Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Angew Chem Int Ed Engl ; 63(15): e202400765, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38349119

ABSTRACT

Metal single-atom catalysts represent one of the most promising non-noble metal catalysts for the oxygen reduction reaction (ORR). However, they still suffer from insufficient activity and, particularly, durability for practical applications. Leveraging density functional theory (DFT) and machine learning (ML), we unravel an unexpected collective effect between FeN4OH sites, CeN4OH motifs, Fe nanoparticles (NPs), and Fe-CeO2 NPs. The collective effect comprises differently-weighted electronic and geometric interactions, whitch results in significantly enhanced ORR activity for FeN4OH active sites with a half-wave potential (E1/2) of 0.948 V versus the reversible hydrogen electrode (VRHE) in alkaline, relative to a commercial Pt/C (E1/2, 0.851 VRHE). Meanwhile, this collective effect endows the shortened Fe-N bonds and the remarkable durability with negligible activity loss after 50,000 potential cycles. The ML was used to understand the intricate geometric and electronic interactions in collective effect and reveal the intrinsic descriptors to account for the enhanced ORR performance. The universality of collective effect was demonstrated effective for the Co, Ni, Cu, Cr, and Mn-based multicomponent ensembles. These results confirm the importance of collective effect to simultaneously improve catalytic activity and durability.

2.
J Nanobiotechnology ; 20(1): 150, 2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35305656

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a highly prevalent human degenerative joint disorder that has long plagued patients. Glucocorticoid injection into the intra-articular (IA) cavity provides potential short-term analgesia and anti-inflammatory effects, but long-term IA injections cause loss of cartilage. Synovial mesenchymal stem cells (MSCs) reportedly promote cartilage proliferation and increase cartilage content. METHODS: CD90+ MCS-derived micro-vesicle (CD90@MV)-coated nanoparticle (CD90@NP) was developed. CD90+ MCSs were extracted from human synovial tissue. Cytochalasin B (CB) relaxed the interaction between the cytoskeleton and the cell membranes of the CD90+ MCSs, stimulating CD90@MV secretion. Poly (lactic-co-glycolic acid) (PLGA) nanoparticle was coated with CD90@MV, and a model glucocorticoid, triamcinolone acetonide (TA), was encapsulated in the CD90@NP (T-CD90@NP). The chondroprotective effect of T-CD90@NP was validated in rabbit and rat OA models. RESULTS: The CD90@MV membrane proteins were similar to that of CD90+ MCSs, indicating that CD90@MV bio-activity was similar to the cartilage proliferation-inducing CD90+ MCSs. CD90@NP binding to injured primary cartilage cells was significantly stronger than to erythrocyte membrane-coated nanoparticles (RNP). In the rabbit OA model, the long-term IA treatment with T-CD90@NP showed significantly enhanced repair of damaged cartilage compared to TA and CD90+ MCS treatments. In the rat OA model, the short-term IA treatment with T-CD90@NP showed effective anti-inflammatory ability similar to that of TA treatment. Moreover, the long-term IA treatment with T-CD90@NP induced cartilage to restart the cell cycle and reduced cartilage apoptosis. T-CD90@NP promoted the regeneration of chondrocytes, reduced apoptosis via the FOXO pathway, and influenced type 2 macrophage polarization to regulate inflammation through IL-10. CONCLUSION: This study confirmed that T-CD90@NP promoted chondrocyte proliferation and anti-inflammation, improving the effects of a clinical glucocorticoid treatment plan.


Subject(s)
Nanoparticles , Osteoarthritis , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cartilage/metabolism , Humans , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Rabbits , Rats , Regeneration , Triamcinolone Acetonide/pharmacology , Triamcinolone Acetonide/therapeutic use
3.
J Anim Physiol Anim Nutr (Berl) ; 106(4): 733-741, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34189825

