ABSTRACT
The mosquito family Culicidae is divided into 2 subfamilies named the Culicinae and Anophelinae. Nix, the dominant male-determining factor, has only been found in the culicines Aedes aegypti and Aedes albopictus, 2 important arboviral vectors that belong to the subgenus Stegomyia. Here we performed sex-specific whole-genome sequencing and RNAseq of divergent mosquito species and explored additional male-inclusive datasets to investigate the distribution of Nix. Except for the Culex genus, Nix homologs were found in all species surveyed from the Culicinae subfamily, including 12 additional species from 3 highly divergent tribes comprising 4 genera, suggesting Nix originated at least 133 to 165 million years ago (MYA). Heterologous expression of 1 of 3 divergent Nix open reading frames (ORFs) in Ae. aegypti resulted in partial masculinization of genetic females as evidenced by morphology and doublesex splicing. Phylogenetic analysis suggests Nix is related to femaleless (fle), a recently described intermediate sex-determining factor found exclusively in anopheline mosquitoes. Nix from all species has a conserved structure, including 3 RNA-recognition motifs (RRMs), as does fle. However, Nix has evolved at a much faster rate than fle. The RRM3 of both Nix and fle are distantly related to the single RRM of a widely distributed and conserved splicing factor transformer-2 (tra2). The RRM3-based phylogenetic analysis suggests this domain in Nix and fle may have evolved from tra2 or a tra2-related gene in a common ancestor of mosquitoes. Our results provide insights into the evolution of sex determination in mosquitoes and will inform broad applications of mosquito-control strategies based on manipulating sex ratios toward nonbiting males.
Subject(s)
Aedes , Mosquito Vectors , Animals , Female , Male , Phylogeny , Mosquito Vectors/genetics , Aedes/genetics , Aedes/metabolism , RNA SplicingABSTRACT
Excessive production of waste polyethylene terephthalate (PET) poses an ecological challenge, which necessitates developing technologies to extract the values from end-of-life PET. Upcycling has proven effective in addressing the low profitability of current recycling strategies, yet existing upcycling technologies operate under energy-intensive conditions. Here we report a cascade strategy to steer the transformation of PET waste into glycolate in an overall yield of 92.6% under ambient conditions. The cascade approach involves setting up a robust hydrolase with 95.6% PET depolymerization into ethylene glycol (EG) monomer within 12 h, followed by an electrochemical process initiated by a CO-tolerant Pd/Ni(OH)2 catalyst to convert the EG intermediate into glycolate with high Faradaic efficiency of 97.5%. Techno-economic analysis and life cycle assessment indicate that, compared with the widely adopted electrochemical technology that heavily relies on alkaline pretreatment for PET depolymerization, our designed enzymatic-electrochemical approach offers a cost-effective and low-carbon pathway to upgrade PET.
Subject(s)
Electrochemical Techniques , Polyethylene Terephthalates , Polyethylene Terephthalates/chemistry , Catalysis , Ethylene Glycol/chemistry , Polyesters/chemistry , Recycling , Hydrolases/chemistryABSTRACT
Malaria is an infectious disease caused by Plasmodium parasites, transmitted by Anopheles sinensis, Anopheles lesteri, Anopheles minimus, and Anopheles dirus in China. In 2021, the disease was eliminated in China after more than 70 years of efforts implementing an integrated mosquito management strategy. This strategy comprised indoor residual spray, insecticide-treated bed nets, irrigation management, and rice-fish coculture based on an understanding of taxonomic status and ecological behaviors of vector species, in conjunction with mass drug administration and promotion of public education. However, China still faces postelimination challenges, including the importation of approximately 2,000-4,000 cases of malaria into the country each year, as well as widespread resistance to pyrethroid insecticides in An. sinensis; these challenges require long-term vector surveillance to understand the distribution, population density, and development of resistance in vector mosquitoes to prevent local epidemics caused by imported malaria cases.
