Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Angew Chem Int Ed Engl ; 62(48): e202312897, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37830171

ABSTRACT

Ferroptosis is a form of programmed cell death driven by iron-dependent lipid peroxidation (LPO) with the potential for antitumor immunity activation. In this study, a nonferrous cyclopentadienyl metal-based ferroptosis inducer [Ir(Cp*)(Bet)Cl]Cl (Ir-Bet) was developed by a metal-ligand synergistic enhancement (MLSE) strategy involving the reaction of [Ir(Cp*)Cl]2 Cl2 with the natural product Betulin. The fusion of Betulin with iridium cyclopentadienyl (Ir-Cp*) species as Ir-Bet not only tremendously enhanced the antiproliferative activity toward cancer cells, but also activated ferritinophagy for iron homeostasis regulation by PI3K/Akt/mTOR cascade inhibition with a lower dosage of Betulin, and then evoked an immune response by nuclear factor kappa-B (NF-κB) activation of Ir-Cp* species. Further immunogenic cell death (ICD) occurred by remarkable ferroptosis through glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4) deactivation and ferritinophagy. An in vivo vaccination experiment demonstrated desirable antitumor and immunogenic effects of Ir-Bet by increasing the ratio of cytotoxic T cells (CTLs)/regulatory T cells (Tregs).


Subject(s)
Ferroptosis , Iridium/pharmacology , Phosphatidylinositol 3-Kinases , Iron/metabolism , Glutathione
2.
Angew Chem Int Ed Engl ; 61(27): e202203843, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35384194

ABSTRACT

Metabolic adaptations can help cancer cells to escape from chemotherapeutics, mainly involving autophagy and ATP production. Herein, we report a new rhein-based cyclometalated IrIII complex, Ir-Rhein, that can accurately target mitochondria and effectively inhibit metabolic adaptations. The complex Ir-Rhein induces severe mitochondrial damage and initiates mitophagy to reduce the number of mitochondria and subsequently inhibit both mitochondrial and glycolytic bioenergetics, which eventually leads to ATP starvation death. Moreover, Ir-Rhein can overcome cisplatin resistance. Co-incubation experiment, 3D tumor spheroids experiment and transcriptome analysis reveal that Ir-Rhein shows promising antiproliferation performance for cisplatin-resistant cancer cells with the regulation of platinum resistance-related transporters. To our knowledge, this is a new strategy to overcome metallodrug resistance with a mitochondria-relevant treatment.


Subject(s)
Mitophagy , Neoplasms , Adenosine Triphosphate/metabolism , Autophagy , Cisplatin/pharmacology , Humans , Mitochondria/metabolism , Mitophagy/physiology , Neoplasms/pathology
3.
Inorg Chem ; 60(23): 17450-17461, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34503331

ABSTRACT

Half-sandwich Os-arene complexes exhibit promising anticancer activity, but their photochemistry has hardly been explored. To exploit the photocytotoxicity and photochemistry of Os-arenes, O,O-chelated complexes [Os(η6-p-cymene)(Curc)Cl] (OsCUR-1, Curc = curcumin) and [Os(η6-biphenyl)(Curc)Cl] (OsCUR-2), and N,N-chelated complexes [Os(η6-biphenyl)(dpq)I]PF6 (OsDPQ-2, dpq = pyrazino[2,3-f][1,10]phenanthroline) and [Os(η6-biphenyl)(bpy)I]PF6 (OsBPY-2, bpy = 2,2'-bipyridine), have been investigated. The Os-arene curcumin complexes showed remarkable photocytotoxicity toward a range of cancer cell lines (blue light IC50: 2.6-5.8 µM, photocytotoxicity index PI = 23-34), especially toward cisplatin-resistant cancer cells, but were nontoxic to normal cells. They localized mainly in mitochondria in the dark but translocated to the nucleus upon photoirradiation, generating DNA and mitochondrial damage, which might contribute toward overcoming cisplatin resistance. Mitochondrial damage, apoptosis, ROS generation, DNA damage, angiogenesis inhibition, and colony formation were observed when A549 lung cancer cells were treated with OsCUR-2. The photochemistry of these Os-arene complexes was investigated by a combination of NMR, HPLC-MS, high energy resolution fluorescence detected (HERFD), X-ray adsorption near edge structure (XANES) spectroscopy, total fluorescence yield (TFY) XANES spectra, and theoretical computation. Selective photodissociation of the arene ligand and oxidation of Os(II) to Os(III) occurred under blue light or UVA excitation. This new approach to the design of novel Os-arene complexes as phototherapeutic agents suggests that the novel curcumin complex OsCUR-2, in particular, is a potential candidate for further development as a photosensitizer for anticancer photoactivated chemotherapy (PACT).


