulator (NAM) ORG27569 and the agonist CP55940. The structure reveals that the NAM binds to an extrahelical site within the inner leaflet of the membrane, which overlaps with a conserved site of cholesterol interaction in many G protein-coupled receptors (GPCRs). The ternary structure with ORG27569 and CP55940 captures an intermediate state of the receptor, in which aromatic residues at the base of the agonist-binding pocket adopt an inactive conformation despite the large contraction of the orthosteric pocket. The structure illustrates a potential strategy for drug modulation of CB1 and other class A GPCRs.


Subject(s)
Receptor, Cannabinoid, CB1/metabolism , Allosteric Regulation , Crystallization , Cyclohexanols/pharmacology , Humans , Protein Binding , Receptor, Cannabinoid, CB1/agonists
5.
Nature ; 523(7562): 561-7, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26200343

ABSTRACT

G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.


Subject(s)
Arrestin/chemistry , Arrestin/metabolism , Rhodopsin/chemistry , Rhodopsin/metabolism , Animals , Binding Sites , Crystallography, X-Ray , Disulfides/chemistry , Disulfides/metabolism , Humans , Lasers , Mice , Models, Molecular , Multiprotein Complexes/biosynthesis , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding , Reproducibility of Results , Signal Transduction , X-Rays
6.
Proc Natl Acad Sci U S A ; 115(52): 13264-13269, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30538204

ABSTRACT

The NK1 tachykinin G-protein-coupled receptor (GPCR) binds substance P, the first neuropeptide to be discovered in mammals. Through activation of NK1R, substance P modulates a wide variety of physiological and disease processes including nociception, inflammation, and depression. Human NK1R (hNK1R) modulators have shown promise in clinical trials for migraine, depression, and emesis. However, the only currently approved drugs targeting hNK1R are inhibitors for chemotherapy-induced nausea and vomiting (CINV). To better understand the molecular basis of ligand recognition and selectivity, we solved the crystal structure of hNK1R bound to the inhibitor L760735, a close analog of the drug aprepitant. Our crystal structure reveals the basis for antagonist interaction in the deep and narrow orthosteric pocket of the receptor. We used our structure as a template for computational docking and molecular-dynamics simulations to dissect the energetic importance of binding pocket interactions and model the binding of aprepitant. The structure of hNK1R is a valuable tool in the further development of tachykinin receptor modulators for multiple clinical applications.


Subject(s)
Morpholines/metabolism , Receptors, Neurokinin-1/chemistry , Receptors, Neurokinin-1/metabolism , Substance P/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Dynamics Simulation , Morpholines/chemistry , Protein Binding , Protein Conformation , Substance P/chemistry
7.
BMC Biochem ; 20(1): 1, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30665347

ABSTRACT

BACKGROUND: Many bacteria and certain eukaryotes utilize multi-step His-to-Asp phosphorelays for adaptive responses to their extracellular environments. Histidine phosphotransfer (HPt) proteins function as key components of these pathways. HPt proteins are genetically diverse, but share a common tertiary fold with conserved residues near the active site. A surface-exposed glycine at the H + 4 position relative to the phosphorylatable histidine is found in a significant number of annotated HPt protein sequences. Previous reports demonstrated that substitutions at this position result in diminished phosphotransfer activity between HPt proteins and their cognate signaling partners. RESULTS: We report the analysis of partner binding interactions and phosphotransfer activity of the prototypical HPt protein Ypd1 from Saccharomyces cerevisiae using a set of H + 4 (G68) substituted proteins. Substitutions at this position with large, hydrophobic, or charged amino acids nearly abolished phospho-acceptance from the receiver domain of its upstream signaling partner, Sln1 (Sln1-R1). An in vitro binding assay indicated that G68 substitutions caused only modest decreases in affinity between Ypd1 and Sln1-R1, and these differences did not appear to be large enough to account for the observed decrease in phosphotransfer activity. The crystal structure of one of these H + 4 mutants, Ypd1-G68Q, which exhibited a diminished ability to participate in phosphotransfer, shows a similar overall structure to that of wild-type. Molecular modelling suggests that the highly conserved active site residues within the receiver domain of Sln1 must undergo rearrangement to accommodate larger H + 4 substitutions in Ypd1. CONCLUSIONS: Phosphotransfer reactions require precise arrangement of active site elements to align the donor-acceptor atoms and stabilize the transition state during the reaction. Any changes likely result in an inability to form a viable transition state during phosphotransfer. Our data suggest that the high degree of evolutionary conservation of residues with small side chains at the H + 4 position in HPt proteins is required for optimal activity and that the presence of larger residues at the H + 4 position would cause alterations in the positioning of active site residues in the partner response regulator.