Subject(s)
Anopheles , Insecticides , Malaria , Animals , Malaria/prevention & control , Malaria/epidemiology , Anopheles/parasitology , Mosquito Vectors , China/epidemiology , Biology , Insecticide Resistance , Mosquito ControlABSTRACT
Sleep deprivation has been demonstrated to exert widespread and intricate impacts on the brain network. The human brain network is a modular network composed of interconnected nodes. This network consists of provincial hubs and connector hubs, with provincial hubs having diverse connectivities within their own modules, while connector hubs distribute their connectivities across different modules. The latter is crucial for integrating information from various modules and ensuring the normal functioning of the modular brain. However, there has been a lack of systematic investigation into the impact of sleep deprivation on brain connector hubs. In this study, we utilized functional connectivity from resting-state functional magnetic resonance imaging, as well as structural connectivity from diffusion-weighted imaging, to systematically explore the variation of connector hub properties in the cerebral cortex after one night of sleep deprivation. The normalized participation coefficients (PCnorm) were utilized to identify connector hubs. In both the functional and structural networks, connector hubs exhibited a significant increase in average PCnorm, indicating the diversity enhancement of the connector hub following sleep deprivation. This enhancement is associated with increased network cost, reduced modularity, and decreased small-worldness, but enhanced global efficiency. This may potentially signify a compensatory mechanism within the brain following sleep deprivation. The significantly affected connector hubs were primarily observed in both the Control Network and Salience Network. We believe that the observed results reflect the increasing demand on the brain to invest more effort at preventing performance deterioration after sleep loss, in exchange for increased communication efficiency, especially involving systems responsible for neural resource allocation and cognitive control. These results have been replicated in an independent dataset. In conclusion, this study has enhanced our understanding of the compensatory mechanism in the brain response to sleep deprivation. This compensation is characterized by an enhancement in the connector hubs responsible for inter-modular communication, especially those related to neural resource and cognitive control. As a result, this compensation comes with a higher network cost but leads to an improvement in global communication efficiency, akin to a more random-like network manner.
Subject(s)
Connectome , Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Nerve Net , Sleep Deprivation , Humans , Sleep Deprivation/physiopathology , Sleep Deprivation/diagnostic imaging , Male , Adult , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/physiology , Connectome/methods , Young Adult , Female , Brain/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Cerebral Cortex/physiologyABSTRACT
In social interaction, age-related differences in emotional processing may lead to varied social decision making between young and older adults. However, previous studies of social decision making have paid less attention to the interactants' emotions, leaving age differences and underlying neural mechanisms unexplored. To address this gap, the present study combined functional and structural magnetic resonance imaging, employing a modified dictator game task with recipients displaying either neutral or sad facial expressions. Behavioral results indicated that although older adults' overall allocations did not differ significantly from those of young adults, older adults' allocations showing a decrease in emotion-related generosity compared to young adults. Using representational similarity analysis, we found that older adults showed reduced neural representations of recipients' emotions and gray matter volume in the right anterior cingulate gyrus (ACC), right insula, and left dorsomedial prefrontal cortex (DMPFC) compared to young adults. More importantly, mediation analyses indicated that age influenced allocations not only through serial mediation of neural representations of the right insula and left DMPFC, but also through serial mediation of the mean gray matter volume of the right ACC and left DMPFC. This study identifies the potential neural pathways through which age affects emotion-related social decision making, advancing our understanding of older adults' social interaction behavior that they may not be less generous unless confronted with individuals with specific emotions.
Subject(s)
Aging , Decision Making , Emotions , Magnetic Resonance Imaging , Humans , Male , Female , Decision Making/physiology , Aged , Emotions/physiology , Young Adult , Adult , Aging/physiology , Facial Expression , Middle Aged , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Social Behavior , Brain/physiology , Brain/diagnostic imaging , Brain MappingABSTRACT
Cellulose nanocrystal (CNC) is a renewable resource derived from lignocellulosic materials, known for its optical permeability, biocompatibility, and unique self-assembly properties. Recent years have seen great progresses in cellulose nanocrystal-based chiral photonic materials. However, due to its inherent brittleness, cellulose nanocrystal shows limitations in the fields of flexible materials, optical sensors and food freshness testing. In order to solve the above limitations, attempts have been made to improve the flexibility of cellulose nanocrystal materials without destroying their structural color. Despite these progresses, a systematic review on them is lacking. This review aims to fill this gap by providing an overview of the main strategies and the latest research findings on the flexibilization of cellulose nanocrystal-based chiral nematic film materials (FCNM). Specifically, typical substances and methods used for their preparation are summarized. Moreover, different kinds of cellulose nanocrystal-based composites are compared in terms of flexibility. Finally, potential applications and future challenges of flexible cellulose nanocrystal-based chiral nematic materials are discussed, inspiring further research in this field.