Subject(s)
Antineoplastic Agents/pharmacology , Calixarenes/pharmacology , Coordination Complexes/pharmacology , Osmium/pharmacology , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Calixarenes/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , DNA Damage , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Osmium/chemistry , Photochemical Processes
4.
Analyst ; 145(12): 4233-4238, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32441284

ABSTRACT

Real-time monitoring of hydrogen sulphide (H2S) level change is of crucial importance for the study of its complicated roles in physiology. Herein, we developed a FRET strategy for designing ratiometric fluorescent H2S sensors. A coumarin-derived merocyanine fluorophore was selected as the acceptor, and two green-light-emission fluorophores were introduced as donors. The sensing mechanism was based on tuning the FRET efficiency, and the free sensors exhibited strong near-infrared emission at 665 nm due to the FRET process. The nucleophilic addition of HS- to the imide carbon disrupts the large conjugation system of merocyanine, which induces a dramatic loss of its absorption; thus, the FRET process gets blocked, and the green emission is increased. In the aqueous solution, both the probes, NBD-CMC and Nap-CMC, showed ratiometric H2S sensing behaviour, fast response, and high selectivity and sensitivity. Moreover, probe NBD-CMC was successfully applied to monitor the fluctuation of exogenously and endogenously generated H2S in HepG-2 cells.


Subject(s)
Coumarins/chemistry , Fluorescent Dyes/chemistry , Hydrogen Sulfide/analysis , Indoles/chemistry , Fluorescence Resonance Energy Transfer/methods , Hep G2 Cells , Humans , Hydrogen Sulfide/chemistry , Limit of Detection , Microscopy, Confocal , Microscopy, Fluorescence
5.
Angew Chem Int Ed Engl ; 58(36): 12661-12666, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31243832

ABSTRACT

A photosensitizing monofunctional Pt complex, Pt-BDPA, was prepared with a BODIPY chromophore. Apart from its DNA binding ability, this complex displays emission at ca. 578 nm and a singlet oxygen quantum yield of 0.133. Confocal imaging revealed that this complex was sequestered in lysosomes via endocytosis in the dark, preventing its access to the nucleus. Profiting from its photoinduced ROS generation ability, this complex undergoes lysosomal escape to access the nucleus upon photoirradiation. The photoinduced ROS still cause a drop in intracellular GSH, favoring the stability of Pt-BDPA and contributing to its nuclear DNA accessibility. This complex displayed distinct cytotoxicity to all tested tumor cell lines upon photoirradiation, and the IC50 values were ca. 3-6 µm, which are distinctly lower than those found with only dark incubation (IC50 >50 µm). These results are consistent with photoactivated lysosomal escape of this photosensitizing Pt complex to access the nucleus.

6.
Inorg Chem ; 56(7): 3754-3762, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28080031

ABSTRACT

Sensitizing the antitumor activity of monofunctional PtII complexes is a reliable approach to developing antitumor agents different from the classic Pt-based drugs. Considering the poor intracellular accumulation of monofunctional PtII complexes, in this study, the photosensitizing monofunctional PtII complex Pt-BA was derived from a weak BODIPY (boron-dipyrromethene)-derived photosensitizer BA, with the purpose to improve its antitumor cytotoxicity via enhancing its intracellular accumulation with a short time photo-irradiation. Photoinduced reactive oxygen species (ROS) determination indicated that the PtII center in Pt-BA is able to improve the photoinduced ROS production ability of BA, which makes Pt-BA a mild photosensitizer. Fluorescence imaging disclosed that dark incubation makes Pt-BA accumulate mainly on the surface of cell membrane, and the later short time photo-irradiation (5 min) promotes distinctly the intracellular accumulation of Pt-BA, which has been confirmed by inductively coupled plasma-mass spectrometry determination. Flow cytometric Annexin V-FITC assay indicated that the short time irradiation of Pt-BA induces in situ the cell membrane damage, which might finally enhance the intracellular accumulation of this monofunctional complex. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay confirmed that the short time photo-irradiation promotes distinctly the antitumor cytotoxicity of Pt-BA against MCF-7, SGC-7901, A549, and HeLa cell lines. The photopromoted antitumor activity of Pt-BA implies that modifying monofunctional PtII complex as a mild photosensitizer to promote its cell accumulation is a useful approach to sensitizing the antitumor activity of monofunctional PtII complex and renders the possibility of monofunctional PtII prodrugs for precise chemotherapy via only short time photoactivation.