Subject(s)
Histidine/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Phosphotransferases/metabolism , Protein Kinases/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Catalytic Domain , Conserved Sequence , Intracellular Signaling Peptides and Proteins/chemistry , Models, Molecular , Protein Kinases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
8.
Nature ; 499(7459): 444-9, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23863937

ABSTRACT

Binding of the glucagon peptide to the glucagon receptor (GCGR) triggers the release of glucose from the liver during fasting; thus GCGR plays an important role in glucose homeostasis. Here we report the crystal structure of the seven transmembrane helical domain of human GCGR at 3.4 Å resolution, complemented by extensive site-specific mutagenesis, and a hybrid model of glucagon bound to GCGR to understand the molecular recognition of the receptor for its native ligand. Beyond the shared seven transmembrane fold, the GCGR transmembrane domain deviates from class A G-protein-coupled receptors with a large ligand-binding pocket and the first transmembrane helix having a 'stalk' region that extends three alpha-helical turns above the plane of the membrane. The stalk positions the extracellular domain (~12 kilodaltons) relative to the membrane to form the glucagon-binding site that captures the peptide and facilitates the insertion of glucagon's amino terminus into the seven transmembrane domain.


Subject(s)
Receptors, Glucagon/chemistry , Receptors, Glucagon/classification , Amino Acid Sequence , Binding Sites , Cell Membrane/metabolism , Crystallography, X-Ray , Glucagon/chemistry , Glucagon/metabolism , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Protein Structure, Tertiary , Receptors, CXCR4/chemistry , Receptors, CXCR4/classification , Receptors, Glucagon/genetics , Receptors, Glucagon/metabolism
9.
PLoS Biol ; 12(10): e1001979, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25349992

ABSTRACT

One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK∼P over DivK, which is modulated by an allosteric intramolecular interaction between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.


Subject(s)
Bacterial Proteins/metabolism , Caulobacter crescentus/metabolism , Protein Kinases/metabolism , Cell Cycle , Dimerization , Histidine Kinase , Protein Binding , Protein Structure, Tertiary
10.
Proteins ; 84(3): 316-31, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26650892

ABSTRACT

Conversion of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) to the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) is performed by a few species of intestinal bacteria in the genus Clostridium through a multistep biochemical pathway that removes a 7α-hydroxyl group. The rate-determining enzyme in this pathway is bile acid 7α-dehydratase (baiE). In this study, crystal structures of apo-BaiE and its putative product-bound [3-oxo-Δ(4,6) -lithocholyl-Coenzyme A (CoA)] complex are reported. BaiE is a trimer with a twisted α + ß barrel fold with similarity to the Nuclear Transport Factor 2 (NTF2) superfamily. Tyr30, Asp35, and His83 form a catalytic triad that is conserved across this family. Site-directed mutagenesis of BaiE from Clostridium scindens VPI 12708 confirm that these residues are essential for catalysis and also the importance of other conserved residues, Tyr54 and Arg146, which are involved in substrate binding and affect catalytic turnover. Steady-state kinetic studies reveal that the BaiE homologs are able to turn over 3-oxo-Δ(4) -bile acid and CoA-conjugated 3-oxo-Δ(4) -bile acid substrates with comparable efficiency questioning the role of CoA-conjugation in the bile acid metabolism pathway.


Subject(s)
Bacterial Proteins/chemistry , Cholic Acids/chemistry , Clostridium/enzymology , Hydro-Lyases/chemistry , Amino Acid Substitution , Bacterial Proteins/genetics , Catalytic Domain , Cholic Acids/biosynthesis , Crystallography, X-Ray , Humans , Hydro-Lyases/genetics , Hydrogen Bonding , Hydroxylation , Kinetics , Molecular Docking Simulation , Mutagenesis, Site-Directed , Protein Binding , Protein Structure, Secondary , Structural Homology, Protein
11.
BMC Bioinformatics ; 15: 196, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24938123