ABSTRACT
Multi-shelled hollow metal-organic frameworks (MH-MOFs) are highly promising as electrode materials due to their impressive surface area and efficient mass transfer capabilities. However, the fabrication of MH-MOFs has remained a formidable challenge. In this study, two types of double-shelled open hollow Prussian blue analogues, one with divalent iron (DHPBA-Fe(II)) and the other with trivalent iron (DHPBA-Fe(III)), through an innovative inner-outer growth strategy are successfully developed. The growth mechanism is found to involve lattice matching growth and ligand exchange processes. Subsequently, DHPBA-Fe(II) and DHPBA-Fe(III) are employed as cathodes in aqueous Zn-ion batteries. Significantly, DHPBA-Fe(II) demonstrated exceptional performance, exhibiting a capacity of 92.5 mAh g-1 at 1 A g-1, and maintaining remarkable stability over an astounding 10 000 cycles. This research is poised to catalyze further exploration into the fabrication techniques of MH-MOFs and offer fresh insights into the intricate interplay between electronic structure and battery performance.
ABSTRACT
We propose a large viewing angle integral imaging 3D display system based on a symmetrical compound lens array (SCLA). The display system comprises a high-resolution 2D display panel, an SCLA, and a light shaping diffuser. The high-resolution 2D display panel presents an elemental image array, the SCLA modulates the light rays emitted from the 2D display panel to form 3D images in space, and the light shaping diffuser eliminates the gaps between 3D pixels of the 3D images. We find that the lateral aberration is a crucial factor that affects the resolution of the reconstructed 3D image. The symmetrical structure of the SCLA enables a reduced focal length and the elimination of lateral aberration, improving the viewing angle and the 3D image resolution simultaneously. The experimental results confirm that the proposed display system increases the viewing angle to 68.6°, achieving a comparable resolution of the full field of view while maintaining a simple structure.
ABSTRACT
BACKGROUND: Microstates of an electroencephalogram (EEG) are canonical voltage topographies that remain quasi-stable for 90 ms, serving as the foundational elements of brain dynamics. Different changes in EEG microstates can be observed in psychiatric disorders like schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD). However, the similarities and disparatenesses in whole-brain dynamics on a subsecond timescale among individuals diagnosed with SCZ, BD, and MDD are unclear. METHODS: This study included 1112 participants (380 individuals diagnosed with SCZ, 330 with BD, 212 with MDD, and 190 demographically matched healthy controls [HCs]). We assembled resting-state EEG data and completed a microstate analysis of all participants using a cross-sectional design. RESULTS: Our research indicates that SCZ, BD, and MDD exhibit distinct patterns of transition among the four EEG microstate states (A, B, C, and D). The analysis of transition probabilities showed a higher frequency of switching from microstates A to B and from B to A in each patient group compared to the HC group, and less frequent transitions from microstates A to C and from C to A in the SCZ and MDD groups compared to the HC group. And the probability of the microstate switching from C to D and D to C in the SCZ group significantly increased compared to those in the patient and HC groups. CONCLUSIONS: Our findings provide crucial insights into the abnormalities involved in distributing neural assets and enabling proper transitions between different microstates in patients with major psychiatric disorders.
ABSTRACT
BACKGROUND: Ischemic postconditioning (IPostC) has been reported as a promising method for protecting against myocardial ischemia-reperfusion (MI/R) injury. Our previous study found that the infarct-limiting effect of IPostC is abolished in the heart of diabetes whose cardiac expression of DJ-1 (also called PARK7, Parkinsonism associated deglycase) is reduced. However, the role and in particular the underlying mechanism of DJ-1 in the loss of sensitivity to IPostC-induced cardioprotection in diabetic hearts remains unclear. METHODS: Streptozotocin-induced type 1 diabetic rats were subjected to MI/R injury by occluding the left anterior descending artery (LAD) and followed by reperfusion. IPostC was induced by three cycles of 10s of reperfusion and ischemia at the onset of reperfusion. AAV9-CMV-DJ-1, AAV9-CMV-C106S-DJ-1 or AAV9-DJ-1 siRNA were injected via tail vein to either over-express or knock-down DJ-1 three weeks before inducing MI/R. RESULTS: Diabetic rats subjected to MI/R exhibited larger infarct area, more severe oxidative injury concomitant with significantly reduced cardiac DJ-1 expression and increased PTEN expression as compared to non-diabetic rats. AAV9-mediated cardiac DJ-1 overexpression, but not the cardiac overexpression of DJ-1 mutant C106S, restored IPostC-induced cardioprotection and this effect was accompanied by increased cytoplasmic DJ-1 translocation toward nuclear and mitochondrial, reduced PTEN expression, and increased Nrf-2/HO-1 transcription. Our further study showed that AAV9-mediated targeted DJ-1 gene knockdown aggravated MI/R injury in diabetic hearts, and this exacerbation of MI/R injury was partially reversed by IPostC in the presence of PTEN inhibition or Nrf-2 activation. CONCLUSIONS: These findings suggest that DJ-1 preserves the cardioprotective effect of IPostC against MI/R injury in diabetic rats through nuclear and mitochondrial DJ-1 translocation and that inhibition of cardiac PTEN and activation of Nrf-2/HO-1 may represent the major downstream mechanisms whereby DJ-1 preserves the cardioprotective effect of IPostC in diabetes.
Subject(s)
Diabetes Mellitus, Experimental , Ischemic Postconditioning , Myocardial Reperfusion Injury , PTEN Phosphohydrolase , Protein Deglycase DJ-1 , Rats, Sprague-Dawley , Animals , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Diabetes Mellitus, Experimental/metabolism , Male , Rats , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/complications , Protein Transport , Streptozocin , Myocardial Infarction/metabolism , Myocardial Infarction/pathologyABSTRACT
Cannabis sativa has been used for improving sleep for long history. Cannabidiol (CBD) has drown much attention as a non-addictive psychoactive component in Cannabis sativa extract. However, the effects of CBD on sleep architecture and it's acting mechanism remains unclear. In the present study, we evaluated the sedative-hypnotic effect of cannabidiol (CBD), assessed the effects of CBD on sleep using a wireless physiological telemetry system. We further explored the therapeutic effects of CBD using 4-chloro-dl-phenylalanine (PCPA) induced insomnia model and changes in sleep latency, sleep duration and intestinal flora were evaluated. CBD shortened sleep latency and increases sleep duration in both normal and insomnia mice, and those effects were blocked by 5-HT1A receptor antagonist WAY100635. We determined that CBD increases 5-HT1A receptors expression and 5-HT content in the hypothalamus of PCPA-pretreated mice and affects tryptophan metabolism in the intestinal flora. These results showed that activation of 5-HT1A receptors is one of the potential mechanisms underlying the sedative-hypnotic effect of CBD. This study validated the effects of CBD on sleep and evaluated its potential therapeutic effects on insomnia.