Subject(s)
Antineoplastic Agents/pharmacology , Boron Compounds/pharmacology , Organoplatinum Compounds/pharmacology , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/radiation effects , Boron Compounds/chemical synthesis , Boron Compounds/chemistry , Boron Compounds/radiation effects , Cell Line, Tumor , Cell Membrane/drug effects , Fluorescence , Humans , Light , Microscopy, Confocal , Microscopy, Fluorescence , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/radiation effects , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Photosensitizing Agents/radiation effects , Reactive Oxygen Species
7.
J Inorg Biochem ; 256: 112574, 2024 07.
Article in English | MEDLINE | ID: mdl-38677004

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer, which owned severe resistance to platinum-based anticancer agents. Herein, we report a new metal-arene complex, Ru-TPE-PPh3, which can be synthesized in vitro and in living cells with copper catalyzed the cycloaddition reaction of Ru-azide and alkynyl (CuAAC). The complex Ru-TPE-PPh3 exhibited superior inhibition of the proliferation of TNBC MDA-MB-231 cells with an IC50 value of 4.0 µM. Ru-TPE-PPh3 could induce the over production of reactive oxygen species (ROS) to initiate the oxidative stress, and further damage the mitochondria both functionally and morphologically, as loss of mitochondrial membrane potential (MMP) and cutting the supply of adenosine triphosphate (ATP), the disappearance of cristae structure. Moreover, the damaged mitochondria evoked the occurrence of mitophagy with the autophagic flux blockage and cell death. The complex Ru-TPE-PPh3 also demonstrated excellent anti-proliferative activity in 3D MDA-MB-231 multicellular tumor spheroids (MCTSs), indicating the potential to inhibit solid tumors in living cells. This study not only provided a potent agent for the TNBC treatment, but also demonstrated the universality of the bioorthogonally catalyzed lethality (BCL) strategy through CuAAC reation.


Subject(s)
Antineoplastic Agents , Autophagy , Coordination Complexes , Mitochondria , Reactive Oxygen Species , Ruthenium , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Autophagy/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Ruthenium/chemistry , Ruthenium/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Cell Proliferation/drug effects , Female , Membrane Potential, Mitochondrial/drug effects
8.
J Med Chem ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312756

ABSTRACT

Chemoresistance remains an arduous challenge in oncology, but ferroptosis shows potential for overcoming it by stimulating the immune system. Herein, a novel high-performance ruthenium(II)-based arene complex [Ru(η6-p-cym)(BTBpy)Cl] (RuBTB) is developed for ferroptosis-enhanced antitumor immunity and drug resistance reversal via glutathione (GSH) metabolism imbalance. RuBTB shows significantly enhanced antiproliferation activity against cisplatin (CDDP)-resistant lung cancer cells (A549R), with 26.35-fold better anticancer effects than CDDP. Immunogenic ferroptosis is induced by GSH depletion/glutathione peroxidase 4 (GPX4) inactivation, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in RuBTB-treated cells. Mechanism studies indicate that RuBTB regulates ferroptosis and immune-related pathways, coordinating with GSH metabolism-mediated glutathione S-transferase (GST) inhibition to reverse drug resistance in platinum-combined therapy. Tumor vaccination experiments demonstrate the intensified antitumor effects endowed by highly immunogenic ferroptosis in vivo. This study provides the first example of a metal-arene complex for achieving satisfactory ferroptosis therapeutic effects with efficient immunogenicity to overcome drug resistance in metal-based immunochemotherapy.

