Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 641
Filter
1.
Proc Natl Acad Sci U S A ; 119(33): e2203287119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939711

ABSTRACT

Electrical neuron stimulation holds promise for treating chronic neurological disorders, including spinal cord injury, epilepsy, and Parkinson's disease. The implementation of ultrathin, flexible electrodes that can offer noninvasive attachment to soft neural tissues is a breakthrough for timely, continuous, programable, and spatial stimulations. With strict flexibility requirements in neural implanted stimulations, the use of conventional thick and bulky packages is no longer applicable, posing major technical issues such as short device lifetime and long-term stability. We introduce herein a concept of long-lived flexible neural electrodes using silicon carbide (SiC) nanomembranes as a faradic interface and thermal oxide thin films as an electrical barrier layer. The SiC nanomembranes were developed using a chemical vapor deposition (CVD) process at the wafer level, and thermal oxide was grown using a high-quality wet oxidation technique. The proposed material developments are highly scalable and compatible with MEMS technologies, facilitating the mass production of long-lived implanted bioelectrodes. Our experimental results showed excellent stability of the SiC/silicon dioxide (SiO2) bioelectronic system that can potentially last for several decades with well-maintained electronic properties in biofluid environments. We demonstrated the capability of the proposed material system for peripheral nerve stimulation in an animal model, showing muscle contraction responses comparable to those of a standard non-implanted nerve stimulation device. The design concept, scalable fabrication approach, and multimodal functionalities of SiC/SiO2 flexible electronics offer an exciting possibility for fundamental neuroscience studies, as well as for neural stimulation-based therapies.


Subject(s)
Electric Stimulation Therapy , Implantable Neurostimulators , Nanostructures , Semiconductors , Carbon Compounds, Inorganic/chemistry , Electric Stimulation Therapy/instrumentation , Membranes, Artificial , Silicon Compounds/chemistry , Silicon Dioxide/chemistry
2.
Nano Lett ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990087

ABSTRACT

FeNC catalysts are considered one of the most promising alternatives to platinum group metals for the oxygen reduction reaction (ORR). Despite the extensive research on improving ORR activity, the undesirable durability of FeNC is still a critical issue for its practical application. Herein, inspired by the antioxidant mechanism of natural enzymes, CeO2 nanozymes featuring catalase-like and superoxide dismutase-like activities were coupled with FeNC to mitigate the attack of reactive oxygen species (ROS) for improving durability. Benefiting from the multienzyme-like activities of CeO2, ROS generated from FeNC is instantaneously eliminated to alleviate the corrosion of carbon and demetallization of metal sites. Consequently, FeNC/CeO2 exhibits better ORR durability with a decay of only 5 mV compared to FeNC (18 mV) in neutral electrolyte after 10k cycles. The FeNC/CeO2-based zinc-air battery also shows minimal voltage decay over 140 h in galvanostatic discharge-charge cycling tests, outperforming FeNC and commercial Pt/C.

3.
J Am Chem Soc ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950132

ABSTRACT

Two-dimensional (2D) hierarchically porous metal-organic framework (MOF) nanoarchitectures with tailorable meso-/macropores hold great promise for enhancing mass transfer kinetics, augmenting accessible active sites, and thereby boosting performance in heterogeneous catalysis. However, achieving the general synthesis of 2D free-standing MOF nanosheets with controllable hierarchical porosity and thickness remains a challenging task. Herein, we present an ingenious "hard" emulsion-induced interface super-assembly strategy for preparing 2D hierarchically porous UiO-66-NH2 nanosheets with highly accessible pore channels, tunable meso-/macropore sizes, and adjustable thicknesses. The methodology relies on transforming the geometric shape of oil droplet templates within appropriate oil-in-water emulsions from conventional zero-dimensional (0D) "soft" liquid spheres to 2D "hard" solid sheets below the oil's melting/freezing point. Subsequent surfactant exchange on the surface of 2D "hard" emulsions facilitates the heterogeneous nucleation and interfacial super-assembly of in situ formed mesostructured MOF nanocomposites, serving as structural units, in a loosely packed manner to produce 2D MOF nanosheets with multimodal micro/meso-/macroporous systems. Importantly, this strategy can be extended to prepare other 2D hierarchically porous MOF nanosheets by altering metal-oxo clusters and organic ligands. Benefiting from fast mass transfer and highly accessible Lewis acidic sites, the resultant 2D hierarchically porous UiO-66-NH2 nanosheets deliver a fabulous catalytic yield of approximately 96% on the CO2 cycloaddition of glycidyl-2-methylphenyl ether, far exceeding the yield of approximately 29% achieved using conventional UiO-66-NH2 microporous crystals. This "hard" emulsion-induced interface super-assembly strategy paves a new path toward the rational construction of elaborate 2D nanoarchitecture of hierarchical MOFs with tailored physicochemical properties for diverse potential applications.