Subject(s)
Cannabidiol , Sleep Initiation and Maintenance Disorders , Mice , Animals , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/therapeutic use , Serotonin/metabolism , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Receptor, Serotonin, 5-HT1A , Sleep Initiation and Maintenance Disorders/chemically induced , Sleep Initiation and Maintenance Disorders/drug therapy , Serotonin AntagonistsABSTRACT
The consumption of a high-fat diet (HFD) has been implicated in the etiology of obesity and various neuropsychiatric disturbances, including anxiety and depression. Compelling evidence suggests that far-infrared ray (FIR) possesses beneficial effects on emotional disorders. However, the efficacy of FIR therapy in addressing HFD-induced anxiety and the underlying mechanisms remain to be elucidated. Here, we postulate that FIR emitted from a graphene-based therapeutic device may mitigate HFD-induced anxiety behaviors. The graphene-FIR modify the gut microbiota in HFD-mice, particularly by an enriched abundance of beneficial bacteria Clostridiaceae and Erysipelotrichaceae, coupled with a diminution of harmful bacteria Lachnospiraceae, Anaerovoracaceae, Holdemania and Marvinbryantia. Graphene-FIR also improved intestinal barrier function, as evidenced by the augmented expression of the tight junction protein occludin and G protein-coupled receptor 43 (GPR43). In serum level, we observed the decreased free fatty acids (FFA), lipopolysaccharides (LPS), diamine oxidase (DAO) and D-lactate, and increased the glucagon-like peptide-2 (GLP-2) levels in graphene-FIR mice. Simultaneously, inflammatory cytokines IL-6, IL-1ß, and TNF-α manifested a decrease subsequent to graphene-FIR treatment in both peripheral and central system. Notably, graphene-FIR inhibited over expression of astrocytes and microglia. We further noticed that the elevated the BDNF and decreased TLR4 and NF-κB expression in graphene-FIR group. Overall, our study reveals that graphene-FIR rescued HFD-induced anxiety via improving the intestine permeability and the integrity of blood-brain barrier, and reduced inflammatory response by down regulating TLR4/NF-κB inflammatory pathway.
Subject(s)
Anxiety , Diet, High-Fat , Gastrointestinal Microbiome , Graphite , Mice, Inbred C57BL , Animals , Diet, High-Fat/adverse effects , Male , Graphite/therapeutic use , Graphite/pharmacology , Gastrointestinal Microbiome/drug effects , Anxiety/etiology , Anxiety/metabolism , Infrared Rays/therapeutic use , Obesity/metabolism , Mice , Neuroinflammatory Diseases/metabolism , Mice, Obese , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effectsABSTRACT
BACKGROUND: Attractive targeted sugar baits (ATSBs) have the potential to significantly reduce infective female Anopheles mosquitoes in arid areas, such as in Northern Mali. Malaria is epidemic in the north due to the limited viability of Anopheles species in the desert climate. The goal of this study was to determine of the effect of ATSB on the number of older female An. gambiae and on the number of sporozoite-positive females in villages in northern Mali. METHODS: Villages were located in the north of Mali. In this study, 5677 ATSB stations were deployed, two on each home, in ten villages during late July and early August 2019. Ten villages served as controls. After a pre-treatment monitoring period in July, An. gambiae populations were monitored again from August to December using CDC-UV light traps, pyrethrum spray catches (PSC), and human landing catches (HLC). Mosquitoes were dissected to estimate their age, while ELISA detected sporozoite positivity. The monthly entomological inoculation rates (EIRs) were calculated for HLC indoors and outdoors. Data from villages were compared using t-tests, while bait station weighted density versus amount of collected females was checked with a Pearson's correlation. RESULTS: A total of 2703 female An. gambiae were caught from treated villages, 4582 from control villages, a 41.0% difference. Dissection of 1759 females showed that ATSB significantly reduced the number of older females. The proportion of older females in treated villages was 0.93% compared to 9.4% in control villages. ELISA analysis of 7285 females showed that bait stations reduced the number of sporozoite-positive females. The infective females in treated villages was 0.30% compared to 2.73% in the controls. The greater the density of bait stations deployed, the fewer the older, infective females (P < 0.05). EIRs were low in control villages except in months when An. gambiae populations were high. EIRs in ATSB placement villages remained zero. Significant reductions (P < 0.0001) in An. gambiae males were observed. CONCLUSIONS: Bait stations reduced all measures of vector populations in this study. In a low-transmission setting, ATSB has the potential to greatly reduce malaria.
Subject(s)
Anopheles , Malaria , Mosquito Control , Mosquito Vectors , Sugars , Animals , Anopheles/physiology , Mali , Mosquito Vectors/physiology , Female , Mosquito Control/methods , Mosquito Control/statistics & numerical data , Malaria/prevention & control , SporozoitesABSTRACT
2. This research investigates the impact of the EGCG-CSH/n-HA/CMC composite material on bone defect repair, emphasizing its influence on macrophage polarization and osteogenic differentiation of BMSCs. Comprehensive evaluations of the composite's physical and chemical characteristics were performed. BMSC response to the material was tested in vitro for proliferation, migration, and osteogenic potential. An SD rat model was employed for in vivo assessments of bone repair efficacy. Both transcriptional and proteomic analyses were utilized to delineate the mechanisms influencing macrophage behavior and stem cell differentiation. The material maintained excellent structural integrity and significantly promoted BMSC functions critical to bone healing. In vivo results confirmed accelerated bone repair, and molecular analysis highlighted the role of macrophage M2 polarization, particularly through changes in the SIRPA gene and protein expression. EGCG-CSH/n-HA/CMC plays a significant role in enhancing bone repair, with implications for macrophage and BMSC function. Our findings suggest that targeting SIRPA may offer new therapeutic opportunities for bone regeneration.
Subject(s)
Catechin , Cell Differentiation , Macrophages , Osteogenesis , Rats, Sprague-Dawley , Osteogenesis/drug effects , Cell Differentiation/drug effects , Macrophages/drug effects , Macrophages/metabolism , Macrophages/cytology , Animals , Catechin/pharmacology , Catechin/analogs & derivatives , Catechin/chemistry , Rats , Molecular Structure , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Structure-Activity Relationship , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytologyABSTRACT
BACKGROUND: Membranous nephropathy (MN) has not yet been fully elucidated regarding its relationship with Type I and II Diabetes. This study aims to evaluate the causal effect of multiple types of diabetes and MN by summarizing the evidence from the Mendelian randomization (MR) study. METHODS: The statistical data for MN was obtained from a GWAS study encompassing 7979 individuals. Regarding diabetes, fasting glucose, fasting insulin, and HbA1C data, we accessed the UK-Biobank, within family GWAS consortium, MAGIC, FinnGen database, MRC-IEU, and Neale Lab, which provided sample sizes ranging from 17,724 to 298,957. As a primary method in this MR analysis, we employed the Inverse Variance Weighted (IVW), Weighted Median, Weighted mode, MR-Egger, Mendelian randomization pleiotropy residual sum, and outlier (MR-PRESSO) and Leave-one-out sensitivity test. Reverse MR analysis was utilized to investigate whether MN affects Diabetes. Meta-analysis was applied to combine study-specific estimates. RESULTS: It has been determined that type 2 diabetes, gestational diabetes, type 1 diabetes with or without complications, maternal diabetes, and insulin use pose a risk to MN. Based on the genetic prediction, fasting insulin, fasting blood glucose, and HbA1c levels were not associated with the risk of MN. No heterogeneity, horizontal pleiotropy, or reverse causal relationships were found. The meta-analysis results further validated the accuracy. CONCLUSIONS: The MR analysis revealed the association between MN and various subtypes of diabetes. This study has provided a deeper understanding of the pathogenic mechanisms connecting MN and diabetes.
ABSTRACT
OBJECTIVE: Insufficient or prolonged sleep each day may contribute to the onset of cardiovascular disease and diabetes, and there may be some variability between genders; however, current research evidence is limited. We aimed to investigate the effects of gender on self-reported sleep duration and the prevalence of cardiovascular disease and diabetes. RESEARCH DESIGN AND METHODS: This study is a population-based, cross-sectional analysis. Data from a nationally representative sample of US adults obtained from the National Health and Nutrition Examination Survey (NHANES) (2005-2020), and 13,002 participants, including 6,774men and 6,228women, were obtained by excluding the missing values for each variable self-reported sleep duration data obtained by using a habitual baseline questionnaire. Logistic regression models investigated the associations between gender-specific self-reported sleep duration, CVDs, and diabetes events. RESULT: In all participants, respectively, compared with sleep 7-8 h/day, the multivariable-adjusted odds ratios significantly associated with < 7 h /day and > 8 h /day were (1.43[1.15, 1.78]) and (1.34[1.01, 1.76]) for CHF, (1.62[1.28, 2.06]) for Angina, (1.42[1.17, 1.71]) for heart attack, (1.38[1.13, 1.70]) and (1.54[1.20, 1.97]) for Stroke, (1.21[1.09, 1.35]) and (1.28[1.11, 1.48]) for diabetes. In men, CHF (1.67[1.21, 2.14]), Angina (1.66[1.18, 2.15]), Stroke (1.55[1.13,1.97]), and diabetes (1.15[1.00, 1.32]) were significantly associated with < 7 h /day, and stroke (1.73[1.16, 2.32]) and diabetes (1.32[1.06, 1.52]) were significantly associated with > 8 h /day. In women, angina(1.83[1.16, 2.50]), heart attack(1.63[1.11, 2.15]), and diabetes (1.32[1.11, 1.54]) were significantly associated with < 7 h /day, while diabetes (1.31[1.03, 1.59]) was significantly associated with > 8 h /day. CONCLUSION: Self-reported long and short sleep duration was independently associated with partial CVDs and diabetes risk. However, sleep duration and gender did not have multiplicative or additive interactions with the onset of diabetes and CVDs.
Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Nutrition Surveys , Self Report , Sleep , Humans , Male , Female , Cross-Sectional Studies , Middle Aged , Cardiovascular Diseases/epidemiology , Diabetes Mellitus/epidemiology , Adult , Sex Factors , United States/epidemiology , Sleep/physiology , Time Factors , Aged , Risk Factors , Sleep DurationABSTRACT
OBJECTIVE: The objective of this study was to assess the efficacy and safety of Remimazolam in the context of combined spinal-epidural anesthesia for sedation during orthopedic surgery. METHODS: This randomized controlled trial enrolled patients scheduled for orthopedic surgery under combined spinal-epidural anesthesia (N = 80), who were randomly allocated to receive either dexmedetomidine (Group-D) or remimazolam (Group-R). The target sedation range aimed for a Ramsay score of 2-5 or a BIS value of 60-80 to evaluate the effectiveness and safety of remimazolam during sedation. RESULTS: The time taken to achieve the desired level of sedation was significantly shorter in the remimazolam group compared to the dexmedetomidine group (3.69 ± 0.75 vs. 9.59 ± 1.03; P < 0.0001). Patients in the remimazolam group exhibited quicker recovery, fewer intraoperative adverse events, more consistent vital signs, and greater satisfaction at various time points throughout the surgery. CONCLUSION: This preliminary study demonstrates that remimazolam tosilate serves as a safe and effective sedative for orthopedic surgery performed under combined spinal-epidural anesthesia, in comparison with dexmedetomidine.
Subject(s)
Benzenesulfonates , Benzodiazepines , Hypnotics and Sedatives , Humans , Anesthesia, Epidural , Benzenesulfonates/adverse effects , Benzodiazepines/adverse effects , Dexmedetomidine/adverse effects , Hypnotics and Sedatives/adverse effects , Orthopedic ProceduresABSTRACT
STUDY DESIGN: Retrospective cohort analysis. OBJECTIVE: The purpose of this study is to investigate whether the removal of the posterior longitudinal ligament (PLL) affects the mid-term outcome of anterior cervical fusion for cervical spondylosis with sympathetic symptoms(CSSS). METHODS: From January 2012 to July 2013, 66 patients who were diagnosed with CSSS with ≥ 10-year follow-up at our institution were assessed. All patients were divided into two groups: Group A (36 cases) in which patients underwent anterior cervical fusion with PLL resection and Group B (30 cases) in which patients underwent anterior cervical fusion without PLL resection. The sympathetic symptom 20-point system was used to evaluate the sympathetic symptoms, such as tinnitus, headache and vertigo, etc. And the neurological status was assessed by the Japanese Orthopedic Association (JOA) scores. Clinical and radiologic data were evaluated preoperatively, 9 days, 3 months, 6 months, 12 months, 24 months, 60 months, and 120 months postoperatively. Data collected included all perioperative complications as morbidities that occurred during the period of follow-up. RESULTS: The postoperative JOA scores and 20-point score can be significantly improved compared with preoperative whether the PLL is removed in both groups. However, the postoperative 20-point score of patients in group A was significantly different from that in group B. No loosening and displacement of prosthesis occurred. CONCLUSION: A better clinical effect could be attained when resecting the PLL in the operation. The PLL may play an important role in CSSS. The mid-term outcomes of anterior cervical fusion with PLL resection were satisfied in treating CSSS.