9.
J Inorg Biochem ; 238: 112057, 2023 01.
Article in English | MEDLINE | ID: mdl-36370504

ABSTRACT

It is a major challenge to design novel multifunctional metal-based chemotherapeutic agents for anti-tumor and anti-metastasis applications. Two complexes (OA-Ir and OA-Ru) were synthesized via CuAAC (copper-catalyzed azide-alkyne cycloaddition) reaction from nontoxic Ir-N3 or Ru-N3 species and low toxic alkynyl precursor OA-Alkyne, and exhibited satisfactory anti-tumor and anti-metastasis pharmacological effects. Conjugation of Oleanolic acid (OA) and metal-arene species significantly enhanced the cytotoxicity in A2780 cells compared to the precursors through mitochondrial-induced autophagy pathway. Moreover, the two complexes could inhibit the cell metastasis and invasion through damage of actin dynamics and down-regulation of MMP2/MMP9 proteins. Combination of two precursors improved the lipophilicity and biocompatibility, simultaneously enhanced the cell uptake and the mitochondrial accumulation of metal-arene complexes, which caused mitochondrial membrane potential damage, oxidative phosphorylation, ATP depletion and autophagy. Besides, OA-Ir and OA-Ru displayed excellent activity to disintegrate the 3D multicellular tumor spheroids, showing potential for the treatment of solid tumors. This work provides a new way for developing novel metal-based complexes via CuAAC reaction for simultaneously inhibiting tumor proliferation and metastasis.


Subject(s)
Coordination Complexes , Ovarian Neoplasms , Ruthenium , Humans , Female , Ruthenium/pharmacology , Iridium/pharmacology , Cell Line, Tumor , Coordination Complexes/pharmacology , Alkynes
10.
Dalton Trans ; 52(20): 6922-6933, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37158602

ABSTRACT

Breast cancer (BC) is one of the most common malignant tumors and often accompanied by inflammatory processes. Inflammation is an essential component of the tumor microenvironment, which might influence tumor proliferation and metastasis. Herein, three metal-arene complexes MA-bip-Ru, MA-bpy-Ir, and MA-bpy-Ru were prepared by tethering the non-steroidal anti-inflammatory drug meclofenamic acid (MA). Among them, MA-bip-Ru and MA-bpy-Ir showed lower cytotoxicity towards cancer cells, but MA-bpy-Ru showed significantly high selectivity and cytotoxicity towards MCF-7 cells through the autophagic pathway and exhibited no toxicity against normal HLF cells, showing potential for selective treatment of tumor cells. MA-bpy-Ru could also effectively destroy the 3D multicellular tumor spheroids, demonstrating its potential for clinical application. Besides, MA-bip-Ru, MA-bpy-Ir, and MA-bpy-Ru exhibited anti-inflammatory properties superior to MA, notably downregulating the expression of cyclooxygenase-2 (COX-2) and inhibiting the secretion of prostaglandin E2 in vitro. These findings demonstrated that MA-bpy-Ru was capable of intervening in inflammatory processes and showed the potential of MA-bpy-Ru to act as a selective anticancer agent, thus presenting a new mechanism of action for metal-arene complexes.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Cyclooxygenase 2 , Meclofenamic Acid , Ruthenium/pharmacology , Humans
11.
J Inorg Biochem ; 243: 112195, 2023 06.
Article in English | MEDLINE | ID: mdl-36996696

ABSTRACT

Combination of novel immunomodulation and traditional chemotherapy has become a new tendency in cancer treatment. Increasing evidence suggests that blocking the "don't eat me" signal transmitted by the CD47 can promote the phagocytic ability of macrophages to cancer cells, which might be promising for improved cancer chemoimmunotherapy. In this work, we conjugated CPI-alkyne modified by Devimistat (CPI-613) with ruthenium-arene azide precursor Ru-N3 by copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to construct Ru complex CPI-Ru. CPI-Ru exhibited satisfactory cytotoxicity towards the K562 cells while nearly non-toxic towards the normal HLF cells. CPI-Ru has been demonstrated to cause severe damage to mitochondria and DNA, ultimately inducing cancer cell death through the autophagic pathway. Moreover, CPI-Ru could significantly downregulate the expression of CD47 on the surface of K562 accompanied by the enhanced immune response by targeting the blockade of CD47. This work provides a new strategy for utilizing metal-based anticancer agents to block CD47 signal to achieve chemoimmunotherapy in chronic myeloid leukemia treatment.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Ruthenium , Humans , Ruthenium/pharmacology , CD47 Antigen/genetics , CD47 Antigen/metabolism , Azides , Immunization , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Phagocytosis
12.
J Inorg Biochem ; 235: 111913, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35905643

ABSTRACT

9-Anthracenecarboxylic acid (9-Ac) was reported early as a chloride channel inhibitor and was found to exhibit significant anti-proliferative activity on leukemic cells, but has not been researched in solid tumor cells. Herein, a 9-anthraceneic acid derivative was introduced into the cyclometalated Iridium (III) species to construct a novel Iridium (Ir) complex Ir-9-Ac, [Ir(ppy)2(9-Ac-L)]PF6 (ppy = 2-phenylpyridine, 9-Ac-L = N-((4'-methyl-[2,2'-bipyridin]-4-yl)methyl)anthracene-9-carboxamide), which could accumulated in lysosomes. Ir-9-Ac showed good cytotoxic activity against several tumor cell lines, notably on A549 cells. Besides Ir-9-Ac could inhibit the cell colony formation and growth of the 3D cell spheroids, demonstrating the potential to suppress tumors in vivo. This design provided a platform for the design of cyclometalated Iridium (III) anticancer complexes.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Anthracenes/pharmacology , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Iridium/pharmacology , Lysosomes/metabolism
13.
Natl Sci Rev ; 8(9): nwaa286, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34691728