ABSTRACT

BACKGROUND: Gut microbiome metagenomics has revealed many protein families and domains found largely or exclusively in that environment. Proteins containing the GxGYxYP domain are over-represented in the gut microbiota, and are found in Polysaccharide Utilization Loci in the gut symbiont Bacteroides thetaiotaomicron, suggesting their involvement in polysaccharide metabolism, but little else is known of the function of this domain. RESULTS: Genomic context and domain architecture analyses support a role for the GxGYxYP domain in carbohydrate metabolism. Sparse occurrences in eukaryotes are the result of lateral gene transfer. The structure of the GxGYxYP domain-containing protein encoded by the BT2193 locus reveals two structural domains, the first composed of three divergent repeats with no recognisable homology to previously solved structures, the second a more familiar seven-stranded ß/α barrel. Structure-based analyses including conservation mapping localise a presumed functional site to a cleft between the two domains of BT2193. Matching to a catalytic site template from a GH9 cellulase and other analyses point to a putative catalytic triad composed of Glu272, Asp331 and Asp333. CONCLUSIONS: We suggest that GxGYxYP-containing proteins constitute a novel glycoside hydrolase family of as yet unknown specificity.


Subject(s)
Glycoside Hydrolases/chemistry , Bacteroides/chemistry , Bacteroides/enzymology , Biocatalysis , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Models, Molecular , Phylogeny , Protein Structure, Tertiary , Structural Homology, Protein
12.
Proteins ; 82(1): 164-70, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23852666

ABSTRACT

PF10014 is a novel family of 2-oxyglutarate-Fe(2+) -dependent dioxygenases that are involved in biosynthesis of antibiotics and regulation of biofilm formation, likely by catalyzing hydroxylation of free amino acids or other related ligands. The crystal structure of a PF10014 member from Methylibium petroleiphilum at 1.9 Å resolution shows strong structural similarity to cupin dioxygenases in overall fold and active site, despite very remote homology. However, one of the ß-strands of the cupin catalytic core is replaced by a loop that displays conformational isomerism that likely regulates the active site.


Subject(s)
Catalytic Domain/genetics , Comamonadaceae/enzymology , Conserved Sequence/genetics , Dioxygenases/chemistry , Models, Molecular , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Crystallization , DNA Primers/genetics , Dioxygenases/genetics , Molecular Sequence Data , Sequence Analysis, DNA
13.
BMC Bioinformatics ; 14: 265, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-24004689

ABSTRACT

BACKGROUND: Every genome contains a large number of uncharacterized proteins that may encode entirely novel biological systems. Many of these uncharacterized proteins fall into related sequence families. By applying sequence and structural analysis we hope to provide insight into novel biology. RESULTS: We analyze a previously uncharacterized Pfam protein family called DUF4424 [Pfam:PF14415]. The recently solved three-dimensional structure of the protein lpg2210 from Legionella pneumophila provides the first structural information pertaining to this family. This protein additionally includes the first representative structure of another Pfam family called the YARHG domain [Pfam:PF13308]. The Pfam family DUF4424 adopts a 19-stranded beta-sandwich fold that shows similarity to the N-terminal domain of leukotriene A-4 hydrolase. The YARHG domain forms an all-helical domain at the C-terminus. Structure analysis allows us to recognize distant similarities between the DUF4424 domain and individual domains of M1 aminopeptidases and tricorn proteases, which form massive proteasome-like capsids in both archaea and bacteria. CONCLUSIONS: Based on our analyses we hypothesize that the DUF4424 domain may have a role in forming large, multi-component enzyme complexes. We suggest that the YARGH domain may play a role in binding a moiety in proximity with peptidoglycan, such as a hydrophobic outer membrane lipid or lipopolysaccharide.


Subject(s)
Bacterial Proteins/chemistry , Databases, Protein , Legionella pneumophila/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Legionella pneumophila/genetics , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment , Sequence Analysis, Protein
14.
Mol Microbiol ; 83(4): 694-711, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22239271

ABSTRACT

Aggregatibacter actinomycetemcomitans establishes a tenacious biofilm that is important for periodontal disease. The tad locus encodes the components for the secretion and biogenesis of Flp pili, which are necessary for the biofilm to form. TadZ is required, but its function has been elusive. We show that tadZ genes belong to the parA/minD superfamily of genes and that TadZ from A. actinomycetemcomitans (AaTadZ) forms a polar focus in the cell independent of any other tad locus protein. Mutations indicate that regions in AaTadZ are required for polar localization and biofilm formation. We show that AaTadZ dimerizes and that all TadZ proteins are predicted to have a Walker-like A box. However, they all lack the conserved lysine at position 6 (K6) present in the canonical Walker-like A box. When the alanine residue (A6) in the atypical Walker-like A box of AaTadZ was converted to lysine, the mutant protein remained able to dimerize and localize, but it was unable to allow the formation of a biofilm. Another essential biofilm protein, the ATPase (AaTadA), also localizes to a pole. However, its correct localization depends on the presence of AaTadZ. We suggest that the TadZ proteins mediate polar localization of the Tad secretion apparatus.