4.
J Am Chem Soc ; 146(15): 10599-10607, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38567740

ABSTRACT

The success of electrochemical CO2 reduction at high current densities hinges on precise interfacial transportation and the local concentration of gaseous CO2. However, the creation of efficient CO2 transportation channels remains an unexplored frontier. In this study, we design and synthesize hydrophobic porous Cu2O spheres with varying pore sizes to unveil the nanoporous channel's impact on gas transfer and triple-phase interfaces. The hydrophobic channels not only facilitate rapid CO2 transportation but also trap compressed CO2 bubbles to form abundant and stable triple-phase interfaces, which are crucial for high-current-density electrocatalysis. In CO2 electrolysis, in situ spectroscopy and density functional theory results reveal that atomic edges of concave surfaces promote C-C coupling via an energetically favorable OC-COH pathway, leading to overwhelming CO2-to-C2+ conversion. Leveraging optimal gas transportation and active site exposure, the hydrophobic porous Cu2O with a 240 nm pore size (P-Cu2O-240) stands out among all the samples and exhibits the best CO2-to-C2+ productivity with remarkable Faradaic efficiency and formation rate up to 75.3 ± 3.1% and 2518.2 ± 8.1 µmol h-1 cm-2, respectively. This study introduces a novel paradigm for efficient electrocatalysts that concurrently addresses active site design and gas-transfer challenges.

5.
Small ; 20(22): e2308805, 2024 May.
Article in English | MEDLINE | ID: mdl-38185733

ABSTRACT

Minimally invasive procedures assisted by soft robots for surgery, diagnostics, and drug delivery have unprecedented benefits over traditional solutions from both patient and surgeon perspectives. However, the translation of such technology into commercialization remains challenging. The lack of perception abilities is one of the obstructive factors paramount for a safe, accurate and efficient robot-assisted intervention. Integrating different types of miniature sensors onto robotic end-effectors is a promising trend to compensate for the perceptual deficiencies in soft robots. For example, haptic feedback with force sensors helps surgeons to control the interaction force at the tool-tissue interface, impedance sensing of tissue electrical properties can be used for tumor detection. The last decade has witnessed significant progress in the development of multimodal sensors built on the advancement in engineering, material science and scalable micromachining technologies. This review article provides a snapshot on common types of integrated sensors for soft medical robots. It covers various sensing mechanisms, examples for practical and clinical applications, standard manufacturing processes, as well as insights on emerging engineering routes for the fabrication of novel and high-performing sensing devices.


Subject(s)
Robotics , Humans , Robotic Surgical Procedures
6.
Small ; 20(10): e2305730, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37902412

ABSTRACT

One of the difficulties limiting covalent organic frameworks (COFs) from becoming excellent adsorbents is their stacking/aggregation architectures owing to poor morphology/structure control during the synthesis process. Herein, an inorganic-organic nanoarchitectonics strategy to synthesize the MXene/COF heterostructure (Ti3 C2 Tx /TAPT-TFP) is developed by the assembly of ß-ketoenamine-linked COF on the Ti3 C2 Tx MXene nanosheets. The as-prepared Ti3 C2 Tx /TAPT-TFP retains the 2D architecture and high adsorption capacity of MXenes as well as large specific surface area and hierarchical porous structure of COFs. As a proof of concept, the potential of Ti3 C2 Tx /TAPT-TFP for solid-phase microextraction (SPME) of trace organochlorine pesticides (OCPs) is investigated. The Ti3 C2 Tx /TAPT-TFP based SPME method achieves low limits of detection (0.036-0.126 ng g-1 ), wide linearity ranges (0.12-20.0 ng g-1 ), and acceptable repeatabilities for preconcentrating trace OCPs from fruit and vegetable samples. This study offers insights into the potential of constructing COF or MXene-based heterostructures for the microextraction of environmental pollutants.

7.
Small ; : e2402323, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953346

ABSTRACT

Constructing dual-site catalysts consisting of atomically dispersed metal single atoms and metal atomic clusters (MACs) is a promising approach to further boost the catalytic activity for oxygen reduction reaction (ORR). Herein, a porous CoSA-AC@SNC featuring the coexistence of Co single-atom sites (CoN4) and S-coordinated Co atomic clusters (SCo6) in S, N co-doped carbon substrate is successfully synthesized by using porphyrinic metal-organic framework (Co-TPyP MOF) as the precursor. The introduction of the sulfur source creates abundant microstructural defects to anchor Co metal clusters, thus modulating the electronic structure of its surrounding carbon substrate. The synergistic effect between the two types of active sites and structural advantages, in turn, results in high ORR performance of CoSA-AC@SNC with half-wave potential (E1/2) of 0.86 V and Tafel slope of 50.17 mV dec-1. Density functional theory (DFT) calculations also support the synergistic effect between CoN4 and SCo6 by detailing the catalytic mechanism for the improved ORR performance. The as-fabricated Zn-air battery (ZAB) using CoSA-AC@SNC demonstrates impressive peak power density of 174.1 mW cm-2 and charge/discharge durability for 148 h. This work provides a facile synthesis route for dual-site catalysts and can be extended to the development of other efficient atomically dispersed metal-based electrocatalysts.

8.
Small ; : e2309397, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644343

ABSTRACT

The utilization of solar-thermal energy and universal cold energy has led to many innovative designs that achieve effective temperature regulation in different application scenarios. Numerous studies on passive solar heating and radiation cooling often operate independently (or actively control the conversion) and lack a cohesive framework for deep connections. This work provides a concise overview of the recent breakthroughs in solar heating and radiation cooling by employing a mechanism material in the application model. Furthermore, the utilization of dynamic Janus-like behavior serves as a novel nexus to elucidate the relationship between solar heating and radiation cooling, allowing for the analysis of dynamic conversion strategies across various applications. Additionally, special discussions are provided to address specific requirements in diverse applications, such as optimizing light transmission for clothing or window glass. Finally, the challenges and opportunities associated with the development of solar heating and radiation cooling applications are underscored, which hold immense potential for substantial carbon emission reduction and environmental preservation. This work aims to ignite interest and lay a solid foundation for researchers to conduct in-depth studies on effective and self-adaptive regulation of cooling and heating.

9.
Small ; 20(11): e2305459, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37922532

ABSTRACT

Electrocatalyst engineering from the atomic to macroscopic level of electrocatalysts is one of the most powerful routes to boost the performance of electrochemical devices. However, multi-scale structure engineering mainly focuses on the range of atomic-to-particle scale such as hierarchical porosity engineering, while catalyst engineering at the macroscopic level, such as the arrangement configuration of nanoparticles, is often overlooked. Here, a 2D carbon polyhedron array with a multi-scale engineered structure via facile chemical etching, ice-templating induced self-assembly, and high-temperature pyrolysis processes is reported. Controlled phytic acid etching of the carbon precursor introduces homogeneous atomic phosphorous and nitrogen doping, as well as a well-defined mesoporous structure. Subsequent ice-templated self-assembly triggers the formation of a 2D particle array superstructure. The atomic-level doping gives rise to high intrinsic activity, while the well-engineered porous structure and particle arrangement addresses the mass transport limitations at the microscopic particle level and macroscopic electrode level. As a result, the as-prepared electrocatalyst delivers outstanding performance toward oxygen reduction reaction in both acidic and alkaline media, which is better than recently reported state-of-the-art metal-free electrocatalysts. Molecular dynamics simulation together with extensive characterizations indicate that the performance enhancement originates from multi-scale structural synergy.

10.
Small ; 20(28): e2309321, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38528424

ABSTRACT

A paucity of redox centers, poor charge transport properties, and low structural stability of organic materials obstruct their use in practical applications. Herein, these issues have been addressed through the use of a redox-active salen-based framework polymer (RSFP) containing multiple redox-active centers in π-conjugated configuration for applications in lithium-ion batteries (LIBs). Based on its unique architecture, RSFP exhibits a superior reversible capacity of 671.8 mAh g-1 at 0.05 A g-1 after 168 charge-discharge cycles. Importantly, the lithiation/de-lithiation performance is enhanced during operation, leading to an unprecedented reversible capacity of 946.2 mAh g-1 after 3500 cycles at 2 A g-1. The structural evolution of RSFP is studied ex situ using X-ray photoelectron spectroscopy, revealing multiple active C═N, C─O, and C═O sites and aromatic sites such as benzene rings. Remarkably, the emergence of C═O originated from C─O is triggered by an electrochemical process, which is beneficial for improving reversible lithiation/delithiation behavior. Furthermore, the respective strong and weak binding interactions between redox centers and lithium ions, corresponding to theoretical capacities of 670.1 and 938.2 mAh g-1, have been identified by density functional theory calculations manifesting 14-electron redox reactions. This work sheds new light on routes for the development of redox-active organic materials for energy storage applications.

11.
Small ; : e2311645, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659182

ABSTRACT

Understanding the growth of mesoporous crystalline materials, such as mesoporous metals, on different substrates can provide valuable insights into the crystal growth dynamics and the redox reactions that influence their electrochemical sensing performance. Herein, it is demonstrated how the amorphous nature of the glass substrate can suppress the typical <111> oriented growth in mesoporous Au (mAu) films. The suppressed <111> growth is manifested as an accumulation of strain, leading to the generation of abundant surface defects, which are beneficial for enhancing the electrochemical activity. The fine structuring attained enables dramatically accelerated diffusion and enhances the electrochemical sensing performance for disease-specific biomolecules. As a proof-of-concept, the as-fabricated glass-grown mAu film demonstrates high sensitivity in electrochemical detection of SARS-CoV-2-specific RNA with a limit of detection (LoD) as low as 1 attomolar (aM).

12.
Chem Rev ; 122(1): 1000-1051, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34730341

ABSTRACT

Borophene, a monolayer of boron, has risen as a new exciting two-dimensional (2D) material having extraordinary properties, including anisotropic metallic behavior and flexible (orientation-dependent) mechanical and optical properties. This review summarizes the current progress in the synthesis of borophene on various metal substrates, including Ag(110), Ag(100), Au(111), Ir(111), Al(111), and Cu(111), as well as heterostructuring of borophene. In addition, it discusses the mechanical, thermal, magnetic, electronic, optical, and superconducting properties of borophene and the effects of elemental doping, defects, and applied mechanical strains on these properties. Furthermore, the promising potential applications of borophene for gas sensing, energy storage and conversion, gas capture and storage applications, and possible tuning of the material performance in these applications through doping, formation of defects, and heterostructures are illustrated based on available theoretical studies. Finally, research and application challenges and the outlook of the whole borophene's field are given.

13.
J Immunol ; 208(5): 1057-1065, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35149531

ABSTRACT

T follicular regulatory (Tfr) cells are a subset of CD4+ T cells that express CXCR5 and migrate into germinal centers (GCs). They regulate GC reactions by communicating with T follicular helper (Tfh) and B cells. TNF inhibitors are used in inflammatory diseases; however, the generation of autoantibodies or anti-drug Abs sometimes causes problems. Because TNFR2 signaling is important for suppressive functions of regulatory T cells, we investigated the role of TNFR2 on human Tfr cells. Tfr cells stimulated with MR2-1 (an anti-TNFR2 agonistic Ab) were analyzed for cell proliferation, Foxp3 expression, and surface molecules. Tfh/B cell proliferation, IgM production, and differentiation in cocultures with MR2-1-stimulated Tfr cells were examined. Tfr cells express a high level of TNFR2. MR2-1 stimulation altered the gene expression profile of Tfr cells. Cell proliferation and Foxp3 expression of Tfr cells were enhanced by MR2-1. MR2-1-stimulated Tfr cells expressed ICOS and Programmed cell death protein 1 and significantly suppressed Tfh/B cell proliferation, IgM production, and B cell differentiation. TNFR2-stimulated Tfr cells retained the migration function according to the CXCL13 gradient. In conclusion, we showed that TNFR2-stiumulated Tfr cells can regulate Tfh and B cells. Aberrant antibody production during TNF inhibitor treatment might be, at least in part, associated with TNFR2 signaling inhibition in Tfr cells. In addition, expansion and maturation of Tfr cells via TNFR2 stimulation in vitro may be useful for a cell-based therapy in inflammatory and autoimmune diseases to control GC reactions.


Subject(s)
B-Lymphocytes/immunology , Receptors, Tumor Necrosis Factor, Type II/metabolism , T Follicular Helper Cells/immunology , T-Lymphocytes, Regulatory/immunology , Autoimmune Diseases/therapy , B-Lymphocytes/cytology , B7-H1 Antigen/metabolism , Cell Differentiation/immunology , Cell Movement/immunology , Cell Proliferation , Chemokine CXCL13/metabolism , Forkhead Transcription Factors/biosynthesis , Gene Expression Profiling , Germinal Center/cytology , Humans , Immunoglobulin M/biosynthesis , Inducible T-Cell Co-Stimulator Protein/biosynthesis , Lymphocyte Activation/immunology , Programmed Cell Death 1 Receptor/metabolism , Receptors, CXCR5/metabolism , Receptors, Tumor Necrosis Factor, Type II/antagonists & inhibitors , Signal Transduction/immunology , Tumor Necrosis Factors/metabolism
14.
Phys Chem Chem Phys ; 26(14): 10711-10722, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38512217

ABSTRACT

Developing innovative platinum-based electrocatalysts and enhancing their efficiency are crucial for advancing high-performance fuel cell technology. In this study, we employed DFT calculations to provide a theoretical basis for interpreting the impact of graphene coatings on various Pt surfaces on oxygen reduction reaction (ORR) catalytic activity, which are currently applied as protective layers in experiments. We comprehensively assess the geometric and electronic properties of Pt(100), Pt(110), and Pt(111) surfaces in comparison to their graphene-coated counterparts, revealing different adsorption behaviors of O2 across these surfaces. The ORR mechanisms on different Pt surfaces show distinct rate-determining steps, with Pt(111) showing the highest ORR activity, followed by Pt(110) and Pt(100). Graphene coatings play a key role in enhancing charge transfer from the surface, resulting in modifications of O2 adsorption. Despite influencing ORR kinetics, these graphene-coated surfaces demonstrate competitive catalytic activity compared to their bare counterparts. Notably, Pt(111) with a graphene coating exhibits the lowest activation energy among graphene-coated surfaces. Our calculations also suggest that the ORR can occur directly on non-defective Pt@graphene surfaces rather than being restricted to exposed Pt centers due to point defects on graphene. Furthermore, our work highlights the potential of nitrogen doping onto the Pt(111)@C surface to further enhance ORR activity. This finding positions nitrogen-doped Pt@C as a promising electrocatalyst for advancing electrochemical technologies.

15.
Sci Technol Adv Mater ; 25(1): 2292485, 2024.
Article in English | MEDLINE | ID: mdl-38259326

ABSTRACT

Among various metal-organic frameworks (MOFs), the zeolitic imidazole framework (ZIF), constructed by the regular arrangement of 2-methylimidazole and metal ions, has garnered significant attention due to its distinctive crystals and pore structures. Variations in the sizes and shapes of ZIF crystals have been reported by changing the synthesis parameters, such as the molar ratios of organic ligands to metal ions, choice of solvents, and temperatures. Nonetheless, the giant ZIF-8 single crystals beyond the typical range have rarely been reported. Herein, we present the synthesis of millimeter-scale single crystal ZIF-8 using the solvothermal method in N,N-diethylformamide. The resulting 1-mm single crystal is carefully characterized through N2 adsorption-desorption isotherms, scanning electron microscopy, and other analytical techniques. Additionally, single-crystal X-ray diffraction is employed to comprehensively investigate the framework's mobility at various temperatures.