ABSTRACT

The purpose of this study was to investigate the effect of the skeletal muscle satellite cells (SMSCs) on the lipid deposition of the intramuscular preadipocytes (IMPs) in a co-culture system of the Tan sheep cells. The SMSCs and IMPs from Tan sheep were separated and cultured. After the two kinds of cells were separated and cultured, they were inoculated onto a transwell cell chamber co-culture plate for co-cultivation. When the cell density reached more than 90%, the cells were induced to differentiate. After the induction of the SMSCs differentiation for 8 days, the level of the IMPs differentiation and the expression levels of the differentiation marker genes and the key enzymes of the lipid metabolism were assessed. The results showed that the number and area of the lipid droplets in the IMPs in the co-culture system were significantly reduced compared to those in the IMPs culture alone (p < 0.05). Meanwhile, the expression levels of the PPARγ, c/EBPα, ACC, FAS mRNA in the IMPs were significantly decreased (p < 0.05); the expression level of aP2 mRNA was decreased, but the difference was not significant (p > 0.05).These findings indicate that the SMSCs of the Tan sheep in the co-culture system inhibited the lipid deposition by the IMPs.


Subject(s)
Adipocytes , Satellite Cells, Skeletal Muscle , Animals , Cell Differentiation , Cells, Cultured , Coculture Techniques/veterinary , Lipids , RNA, Messenger/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Sheep
4.
J Surg Oncol ; 122(8): 1711-1720, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32885452

ABSTRACT

BACKGROUND: Current practices for fluorescence-guided cancer surgery utilize a single fluorescent agent, but homogeneous distribution throughout the tumor is difficult to achieve. We hypothesize that administering a perfusion and a molecular-targeted agent at their optimal administration-to-imaging time will improve whole-tumor contrast. EXPERIMENTAL DESIGN: Mice bearing subcutaneous xenograft human synovial sarcomas were administered indocyanine green (ICG) (3 mg/kg) or ABY-029 (48.7 µg/kg)-an epidermal growth factor receptor-targeted Affibody molecule-alone or in combination. Fluorescence contrast and signal distribution were compared between treatment groups. Two commercial fluorescence imaging systems were tested for simultaneous imaging of ICG and ABY-029. RESULTS: ABY-029 has a moderate positive correlation with viable tumor (ρ = 0.2 ± 0.4), while ICG demonstrated a strong negative correlation (ρ = -0.6 ± 0.1). The contrast-to-variance ratio was highest in the ABY-029 +ICG (2.5 ± 0.8), compared to animals that received ABY-029 (2.3 ± 0.8) or ICG (2.0 ± 0.5) alone. Moreover, the combination of ABY-029 + ICG minimizes the correlation between viable tumor and fluorescence intensity (ρ = -0.1 ± 0.2) indicating the fluorescence signal distribution is more homogeneous throughout the tumor milieu. CONCLUSION: Dual-agent imaging utilizing a single channel in a commercial fluorescence-guided imaging system tailored for IRDye 800CW is a promising method to increase tumor contrast in a clinical setting.


Subject(s)
Fluorescence , Fluorescent Dyes/metabolism , Molecular Imaging/methods , Optical Imaging/methods , Recombinant Fusion Proteins/metabolism , Sarcoma/pathology , Animals , Cell Proliferation , Humans , Indocyanine Green , Mice , Sarcoma/diagnostic imaging , Sarcoma/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Cell Mol Biol Lett ; 22: 10, 2017.
Article in English | MEDLINE | ID: mdl-28652859

ABSTRACT

BACKGROUND: H19 is a well-characterized Long noncoding RNA (lncRNA) that has been proven to promote myoblast differentiation in humans and mice. However, its mechanism of action is still not fully interpreted. METHODS: Using RT-qPCR, we examined H19 RNA levels in various tissues from 1-week, 1-month, 6-month and 36-month old male cattle (i.e., newborn, infant, young and adult). The protein and mRNA levels of MyoG, MyHC, Sirt1 and FoxO1 in the satellite and C2C12 cells with an H19 silencing or overexpression vector were respectively detected using western blot and real-time qPCR. RESULTS: H19 was highly expressed in skeletal muscle at all the studied ages. High expression of H19 was required for the differentiation of bovine satellite cells. Knockdown of H19 caused a remarkable increase in the myoblast-inhibitory genes Sirt1/FoxO1, suggesting that H19 suppresses Sirt1/FoxO1 expression during myogenesis. Western blotting analysis of co-transfection of Sirt1 or FoxO1 expression vectors with pcDNA-H19 indicated that Sirt1/FoxO1 overexpression neutralized the promotion of myoblast differentiation through transfection of pcDNA-H19. CONCLUSION: H19 promoted the differentiation of bovine skeletal muscle satellite cells by suppressing Sirt1/FoxO1.


Subject(s)
Cell Differentiation , Gene Expression Regulation, Developmental , RNA, Long Noncoding , Satellite Cells, Skeletal Muscle/metabolism , Animals , Cattle , Forkhead Box Protein O1/genetics , Male , Myogenin/genetics , Myosin Heavy Chains/genetics , Satellite Cells, Skeletal Muscle/physiology , Sirtuin 1/genetics
6.
Nano Lett ; 16(7): 4062-8, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27210030

ABSTRACT

The dimeric focal adhesion protein talin contains up to 22 cryptic vinculin binding sites that are exposed by unfolding. Using a novel method to monitor the in situ dynamics of the talin dimer stretch, we find that in contrast to several prevalent talin dimer models the integrin-binding talin N-termini are separated by 162 ± 44 nm on average whereas as expected the C-terminal dimerization domains colocalize and are mobile. Using vinculin tagged by DHFR-TMP Atto655 label, we found that optimal vinculin and vinculin head binding occurred when talin was stretched to 180 nm, while the controls did not bind to talin. Surprisingly, multiple vinculins bound within a single second in narrowly localized regions of the talin rod during stretching. We suggest that talin stretches as an antiparallel dimer and that activates vinculin binding in a cooperative manner, consistent with the stabilization of folded talin by other binding proteins.

7.
Breed Sci ; 66(3): 372-80, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27436947

ABSTRACT

In an experimental field, seed vivipary occurred in one accession of tomato rin mutant fruit at approximately 45-50 days after pollination (DAP). In this study, the possible contributory factors to this viviparous germination were investigated. Firstly, developing seeds were freshly excised from the fruit tissue every 5 days from 25-60 DAP. Germination occurred when isolated seeds were incubated on water, but was inhibited when they remained ex situ in fruit mucilage gel. The effect of abscisic acid (ABA) and osmoticum, separate and together, on germination of developing seeds was investigated. Additionally, ABA content in the seed and mucilage gel, as well as fruit osmolality were measured. The results showed that ABA concentrations in seeds were low during early development and increased later, peaking at about 50 DAP. ABA concentrations in rin accession were similar to those of the control cultivar and thus are not directly associated with the occurrence of vivipary. Developing seeds of rin accession are more sensitive than control seeds to all inhibitory compounds. However, osmolality in rin fruit at later developmental stages becomes less negative that is required to permit germination of developing seeds. Hence, hypo-osmolality in rin fruit may be an important factor in permitting limited viviparous germination.

8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(9): 2802-6, 2016 Sep.
Article in Zh | MEDLINE | ID: mdl-30084599

ABSTRACT

Rapid classification of leather variety means important to product process control, trading process and market surveillance. There is no official detection standard on classification of leather variety for the present. By now the testers use organoleptic method, burning method, chemical dissolution method, microscope method, or combination of them, to give a convincing result. The testers are required to highly sufficiently experienced, and not influenced by subjective factors. It also costs too much time. For the purpose of this research, spectra of five common varieties of leather samples (full-grain leather, split leather, sheep leather, reborn leather and manmade leather) were collected from market. Discriminant analysis combined with pre-processing method, including multiplicative signal correction (MSC), standard normal variate (SNV), first derivative and second derivative were used to classify the spectra above. It shows that the above five varieties of leather overlapped seriously in the same space. But manmade leather can be easily distinguished from the other four leather varieties using rear spectra, with the misclassified percent of 1.2%. The last four leather varieties covered each other partly in the same space, classify of any two of them can reach a lower misclassified percent, about 1.3%~17.9%. Different pre-processing method affected the discriminantion model positively or negatively with no regularity. None of these pre-processing methods was found to give a positive effect in a stable and persistent way. It can be concluded that it is feasible to discriminate the common leather varieties by near infrared Spectroscopy. All of the samples were taken from the finish products in the market (eg, handbag, belt, leather coat), which were processed in different ways (eg. tanning, knurling, dyeing). The different processes of the samples could bring an unforeseeable influence to the model which may be reduced by some method, for example, increasing the number and variety of samples.