Subject(s)
Cervical Vertebrae , Longitudinal Ligaments , Spinal Fusion , Spondylosis , Humans , Male , Female , Spondylosis/surgery , Spondylosis/complications , Middle Aged , Spinal Fusion/methods , Retrospective Studies , Cervical Vertebrae/surgery , Treatment Outcome , Aged , Longitudinal Ligaments/surgery , Adult , Cohort Studies , Follow-Up StudiesABSTRACT
BACKGROUND: Understanding spinal sagittal balance is crucial for assessing and treating spinal deformities in pediatric populations. OBJECTIVE: The aim of the present observational study is to examine the parameters of sagittal alignment of the regional spine and spinopelvic region in asymptomatic pediatric populations and the characteristics of these parameters with age and sex. METHODS: We enrolled 217 participants, consisting of 112 males (51.6%) and 105 females (48.4%), aged between 4 and 15 years, with an average age of 12.19 years. Pelvic incidence, pelvic tilt, sacral slope, lumbar lordosis, thoracic kyphosis, T1 slope, C7 slope, cervical sagittal vertical axis, and C2-7 Cobb angle were measured. Three spine surgeons conducted radiographic measurements utilizing the PACS software. The measurement reliability was assessed through ICCs. RESULTS: Our results show significant age-related changes in pelvic tilt and cervical sagittal vertical axis, with notable gender differences in pelvic tilt, lumbar lordosis, and thoracic kyphosis. Girls have larger PT, boys have larger cSVA. PI, PT, and cSVA also differ among different age groups. Correlation analysis shows that a series of relationships that align with adult population patterns between pelvic incidence, pelvic tilt, sacral slope, lumbar lordosis, and thoracic kyphosis. CONCLUSION: Significant variations in PT and cSVA across diverse age cohorts highlights notable disparities in the distribution of PT and cSVA values within the pediatric population. Gender-based differences in PT, LL, and TK and correlation in spinopelvic parameter could enhances our understanding of compensatory mechanisms.
Subject(s)
Spine , Humans , Male , Female , Child , Adolescent , Child, Preschool , Spine/diagnostic imaging , Pelvis/diagnostic imaging , Lordosis/diagnostic imaging , Kyphosis/diagnostic imaging , Kyphosis/epidemiology , Pelvic Bones/diagnostic imaging , Radiography/methodsABSTRACT
The traditional formulation Hanchuan zupa granules (HCZPs) have been widely used for controlling coronavirus disease 2019 (COVID-19). However, its active components remain unknown. Here, HCZP components targeting the spike receptor-binding domain (S-RBD) of SARS-CoV-2 were investigated using a surface plasmon resonance (SPR) biosensor-based active ingredient recognition system (SPR-AIRS). Recombinant S-RBD proteins were immobilized on the SPR chip by amine coupling for the prescreening of nine HCZP medicinal herbs. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) identified gallic acid (GA) and methyl gallate (MG) from Rosa rugosa as S-RBD ligands, with KD values of 2.69 and 0.95 µM, respectively, as shown by SPR. Molecular dynamics indicated that GA formed hydrogen bonds with G496, N501, and Y505 of S-RBD, and MG with G496 and Y505, inhibiting S-RBD binding to angiotensin-converting enzyme 2 (ACE2). SPR-based competition analysis verified that both compounds blocked S-RBD and ACE2 binding, and SPR demonstrated that GA and MG bound to ACE2 (KD = 5.10 and 4.05 µM, respectively), suggesting that they blocked the receptor and neutralized SARS-CoV-2. Infection with SARS-CoV-2 pseudovirus showed that GA and MG suppressed viral entry into 293T-ACE2 cells. These S-RBD inhibitors have potential for drug design, while the findings provide a reference on HCZP composition and its use for treating COVID-19.