Millimeter-sized ZIF-8 single crystals were synthesized using the solvothermal method. These crystals exhibit a notable BET surface area of 1681 m2∙g−1 and demonstrate a reversible change in their crystal structure.

16.
Sci Technol Adv Mater ; 25(1): 2322458, 2024.
Article in English | MEDLINE | ID: mdl-38440402

ABSTRACT

A series of porous organic polymers based on a singlet oxygen generating oxoporphyinogen ('OxP') has been successfully prepared from a pseudotetrahedral OxP-tetraamine precursor (OxP(4-NH2Bn)4) by its reaction with tetracarboxylic acid dianhydrides under suitable conditions. Of the compounds studied, those containing naphthalene (OxP-N) and perylene (OxP-P) spacers, respectively, have large surface areas (~530 m2 g-1). On the other hand, the derivative with a simple benzene spacer (OxP-B) exhibits the best 1O2 generating capability. Although the starting OxP-tetraamine precursor is a poor 1O2 generator, its incorporation into OxP POPs leads to a significant enhancement of 1O2 productivity, which is largely due to the transformation of NH2 groups to electron-withdrawing diimides. Overall 1O2 production efficacy of OxP-POPs under irradiation by visible light is significantly improved over the common reference material PCN-222. All the materials OxP-B, OxP-N and OxP-P promote oxidation of thioanisole involving conversion of ambient triplet state oxygen to singlet oxygen under visible light irradiation and its reaction with the sulfide. Although the reaction rate of the oxidation promoted by OxP POPs is generally lower than for conventional materials (such as PCN-222) or previously studied OxP derivatives, undesired overoxidation of the substrate to methyl phenyl sulfone is suppressed. For organic sulfides, selectivity of oxidation is especially important for detoxification of mustard gas (bis(2-chloroethyl)sulfide) or similarly toxic compounds since controlled oxidation leads to the low toxicity bis(2-chloroethyl)sulfoxide while overoxidation leads to intoxification (since bis(2-chloroethyl)sulfone presents greater toxicity to humans than the sulfide substrate). Therefore, OxP POPs capable of promoting selective oxidation of sulfides to sulfoxides have excellent potential to be used as mild and selective detoxification agents.


Oxoporphyrinogen (OxP) is a unique chromophore compound in that it is intrinsically de-aggregated allowing large quantum yields of singlet oxygen generation. Due to its structure, OxP is also an ideal building block for porous systems. In this work, we describe the first incorporation of OxP in highly stable microporous polymers strongly enhanced singlet oxygen generation for selective oxidation of organic sulfides to sulfoxides (as a model reaction) under heterogeneous conditions. The novelty of this work lies in the high stability and easy recovery of the materials, the synergetic enhancement of singlet oxygen generation in the polymers over the starting OxP, and the excellent selectivity for the oxidation reaction.

17.
Chem Soc Rev ; 52(14): 4755-4832, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37403690

ABSTRACT

Diversification of polymer waste recycling is one of the solutions to improve the current environmental scenario. Upcycling is a promising strategy for converting polymer waste into molecular intermediates and high-value products. Although the catalytic transformations into small molecules have been actively discussed, the methods and characteristics of upcycling into new materials have not yet been addressed. Recently, the functionalisation of polymer wastes (polyethylene terephthalate bottles, polypropylene surgical masks, rubber tires, etc.) and their conversion into new materials with enhanced functionality have been proposed as an appealing alternative for dealing with polymer waste recycling/treatment. In this review, the term 'functional upcycling' is introduced to designate any method of post-polymerisation modification or surface functionalisation without considerable polymer chain destruction to produce a new upcycled material with added value. This review explores the functional upcycling strategy with detailed consideration of the most common polymers, i.e., polystyrene, poly(methyl methacrylate), polyethylene, polypropylene, polyurethane, polyethylene terephthalate, polyvinyl chloride, polycarbonate, and rubber. We discuss the composition of plastic waste, reactivity, available physical/chemical agents for modification, and the interconnection between their properties and application. To date, upcycled materials have been successfully applied as adsorbents (including CO2), catalysts, electrode materials for energy storage and sensing, demonstrating a high added value. Importantly, the reviewed reports indicated that the specific performance of upcycled materials is generally comparable or higher than that of similar materials prepared from virgin polymer feedstock. All these advantages promote functional upcycling as a promising diversification approach against the common postprocessing methods employed for polymer waste. Finally, to identify the limitations and suggest future scope of research for each polymer, we comparatively analysed the aspects of functional upcycling with those of chemical and mechanical recycling, considering the energy and resource costs, toxicity of the used chemicals, environmental footprint, and the value added to the product.

18.
Nano Lett ; 23(12): 5424-5429, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37289968

ABSTRACT

Bi2Se3 is a semiconductive material possessing a bandgap of 0.3 eV, and its unique band structure has paved the way for diverse applications. Herein, we demonstrate a robust platform for synthesizing mesoporous Bi2Se3 films with uniform pore sizes via electrodeposition. Block copolymer micelles act as soft templates in the electrolyte to create a 3D porous nanoarchitecture. By controlling the length of the block copolymer, the pore size is adjusted to 9 and 17 nm precisely. The nonporous Bi2Se3 film exhibits a tunneling current in a vertical direction of 52.0 nA, but upon introducing porosity (9 nm pores), the tunneling current increases significantly to 684.6 nA, suggesting that the conductivity of Bi2Se3 films is dependent on the pore structure and surface area. The abundant porous architecture exposes a larger surface area of Bi2Se3 to the surrounding air within the same volume, thereby augmenting its metallic properties.

19.
Mod Rheumatol ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38564322

ABSTRACT

OBJECTIVES: To define groups and characterize differences in the prognosis of patients with adult-onset Still's disease (AOSD). METHODS: We performed a retrospective cohort study. Patients with AOSD were grouped using hierarchical unsupervised cluster analysis according to age, sex, clinical features, and laboratory data. The primary endpoints were overall survival and drug-free remission rate. RESULTS: A total of 153 patients with AOSD were placed into four clusters. Those in Cluster 1 had a young onset, tended to be female, and had fewer complications and moderate ferritin concentrations. Those in Cluster 2 had a young onset and had more complications and higher ferritin concentrations. Those in Cluster 3 had a young onset, tended to be male, and had no lymphadenopathy and fewer complications. Those in Cluster 4 had an older onset, tended to be female, and had more complications and higher ferritin concentrations. Overall survival tended to be lower (P = .0539) in Cluster 4, and drug-free remission was higher in Clusters 1, 2, and 3 [hazard ratios (HRs) 2.19, 3.37, and 3.62 vs. Cluster 4, respectively]. CONCLUSIONS: Four groups of AOSD that have distinct clinical manifestations, ferritin concentrations, severity, and drug-free remission rate were identified, which were lowest in Cluster 4. Graphical Abstract.

20.
Angew Chem Int Ed Engl ; : e202405571, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757486

ABSTRACT

The rational design of efficient catalysts for uric acid (UA) electrooxidation, as well as the establishment of structure-activity relationships, remains a critical bottleneck in the field of electrochemical sensing. To address these challenges, herein, a hybrid catalyst that integrates carbon-supported Pt nanoparticles and nitrogen-coordinated Mn single atoms (PtNPs/MnNC) is developed. The metal-metal interaction during annealing affords the construction of metallic-bonded Pt-Mn pairs between PtNPs and Mn single atoms, facilitating the electron transfer from PtNPs to the support and thereby optimizing the electronic structure of catalysts. More importantly, experiments and theoretical calculations provide visual proof for the 'incipient hydrous oxide adatom mediator' mechanism for UA oxidation. The Pt-Mn pairs first adsorb OH* to construct the bridged Pt-OH-Mn mediators to serve as a highly active intermediate for N-H bond dissociation and proton transfer. Benefiting from the unique electronic and geometric structure of the catalytic center and reactive intermediates, PtNPs/MnNC exhibits superior electrooxidation performance. The electrochemical sensor based on PtNPs/MnNC enables sensitive detection and discrimination of UA and dopamine in serum samples. This work offers new insights into the construction of novel electrocatalysts for sensitive sensing platforms.

SELECTION OF CITATIONS
SEARCH DETAIL