ABSTRACT

Synthetic lethality was proposed nearly a century ago by geneticists and recently applied to develop precision anti-cancer therapies. To exploit the synthetic lethality concept in the design of chemical anti-cancer agents, we developed a bio-orthogonally catalyzed lethality (BCL) strategy to generate targeting anti-tumor metallodrugs both in vitro and in vivo. Metallodrug Ru-rhein was generated from two non-toxic species Ru-N3 and rhein-alkyne via exclusive endogenous copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction without the need of an external copper catalyst. The non-toxic species Ru-arene complex Ru-N3 and rhein-alkyne were designed to perform this strategy, and the mitochondrial targeting product Ru-rhein was generated in high yield (>83%) and showed high anti-tumor efficacy in vitro. This BCL strategy achieved a remarkable tumor suppression effect on the tumor-bearing mice models. It is interesting that the combination of metal-arene complexes with rhein via CuAAC reaction could transform two non-toxic species into a targeting anti-cancer metallodrug both in vitro and in vivo, while the product Ru-rhein was non-toxic towards normal cells. This is the first example that exclusive endogenous copper was used to generate metal-based anti-cancer drugs for cancer treatment. The anti-cancer mechanism of Ru-rhein was studied and autophagy was induced by increased reactive oxygen species and mitochondrial damage. The generality of this BCL strategy was also studied and it could be extended to other metal complexes such as Os-arene and Ir-arene complexes. Compared with the traditional methods for cancer treatment, this work presented a new approach to generating targeting metallodrugs in vivo via the BCL strategy from non-toxic species in metal-based chemotherapy.

14.
Biomater Sci ; 8(14): 3994-4002, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32573618

ABSTRACT

Besides tumor hypoxia and limitation of superficial lesions, the short lifetime of photoinduced reactive oxygen species (ROS) is another factor repressing photodynamic therapy (PDT) efficacy. To overcome these problems, this study developed newly designed mitochondria-specific, H2O2-activatable, and O2-producing nanoparticles to achieve highly selective and efficient PDT and self-sufficiency of O2 in hypoxic tumors. The newly designed nanoparticles (BDPP NPs) are composed of a mitochondria-targeting photosensitizer and catalase in the aqueous core and a black hole quencher and fluorescent tracker in the polymeric shell, and modified with the tumor-targeting cyclic pentapeptide c(RGDfK). Once taken up by αvß3 integrin-rich tumor cells, intracellular H2O2 easily penetrated the lipophilic shells into the aqueous cores of BDPP NPs, and it was catalyzed by catalase to quickly generate O2 gas, causing the rupture of the NPs to release the photosensitizer. Therefore in vivo tumor cell mitochondria targeting by BDPP can be realized together with the favorable hypoxia relief. In vitro and in vivo experiments demonstrate that the therapeutic efficiency was significantly improved by the mitochondria-specific feature and H2O2-controllable generation of 1O2. More importantly, BDPP NPs continuously generate O2 in the PDT process, which can be helpful for resolving the overconsumption of oxygen in PDT and enhancing the PDT efficiency of cancer chemotherapy. We anticipate that this work may provide new insight into the design of smart PDT systems to achieve highly selective in vivo PDT via targeting subcellular organelles and realize oxygen therapy in O2-deprived tumors.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Hydrogen Peroxide , Hypoxia , Mitochondria , Neoplasms/drug therapy , Photosensitizing Agents/therapeutic use
15.
J Inorg Biochem ; 210: 111132, 2020 09.
Article in English | MEDLINE | ID: mdl-32569884