9.
BMC Cancer ; 14: 418, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24917186

ABSTRACT

BACKGROUND: B-cell lymphoma 6 (BCL6) protein, an evolutionarily conserved zinc finger transcription factor, showed to be highly expressed in various human cancers in addition to malignancies in the lymphoid system. This study investigated the role of BCL6 expression in breast cancer and its clinical significance in breast cancer patients. METHODS: Expression of BCL6 protein was assessed using in situ hybridization and immunohistochemistry in 127 breast cancer patients and 50 patients with breast benign disease as well as in breast cell lines. Expression of BCL6 was restored or knocked down in two breast cancer cell lines (MCF-7 and T47D) using BCL6 cDNA and siRNA, respectively. The phenotypic change of these breast cancer cell lines was assessed using cell viability MTT, Transwell invasion, colony formation, and flow cytometry assays and in a xenograft mice model. Luciferase reporter gene, immunoblot, and qRT-PCR were used to investigate the molecular events after manipulated BCL6 expression in breast cancer cells. RESULTS: BCL6 protein was highly expressed in breast cancer cell lines and tissue specimens and expression of BCL6 protein was associated with disease progression and poor survival of breast cancer patients. In vitro, the forced expression of BCL6 results in increased proliferation, anchorage-independent growth, migration, invasion and survival of breast cancer cell lines, whereas knockdown of BCL6 expression reduced these oncogenic properties of breast cancer cells. Moreover, forced expression of BCL6 increased tumor growth and invasiveness in a nude mouse xenograft model. At the gene level, BCL6 was a target gene of miR-339-5p. Expression of BCL6 induced expression of CXCR4 and cyclinD1 proteins. CONCLUSIONS: The current study demonstrated the oncogenic property of BCL6 in breast cancer and further study could target BCL6 as a novel potential therapeutic strategy for breast cancer.


Subject(s)
Breast Neoplasms/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Animals , Breast Neoplasms/pathology , Cell Movement/genetics , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , MicroRNAs/genetics , Neoplasm Invasiveness/genetics , Proto-Oncogene Proteins c-bcl-6 , RNA, Small Interfering , Signal Transduction/genetics
10.
Methods ; 64(2): 144-52, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23816790

ABSTRACT

Circulating tumor cells (CTCs) are one of the most crucial topics in rare cell biology and have become the focus of a significant and emerging area of cancer research. While CTC enumeration is a valid biomarker in prostate cancer, the current FDA-approved CTC technology is unable to detect CTCs in a large portion of late stage prostate cancer patients. Here we introduce the NanoVelcro CTC Chip, a device composed of a patterned silicon nanowire substrate (SiNW) and an overlaid polydimethylsiloxane (PDMS) chaotic mixer. Validated by two institutions participating in the study, the NanoVelcro Chip assay exhibits very consistent efficiency in CTC-capture from patient samples. The utilized protocol can be easily replicated at different facilities. We demonstrate the clinical utility of the NanoVelcro Chip by performing serial enumerations of CTCs in prostate cancer patients after undergoing systemic therapy. Changes in CTC numbers after 4-10 weeks of therapy were compared with their clinical responses. We observed a statistically significant reduction in CTCs counts in the clinical responders. We performed long-term follow up with serial CTC collection and enumeration in one patient observing variations in counts correlating with treatment response. This study demonstrates the consistency of the NanoVelcro Chip assay over time for CTC enumeration and also shows that continuous monitoring of CTC numbers can be employed to follow responses to different treatments and monitor disease progression.