Subject(s)
Bacterial Proteins/analysis , Pasteurellaceae/chemistry , Amino Acid Motifs , Bacterial Proteins/genetics , Biofilms/growth & development , DNA Mutational Analysis , Microscopy, Fluorescence , Pasteurellaceae/metabolism , Pasteurellaceae/physiology , Phylogeny , Protein Multimerization , Protein Transport , Sequence Homology, Amino Acid
15.
Mol Microbiol ; 83(4): 712-27, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22211578

ABSTRACT

The tad (tight adherence) locus encodes a protein translocation system that produces a novel variant of type IV pili. The pilus assembly protein TadZ (called CpaE in Caulobacter crescentus) is ubiquitous in tad loci, but is absent in other type IV pilus biogenesis systems. The crystal structure of TadZ from Eubacterium rectale (ErTadZ), in complex with ATP and Mg(2+) , was determined to 2.1 Å resolution. ErTadZ contains an atypical ATPase domain with a variant of a deviant Walker-A motif that retains ATP binding capacity while displaying only low intrinsic ATPase activity. The bound ATP plays an important role in dimerization of ErTadZ. The N-terminal atypical receiver domain resembles the canonical receiver domain of response regulators, but has a degenerate, stripped-down 'active site'. Homology modelling of the N-terminal atypical receiver domain of CpaE indicates that it has a conserved protein-protein binding surface similar to that of the polar localization module of the social mobility protein FrzS, suggesting a similar function. Our structural results also suggest that TadZ localizes to the pole through the atypical receiver domain during an early stage of pili biogenesis, and functions as a hub for recruiting other pili components, thus providing insights into the Tad pilus assembly process.


Subject(s)
Bacterial Proteins/chemistry , Eubacterium/genetics , Membrane Transport Proteins/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , Crystallography, X-Ray , Fimbriae, Bacterial/metabolism , Magnesium/chemistry , Magnesium/metabolism , Membrane Transport Proteins/metabolism , Models, Molecular , Protein Binding , Protein Conformation , Protein Multimerization , Protein Structure, Tertiary
16.
Eur J Pharmacol ; 954: 175849, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37331684

ABSTRACT

Short-chain acyl-CoA dehydrogenase (SCAD), the rate-limiting enzyme for fatty acid ß-oxidation, has a negative regulatory effect on pathological cardiac hypertrophy and fibrosis. FAD, a coenzyme of SCAD, participates in the electron transfer of SCAD-catalyzed fatty acid ß-oxidation, which plays a crucial role in maintaining the balance of myocardial energy metabolism. Insufficient riboflavin intake can lead to symptoms similar to short-chain acyl-CoA dehydrogenase (SCAD) deficiency or flavin adenine dinucleotide (FAD) gene abnormality, which can be alleviated by riboflavin supplementation. However, whether riboflavin can inhibit pathological cardiac hypertrophy and fibrosis remains unclear. Therefore, we observed the effect of riboflavin on pathological cardiac hypertrophy and fibrosis. In vitro experiments, riboflavin increased SCAD expression and the content of ATP, decreased the free fatty acids content and improved PE-induced cardiomyocytes hypertrophy and AngⅡ-induced cardiac fibroblasts proliferation by increasing the content of FAD, which were attenuated by knocking down the expression of SCAD using small interfering RNA. In vivo experiments, riboflavin significantly increased the expression of SCAD and the energy metabolism of the heart to improve TAC induced pathological myocardial hypertrophy and fibrosis in mice. The results demonstrate that riboflavin improves pathological cardiac hypertrophy and fibrosis by increasing the content of FAD to activate SCAD, which may be a new strategy for treating pathological cardiac hypertrophy and fibrosis.