ABSTRACT

Polypyridyl ruthenium complexes as novel photosensitizers had drawn attention due to its high selectivity towards cancer cells and low toxicity to normal cells. Herein, we synthesized a lysosome-targeted polypyridyl ruthenium complex Rhein-Ru(bpy)3 (bpy = 2,2'-bipyridine, rhein = 4,5-dihydroxy-9,10-dioxoanthracene-2-carboxylic acid), tethering with the Chinese medicine herb rhein. Rhein-Ru(bpy)3 exhibited high phototoxicity with short time of irradiation against tumor cell lines with the IC50 value of 2.4- 8.7 µM, and higher cytotoxicity against cisplatin-resistant A2780 cell lines, suggesting that Rhein-Ru(bpy)3 could overcome the cisplatin resistance. Moreover, Rhein-Ru(bpy)3 displayed low cytotoxicity towards cell lines in dark incubation, which was beneficial to reduce the toxic side effects towards normal cell lines. Besides, the confocal imaging and western blotting assay results suggested that Rhein-Ru(bpy)3 could induce cancer cell death through the autophagy pathway. These results inspired us that lysosome-targeted photosensitizers based on ruthenium complexes showed great potential for photodynamic therapy (PDT) application in cancer treatment.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , 2,2'-Dipyridyl/pharmacology , Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Lysosomes/metabolism , Photosensitizing Agents/pharmacology , 2,2'-Dipyridyl/radiation effects , Anthraquinones/chemical synthesis , Anthraquinones/pharmacology , Anthraquinones/radiation effects , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/radiation effects , Autophagy/drug effects , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/radiation effects , Drug Design , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Humans , Light , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/radiation effects , Ruthenium/chemistry , Ruthenium/radiation effects , Singlet Oxygen/metabolism
16.
RSC Adv ; 10(9): 5392-5398, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-35498295

ABSTRACT

Alpha lipoic acid (LA) is a natural compound and coenzyme with sufficient safety information for serving as a promising anticancer agent. To further clarify the mechanism of action (MoA), two Ir(iii) complexes with the functionalized α-lipoic acid (N∧N-LA, N∧N, 2,2-bipyridine derivative), namely Ir1 and Ir2, were synthesized, where Ir1 possessed a half-sandwich structure with the formula [Ir(Cp*)(N∧N-LA)Cl]PF6 (Cp* = 1,2,3,4,5-pentamethyl-cyclopentadiene) and Ir2 possessed the cyclometalated structure with the formula [Ir(C∧N)2(N∧N-LA)]PF6 (C∧N = 2-phenylpyridine). Even though both complexes were constructed based on the same N∧N-LA ligand, Ir1 showed no cytotoxicity (IC50 > 200 µM), which was due to its low lipophilicity for hard penetration into the cancer cells, easy hydrolysis, and reaction with GSH. Ir2 exhibited excellent cytotoxicity (IC50 = 3.43-6.74 µM) toward diverse cancer cell lines in vitro and a promising ability to overcome the cisplatin-resistance in A549R cells. The anticancer mechanism of Ir2 in A549 cells was investigated in detail, and it was found it could localize and accumulate in the lysosomes of A549 cells, induce ROS, arrest the cycle at G0/G1, and lead to cell death by autophagy. Comparison with Ir-NH2 ([Ir(C∧N)2(N∧N-NH2)]PF6) demonstrated that introduction of the LA ligand to Ir2 could highly enhance the cytotoxicity and help to overcome the cisplatin-resistance. This study of the half-sandwich and cyclometalated Ir(iii)-based anticancer agents highlighted the different MoAs toward cancer cells and provided new insights for understanding their structure-property relationships.

17.
Adv Sci (Weinh) ; 6(15): 1900341, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31406668

ABSTRACT

Epilepsy is a chronic neurodegenerative disease, and accumulating evidence suggests its pathological progression is closely associated with peroxynitrite (ONOO-). However, understanding the function remains challenging due to a lack of in vivo imaging probes for ONOO- determination in epileptic brains. Here, the first near-infrared imaging probe (named ONP) is presented for tracking endogenous ONOO- in brains of kainate-induced epileptic seizures with high sensitivity and selectivity. Using this probe, the dynamic changes of endogenous ONOO- fluxes in epileptic brains are effectively monitored with excellent temporal and spatial resolution. In vivo visualization and in situ imaging of hippocampal regions clearly reveal that a higher concentration of ONOO- in the epileptic brains associates with severe neuronal damage and epileptogenesis; curcumin administration can eliminate excessively increased ONOO-, further effectively protecting neuronal cells. Moreover, by combining high-content analysis and ONP, a high-throughput screening method for antiepileptic inhibitors is constructed, which provides a rapid imaging/screening approach for understanding epilepsy pathology and accelerating antiseizure therapeutic discovery.

SELECTION OF CITATIONS
SEARCH DETAIL