Subject(s)
Cell Count , Microfluidic Analytical Techniques/methods , Neoplastic Cells, Circulating/pathology , Prostatic Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Humans , Immunohistochemistry , Male , Middle Aged , Prognosis , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/drug therapy
11.
Ann Biomed Eng ; 52(6): 1625-1637, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38409434

ABSTRACT

Binding kinetics play an important role in cancer diagnosis and therapeutics. However, current methods of quantifying binding kinetics fail to consider the three-dimensional environment that drugs and imaging agents experience in biological tissue. In response, a methodology to assay agent binding and dissociation in 3-D tissue culture was developed using paired-agent molecular imaging principles. To test the methodology, the uptakes of ABY-029 (an IRDye 800CW-labeled epidermal growth factor receptor (EGFR)-targeted antibody mimetic) and IRDye-700DX carboxylate in 3-D spheroids were measured in four different human cancer cell lines throughout staining and rinsing. A compartment model (optimized for the application) was then fit to the kinetic curves of both imaging agents to estimate binding and dissociation rate constants of the EGFR-targeted ABY-029 agent. A statistically significant correlation was observed between apparent association rate constant (k3) and the receptor concentration experimentally and in simulations (r = 0.99, p < 0.05). A statistically significant difference was found between effective k3 (apparent rate constant of ABY-029 binding to EGFR) values for cell lines with varying levels of EGFR expression (p < 0.05), with no significant difference found between cell lines and controls for other fit parameters. Additionally, a similar binding affinity profile compared to a gold standard method was determined by this model. This low-cost methodology to quantify imaging agent or drug binding affinity in clinically relevant 3-D tumor spheroid models can be used to guide timing of imaging in molecular guided surgery and could have implications in drug development.


Subject(s)
ErbB Receptors , Spheroids, Cellular , Humans , Spheroids, Cellular/metabolism , ErbB Receptors/metabolism , Cell Line, Tumor , Neoplasms/metabolism , Neoplasms/diagnostic imaging , Neoplasms/pathology , Cell Culture Techniques, Three Dimensional
12.
Nat Commun ; 15(1): 2303, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491132

ABSTRACT

About one third of vascular plants develop glandular trichomes, which produce defensive compounds that repel herbivores and act as a natural biofactory for important pharmaceuticals such as artemisinin and cannabinoids. However, only a few regulators of glandular structures have been characterized so far. Here we have identified two closely-related MYB-like genes that redundantly inhibit the formation of glandular cells in tomatoes, and they are named as GLAND CELL REPRESSOR (GCR) 1 and 2. The GCR genes highly express in the apical cells of tomato trichomes, with expression gradually diminishing as the cells transition into glands. The spatiotemporal expression of GCR genes is coordinated by a two-step inhibition process mediated by SlTOE1B and GCRs. Furthermore, we demonstrate that the GCR genes act by suppressing Leafless (LFS), a gene that promotes gland formation. Intriguingly, homologous GCR genes from tobacco and petunia also inhibit gland formation, suggesting that the GCR-mediated repression mechanism likely represents a conserved regulatory pathway for glands across different plant species.


Subject(s)
Solanum lycopersicum , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Trichomes , Solanum lycopersicum/genetics , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant
13.
Mol Imaging Biol ; 26(2): 272-283, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38151580

ABSTRACT

PURPOSE: ABY-029, an epidermal growth factor receptor (EGFR)-targeted, synthetic Affibody peptide labeled with a near-infrared fluorophore, is under investigation for fluorescence-guided surgery of sarcomas. To date, studies using ABY-029 have occurred in tumors naïve to chemotherapy (CTx) and radiation therapy (RTx), although these neoadjuvant therapies are frequently used for sarcoma treatment in humans. The goal of this study was to evaluate the impact of CTx and RTx on tumor EGFR expression and ABY-029 fluorescence of human soft-tissue sarcoma xenografts in a murine model. PROCEDURES: Immunodeficient mice (n = 98) were divided into five sarcoma xenograft groups and three treatment groups - CTx only, RTx only, and CTx followed by RTx, plus controls. Four hours post-injection of ABY-029, animals were sacrificed followed by immediate fluorescence imaging of ex vivo adipose, muscle, nerve, and tumor tissues. Histological hematoxylin and eosin staining confirmed tumor type, and immunohistochemistry staining determined EGFR, cluster of differentiation 31 (CD31), and smooth muscle actin (SMA) expression levels. Correlation analysis (Pearson's correlation coefficients, r) and linear regression (unstandardized coefficient estimates, B) were used to determine statistical relationships in molecular expression and tissue fluorescence between xenografts and treatment groups. RESULTS: Neoadjuvant therapies had no broad impact on EGFR expression (|B|≤ 7.0, p ≥ 0.4) or on mean tissue fluorescence (any tissue type, (|B|≤ 2329.0, p ≥ 0.1). Mean tumor fluorescence was significantly related to EGFR expression (r = 0.26, p = 0.01), as expected. CONCLUSION: Results suggest that ABY-029 as an EGFR-targeted, fluorescent probe is not negatively impacted by neoadjuvant soft-tissue sarcoma therapies, although validation in humans is required.


Subject(s)
Neoadjuvant Therapy , Sarcoma , Humans , Mice , Animals , Disease Models, Animal , ErbB Receptors/metabolism , Fluorescent Dyes
14.
Cancer ; 119(7): 1321-9, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23280144

ABSTRACT

BACKGROUND: Gastroesophageal reflux is a risk factor for esophageal adenocarcinoma, and bile acid and its farnesoid X receptor (FXR) have been implicated in esophageal tumorigenesis. The authors investigated the role of FXR expression and activity in esophageal cancer initiation and growth. METHODS: FXR expression in esophageal adenocarcinoma tissues was assessed by immunohistochemistry. Knockdown of FXR expression in esophageal cancer cells in vitro and in nude mice xenografts was suppressed by FXR small hairpin RNA (shRNA) and guggulsterone (a natural FXR inhibitor). Esophageal cancer cells were treated with bile acids to demonstrate their effects on growth-promoting genes. RESULTS: FXR was expressed in 48 of 59 esophageal adenocarcinoma tissues (81.3%), and this overexpression was associated with higher tumor grade, larger tumor size, and lymph node metastasis; however, was inversely associated with retinoic acid receptor-ß2 (RAR-ß2 ) expression. Knockdown of FXR expression suppressed tumor cell growth in vitro and in nude mouse xenografts. Guggulsterone reduced the viability of esophageal cancer cells in a time-dependent and dose-dependent manner, whereas this effect was diminished after knockdown of FXR expression. Guggulsterone induced apoptosis through activation of caspase-8, caspase-9, and caspase-3 in tumor cells. FXR mediated bile acid-induced alterations of gene expression, eg, RAR-ß2 and cyclooxygenase-2 (COX-2). CONCLUSIONS: Inhibition of FXR by FXR shRNA or guggulsterone suppressed tumor cell viability and induced apoptosis in vitro, and it reduced tumor formation and growth in nude mouse xenografts. FXR also mediated bile acid-induced alterations of cell growth-related genes in esophageal cancer cells.


Subject(s)
Adenocarcinoma/metabolism , Esophageal Neoplasms/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Adenocarcinoma/pathology , Aged , Animals , Bile Acids and Salts/pharmacology , Cell Line, Tumor , Cell Proliferation , Cyclooxygenase 2/metabolism , Esophageal Neoplasms/pathology , Female , Gene Knockdown Techniques , Humans , Male , Mice , Mice, Nude , Pregnenediones/pharmacology , Receptors, Cytoplasmic and Nuclear/drug effects , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Retinoic Acid/metabolism , Transfection , Transplantation, Heterologous , Up-Regulation
15.
Mol Carcinog ; 52 Suppl 1: E80-6, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23390063

ABSTRACT

A single-nucleotide polymorphism (rs2274223: A5780G:His1927Arg) in the phospholipase C epsilon gene (PLCϵ) was recently identified as a susceptibility locus for esophageal cancer in Chinese subjects. To determine the underlying mechanisms of PLCϵ and this SNP in esophageal carcinogenesis, we analyzed PLCϵ genotypes, expression, and their correlation in esophageal cancer cell lines, non-transformed esophageal cells, 58 esophageal squamous cell carcinomas and 10,614 non-cancer subjects from China. We found that the G allele (AG or GG) was associated with increased PLCϵ mRNA and protein expression in esophageal cancer tissues and in esophageal cancer cell lines. G allele was also associated with higher enzyme activity, which might be associated with increased protein expression. Quantitative analysis of the C2 domain sequences revealed that A:G allelic imbalance was strongly linked to esophageal malignancy. Moreover, the analysis of 10,614 non-cancer subjects demonstrated that the G allele was strongly associated with moderate to severe esophagitis in the subjects from the high-incidence areas of China (OR 6.03, 95% CI 1.59-22.9 in high-incidence area vs. OR 0.74, 95% CI 0.33-1.64 in low-incidence area; P = 0.008). In conclusion, the PLCϵ gene, particularly the 5780G allele, might play a pivotal role in esophageal carcinogenesis via upregulating PLCϵ mRNA, protein, and enzyme activity, and augmenting inflammatory process in esophageal epithelium. Thus, 5780G allele may constitute a promising biomarker for esophageal squamous cell carcinoma risk stratification, early detection, and progression prediction.


Subject(s)
Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , Esophagitis/genetics , Phosphoinositide Phospholipase C/genetics , Polymorphism, Single Nucleotide/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/enzymology , Carcinoma, Squamous Cell/pathology , Case-Control Studies , Esophageal Neoplasms/enzymology , Esophageal Neoplasms/pathology , Esophagitis/enzymology , Esophagitis/pathology , Genotype , Humans , Immunoblotting , Immunoenzyme Techniques , Neoplasm Staging , Phosphoinositide Phospholipase C/metabolism , Polymerase Chain Reaction , Prognosis , Real-Time Polymerase Chain Reaction , Tumor Cells, Cultured
16.
Environ Technol ; 34(17-20): 2853-8, 2013.
Article in English | MEDLINE | ID: mdl-24527650

ABSTRACT

Landfill leachate is posing an ever-greater environmental hazard. Recently, a process for purification combining activated carbon, microwave (MW) and Fenton oxidation has drawn much attention. In this study, the effectiveness of this process for the pretreatment of an old-age landfill leachate was tested. The effects of various parameters were investigated and the optimal condition included as follows: MW energy density, 6 W/mL; MW power, 300 W; radiation time, 8 min; H2O2 dosage, 0.1 mol/L; Fe(2+)-EDTA dosage, 0.02 mol/L; granular activated carbon (GAC) dosage, 6 g/L. Within the present experimental condition applied, the chemical oxygen demand (COD) removal reached 56.5%, and the ratio of 5-day biochemical oxygen demand to chemical oxygen demand (BOD5/COD) was enhanced from 0.122 to 0.462. Comparing with GAC, MW and Fenton alone or the combinations of any two of them, MW/Fenton/GAC displayed superior treatment efficiency. The MW/Fenton/GAC process is believed to be a promising pretreatment technology for biorefractory old-age landfill leachate.


Subject(s)
Charcoal/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Microwaves , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Oxidation-Reduction
17.
Membranes (Basel) ; 13(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37367815

ABSTRACT

The lens mitochondrion of the tree shrew, located along the optical pathway between the lens and photoreceptors, has been investigated. The results suggest that the lens mitochondrion acts as a quasi-bandgap or imperfect photonic crystal. Interference effects cause a shift in the focus and introduce wavelength-dependent behavior similar to dispersion. Optical channels within the mitochondrion form a mild waveguide, preferentially propagating light within certain compartments. The lens mitochondrion also functions as an imperfect UV-shielding interference filter. Overall, this study provides insights into the dual role of the lens mitochondrion and the complex behavior of light within biological systems.

18.
Materials (Basel) ; 16(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38068087

ABSTRACT

Construction industrialization addresses various challenges in the traditional construction industry, enabling building structures to conserve resources and enhance energy efficiency while reducing emissions. Precast shear walls involve the factory-based production of components, followed by transportation to a construction site for assembly. The method of connecting these components is crucial for precast concrete shear wall systems. Common connection methods include lap-spliced connections, post-tensioned connections, welded connections, bolted connections, and sleeve connections. However, challenges such as construction precision and technology proficiency have limited their application. In response, a novel precast concrete shear wall system utilizing angle steel connectors has been proposed. These angle steel connectors enhance the shear resistance of horizontal joints between precast concrete shear walls and the foundation, providing provisional support for specimen positioning and installation. Presently, the seismic performance of this innovative precast shear wall system under the combined actions of cyclic horizontal loads and axial pressure or tension has been extensively investigated. In practical engineering applications, precast concrete shear wall systems are often accompanied by infill walls. However, there is limited research on the seismic performance of precast concrete shear wall systems with infill walls. To address this gap, this study designed and fabricated two novel precast concrete shear walls with different infill wall constructions. One specimen featured an infill wall composed of a single wall panel, while the other had an infill wall consisting of two panels. Pseudo-static tests were conducted on both specimens under constant axial compression. Subsequently, the seismic performance and force mechanism of the two specimens were compared with the novel precast concrete shear walls without infill walls. The test results demonstrated that the specimen with two infill wall panels exhibited superior overall performance compared to the one with a single continuous infill wall panel. Furthermore, it was observed that, during the loading process, the edge columns of specimens with infill walls provided the majority of the increased load-bearing capacity, while the infill walls made a limited contribution to the overall load-bearing capacity of the structures.

19.
Comput Med Imaging Graph ; 104: 102175, 2023 03.
Article in English | MEDLINE | ID: mdl-36630795

ABSTRACT

The risk assessment of carotid plaque is strongly related to the plaque echo status in ultrasound. However, the echo classification of carotid plaques based on ultrasound remains challenging due to the changes in plaque shape and semantics, along with the complex vascular environment. This study proposed a framework for Classification of Plaque by Tracking Videos (CPTV). To the best of our knowledge, this is the first study on plaque classification by tracking ultrasound video rather than a sonographic view, which achieves accurate localization and stable echo classification. In the tracking task, Multi-scale Decoupling Tracking (MDTrack) module including Multi-scale Dilated Encoder (MDE) and Internal-Exterior Feature Decoupling (IEFD) was proposed to solve the problems caused by shape and semantic variations to achieve accurate plaque localization in ultrasound. In the classification task, the Tracking-assisted 3D Attention (T3D-Attention) module included recombination and 3D-Attention extracted plaque features and echo-related features in the vascular environment. The experiments demonstrated that the performance of CPTV is better than current mainstream tracking and classification methods, indicating that the tracking-assistance classification is a kind of enhancement method with high universality and stability in the plaque in ultrasound.


Subject(s)
Carotid Arteries , Plaque, Atherosclerotic , Humans , Carotid Arteries/diagnostic imaging , Plaque, Atherosclerotic/diagnostic imaging , Ultrasonography/methods
20.
Int J Pharm ; 632: 122581, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36608806

ABSTRACT

Oxidative stress, characterized by excessive accumulation of reactive oxygen species (ROS), is involved in acute myocardial infarction (AMI)-related pathological processes and vascular reperfusion therapy injury. Alpha lipoic acid (LA) exhibits excellent antioxidant properties, however, its application is limited by inherent characteristics, including rapid clearance and extensive volume distribution. In this study, we hypothesized that scavenging cardiac ROS using adequately delivered LA could promote heart repair. Here, we report a new strategy for dynamic-release LA to treat AMI disease. In particular, this involves using poly(lactic-co-glycolic) (PLGA) copolymers as carriers to form a thin film (LA@PLGA) via electrospinning technology to achieve controlled release of LA, which essentially blocking local ROS production in damaged hearts. The drug-loading capacity and capsulation efficiency of this compound film could be regulated by determining the dose proportions of LA and PLGA. The incubation of LA@PLGA showed strong anti-oxidative activity and anti-apoptosis effect in hydrogen peroxide-administered primary cardiomyocytes. Patching LA@PLGA on the infarcted cardiac surfaces of AMI mice dramatically improved heart functions and reduced cardiac fibrosis throughout ventricular remodeling process. Importantly, the attenuation of detrimental pathologies was observed, including oxidative stress, senescence, DNA damage, cytokine-related processes, apoptosis, and ferroptosis. These results suggest that PLGA-carried LA can reduce ROS damage and restore heart function after myocardial damage, demonstrating a great potential for LA drugs in treating AMI disease.


Subject(s)
Myocardial Infarction , Thioctic Acid , Mice , Animals , Reactive Oxygen Species/metabolism , Myocardial Infarction/drug therapy , Oxidative Stress , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
SELECTION OF CITATIONS
SEARCH DETAIL