Subject(s)
Butyryl-CoA Dehydrogenase , Flavin-Adenine Dinucleotide , Animals , Mice , Butyryl-CoA Dehydrogenase/genetics , Butyryl-CoA Dehydrogenase/metabolism , Flavin-Adenine Dinucleotide/pharmacology , Riboflavin/pharmacology , Cardiomegaly/pathology , Fatty Acids, Nonesterified , Fibrosis
17.
J Hypertens ; 41(5): 775-793, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36883465

ABSTRACT

OBJECTIVES: Short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme in the fatty acid oxidation process, is not only involved in ATP synthesis but also regulates the production of mitochondrial reactive oxygen species (ROS) and nitric oxide synthesis. The purpose of this study was to investigate the possible role of SCAD in hypertension-associated vascular remodelling. METHODS: In-vivo experiments were performed on spontaneously hypertensive rats (SHRs, ages of 4 weeks to 20 months) and SCAD knockout mice. The aorta sections of hypertensive patients were used for measurement of SCAD expression. In-vitro experiments with t-butylhydroperoxide (tBHP), SCAD siRNA, adenovirus-SCAD (MOI 90) or shear stress (4, 15 dynes/cm 2 ) were performed using human umbilical vein endothelial cells (HUVECs). RESULTS: Compared with age-matched Wistar rats, aortic SCAD expression decreased gradually in SHRs with age. In addition, aerobic exercise training for 8 weeks could significantly increase SCAD expression and enzyme activity in the aortas of SHRs while decreasing vascular remodelling in SHRs. SCAD knockout mice also exhibited aggravated vascular remodelling and cardiovascular dysfunction. Likewise, SCAD expression was also decreased in tBHP-induced endothelial cell apoptosis models and the aortas of hypertensive patients. SCAD siRNA caused HUVEC apoptosis in vitro , whereas adenovirus-mediated SCAD overexpression (Ad-SCAD) protected against HUVEC apoptosis. Furthermore, SCAD expression was decreased in HUVECs exposed to low shear stress (4 dynes/cm 2 ) and increased in HUVECs exposed to 15 dynes/cm 2 compared with those under static conditions. CONCLUSION: SCAD is a negative regulator of vascular remodelling and may represent a novel therapeutic target for vascular remodelling.


Subject(s)
Butyryl-CoA Dehydrogenase , Hypertension , Rats , Animals , Mice , Humans , Infant, Newborn , Butyryl-CoA Dehydrogenase/genetics , Butyryl-CoA Dehydrogenase/metabolism , Vascular Remodeling , Rats, Inbred SHR , Rats, Wistar , Human Umbilical Vein Endothelial Cells/metabolism , RNA, Small Interfering/metabolism , Mice, Knockout
18.
Br J Pharmacol ; 180(23): 3024-3044, 2023 12.
Article in English | MEDLINE | ID: mdl-37377111

ABSTRACT

BACKGROUND AND PURPOSE: Our recent studies have shown that flavin adenine dinucleotide (FAD) exerts cardiovascular protective effects by supplementing short-chain acyl-CoA dehydrogenase (SCAD). The current study aimed to elucidate whether riboflavin (the precursor of FAD) could improve heart failure via activating SCAD and the DJ-1-Keap1-Nrf2 signalling pathway. EXPERIMENTAL APPROACH: Riboflavin treatment was given to the mouse transverse aortic constriction (TAC)-induced heart failure model. Cardiac structure and function, energy metabolism and apoptosis index were assessed, and relevant signalling proteins were analysed. The mechanisms underlying the cardioprotection by riboflavin were analysed in the cell apoptosis model induced by tert-butyl hydroperoxide (tBHP). KEY RESULTS: In vivo, riboflavin ameliorated myocardial fibrosis and energy metabolism, improved cardiac dysfunction and inhibited oxidative stress and cardiomyocyte apoptosis in TAC-induced heart failure. In vitro, riboflavin ameliorated cell apoptosis in H9C2 cardiomyocytes by decreasing reactive oxygen species (ROS). At the molecular level, riboflavin significantly restored FAD content, SCAD expression and enzymatic activity, activated DJ-1 and inhibited the Keap1-Nrf2/HO1 signalling pathway in vivo and in vitro. SCAD knockdown exaggerated the tBHP-induced DJ-1 decrease and Keap1-Nrf2/HO1 signalling pathway activation in H9C2 cardiomyocytes. The knockdown of SCAD abolished the anti-apoptotic effects of riboflavin on H9C2 cardiomyocytes. DJ-1 knockdown hindered SCAD overexpression anti-apoptotic effects and regulation on Keap1-Nrf2/HO1 signalling pathway in H9C2 cardiomyocytes. CONCLUSIONS AND IMPLICATIONS: Riboflavin exerts cardioprotective effects on heart failure by improving oxidative stress and cardiomyocyte apoptosis via FAD to stimulate SCAD and then activates the DJ-1-Keap1-Nrf2 signalling pathway.


Subject(s)
Butyryl-CoA Dehydrogenase , Heart Failure , Animals , Mice , Butyryl-CoA Dehydrogenase/metabolism , NF-E2-Related Factor 2/metabolism , Flavin-Adenine Dinucleotide/metabolism , Flavin-Adenine Dinucleotide/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Heart Failure/drug therapy , Heart Failure/metabolism , Oxidative Stress , Apoptosis , Myocytes, Cardiac/metabolism
19.
J Bacteriol ; 194(11): 2987-99, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22467785

ABSTRACT

MtfA of Escherichia coli (formerly YeeI) was previously identified as a regulator of the phosphoenolpyruvate (PEP)-dependent:glucose phosphotransferase system. MtfA homolog proteins are highly conserved, especially among beta- and gammaproteobacteria. We determined the crystal structures of the full-length MtfA apoenzyme from Klebsiella pneumoniae and its complex with zinc (holoenzyme) at 2.2 and 1.95 Å, respectively. MtfA contains a conserved H(149)E(150)XXH(153)+E(212)+Y(205) metallopeptidase motif. The presence of zinc in the active site induces significant conformational changes in the region around Tyr205 compared to the conformation of the apoenzyme. Additionally, the zinc-bound MtfA structure is in a self-inhibitory conformation where a region that was disordered in the unliganded structure is now observed in the active site and a nonproductive state of the enzyme is formed. MtfA is related to the catalytic domain of the anthrax lethal factor and the Mop protein involved in the virulence of Vibrio cholerae, with conservation in both overall structure and in the residues around the active site. These results clearly provide support for MtfA as a prototypical zinc metallopeptidase (gluzincin clan).


Subject(s)
Antigens, Bacterial/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Toxins/chemistry , Klebsiella pneumoniae/enzymology , Metalloproteases/chemistry , Metalloproteases/metabolism , Zinc/metabolism , Amino Acid Motifs , Amino Acid Sequence , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Catalytic Domain , Crystallography, X-Ray , Klebsiella pneumoniae/chemistry , Klebsiella pneumoniae/genetics , Metalloendopeptidases/chemistry , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Metalloproteases/genetics , Models, Molecular , Molecular Sequence Data , Protein Binding , Sequence Alignment
20.
Proteins ; 80(6): 1545-59, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22411095

ABSTRACT

TM0077 from Thermotoga maritima is a member of the carbohydrate esterase family 7 and is active on a variety of acetylated compounds, including cephalosporin C. TM0077 esterase activity is confined to short-chain acyl esters (C2-C3), and is optimal around 100°C and pH 7.5. The positional specificity of TM0077 was investigated using 4-nitrophenyl-ß-D-xylopyranoside monoacetates as substrates in a ß-xylosidase-coupled assay. TM0077 hydrolyzes acetate at positions 2, 3, and 4 with equal efficiency. No activity was detected on xylan or acetylated xylan, which implies that TM0077 is an acetyl esterase and not an acetyl xylan esterase as currently annotated. Selenomethionine-substituted and native structures of TM0077 were determined at 2.1 and 2.5 Å resolution, respectively, revealing a classic α/ß-hydrolase fold. TM0077 assembles into a doughnut-shaped hexamer with small tunnels on either side leading to an inner cavity, which contains the six catalytic centers. Structures of TM0077 with covalently bound phenylmethylsulfonyl fluoride and paraoxon were determined to 2.4 and 2.1 Å, respectively, and confirmed that both inhibitors bind covalently to the catalytic serine (Ser188). Upon binding of inhibitor, the catalytic serine adopts an altered conformation, as observed in other esterase and lipases, and supports a previously proposed catalytic mechanism in which Ser hydroxyl rotation prevents reversal of the reaction and allows access of a water molecule for completion of the reaction.


Subject(s)
Acetylesterase/chemistry , Thermotoga maritima/enzymology , Acetylesterase/antagonists & inhibitors , Acetylesterase/metabolism , Catalytic Domain , Computer Simulation , Crystallography, X-Ray , Enzyme Stability , Hot Temperature , Hydrogen-Ion Concentration , Models, Molecular , Protein Conformation , Reproducibility of Results , Serine/chemistry , Serine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL