Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Bioorg Med Chem ; 26(15): 4410-4427, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30031654

ABSTRACT

Since 6-prenylnaringenin (6-PNG) was recently identified as a novel T-type calcium channel blocker with the IC50 value around 1 µM, a series of flavanone derivatives were designed, synthesized and subsequently evaluated for T-channel-blocking activity in HEK293 cells transfected with Cav3.2 T-type channels using a patch-clamp technique. As a result, several new flavanones blocked Cav3.2-dependent T-currents more potently than 6-PNG. In the synthesized compounds, 6-(3-ethylpent-2-enyl)-5,7-dihydroxy-2-(2-hydroxyphenyl)chroman-4-one 8j, 6-(3-ethylpent-2-enyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one 11b, 6-(2-cyclopentylideneethyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one 11d, and 6-(2-Cyclopentylethyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one 12c were more potent blocker than 6-PNG with the IC50 value of 0.39, 0.26, 0.46, and 0.50 µM, respectively. Among the above four derivatives, the compound 8j provided the best result in the in vivo experiments; i.e. systemic administration of 8j at the minimum dose completely restored neuropathic pain induced by partial sciatic nerve ligation in mice.


Subject(s)
Analgesics/chemical synthesis , Calcium Channel Blockers/chemical synthesis , Calcium Channels, T-Type/chemistry , Drug Design , Flavonoids/chemistry , Action Potentials/drug effects , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Calcium Channels, T-Type/metabolism , Disease Models, Animal , Flavonoids/pharmacology , Flavonoids/therapeutic use , HEK293 Cells , Humans , Inhibitory Concentration 50 , Male , Mice , Neuralgia/drug therapy , Patch-Clamp Techniques , Structure-Activity Relationship
2.
Neuropharmacology ; 138: 232-244, 2018 08.
Article in English | MEDLINE | ID: mdl-29913186

ABSTRACT

Since Cav3.2 T-type Ca2+ channels (T-channels) expressed in the primary afferents and CNS contribute to intractable pain, we explored T-channel-blocking components in distinct herbal extracts using a whole-cell patch-clamp technique in HEK293 cells stably expressing Cav3.2 or Cav3.1, and purified and identified sophoraflavanone G (SG) as an active compound from SOPHORAE RADIX (SR). Interestingly, hop-derived SG analogues, (2S)-6-prenylnaringenin (6-PNG) and (2S)-8-PNG, but not naringenin, also blocked T-channels; IC50 (µM) of SG, (2S)-6-PNG and (2S)-8-PNG was 0.68-0.75 for Cav3.2 and 0.99-1.41 for Cav3.1. (2S)-6-PNG and (2S)-8-PNG, but not SG, exhibited reversible inhibition. The racemic (2R/S)-6-PNG as well as (2S)-6-PNG potently blocked Cav3.2, but exhibited minor effect on high-voltage-activated Ca2+ channels and voltage-gated Na+ channels in differentiated NG108-15 cells. In mice, the mechanical allodynia following intraplantar (i.pl.) administration of an H2S donor was abolished by oral or i.p. SR extract and by i.pl. SG, (2S)-6-PNG or (2S)-8-PNG, but not naringenin. Intraperitoneal (2R/S)-6-PNG strongly suppressed visceral pain and spinal ERK phosphorylation following intracolonic administration of an H2S donor in mice. (2R/S)-6-PNG, administered i.pl. or i.p., suppressed the neuropathic allodynia induced by partial sciatic nerve ligation or oxaliplatin, an anti-cancer agent, in mice. (2R/S)-6-PNG had little or no effect on open-field behavior, motor performance or cardiovascular function in mice, and on the contractility of isolated rat aorta. (2R/S)-6-PNG, but not SG, was detectable in the brain after their i.p. administration in mice. Our data suggest that 6-PNG, a hop component, blocks T-channels, and alleviates neuropathic and visceral pain with little side effects.


Subject(s)
Analgesics, Non-Narcotic/pharmacology , Calcium Channel Blockers/pharmacology , Flavonoids/pharmacology , Neuralgia/drug therapy , Visceral Pain/drug therapy , Analgesics, Non-Narcotic/chemistry , Analgesics, Non-Narcotic/isolation & purification , Animals , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/isolation & purification , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , Disease Models, Animal , Flavonoids/chemistry , Flavonoids/isolation & purification , HEK293 Cells , Humans , Humulus , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Neuralgia/metabolism , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Random Allocation , Rats, Wistar , Visceral Pain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL