Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Fish Shellfish Immunol ; 132: 108503, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36581255

ABSTRACT

In the present study, the polyimmunoglobulin receptor-like (pIgRL) of large yellow croaker (Larimichthys crocea) was first cloned and characterized. LcpIgRL's full-length cDNA was 1610 bp, encoding 377 amino acids, and the protein's predicted molecular weight was 41.9 kDa, containing two immunoglobulin-like structural domains. The transcript levels of LcpIgRL in different tissues of healthy large yellow croaker were examined by real-time fluorescence quantitative PCR, and the results showed that the gills and head kidney had the highest levels. Within 36 h of the large yellow croaker being infected with Vibrio harveyi, pIgRL mRNA first increased and then decreased in all determined tissues, with the highest expression in the skin and hindgut. Furthermore, a recombinant protein of the extracellular region of LcpIgRL was expressed in E. coli BL21, and a murine rLcpIgRL polyclonal antibody was prepared, which could react specifically with the natural LcpIgRL in skin mucus, but no natural LcpIgRL was detected in serum. Meanwhile, it was found that the rLcpIgRL could bind to the recombinant IgM and the natural IgM, indicating that LcpIgRL could mediate the transport of IgM in mucus. In addition, rLcpIgRL binds to Aeromonas hydrophila and V. harveyi, as well as lipopolysaccharide (LPS) and various saccharides, and reduced binding to bacteria was observed under LPS treatment, suggesting that LcpIgRL can bind to bacteria to prevent infection and that saccharide binding is an important mechanism of interaction between pIgRL and bacteria.


Subject(s)
Perciformes , Receptors, Polymeric Immunoglobulin , Animals , Mice , Receptors, Polymeric Immunoglobulin/genetics , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Escherichia coli/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Immunoglobulin M/genetics , Fish Proteins/chemistry , Phylogeny
2.
J Biol Chem ; 296: 100374, 2021.
Article in English | MEDLINE | ID: mdl-33548228

ABSTRACT

The recent discovery of the cancer-associated E76K mutation in histone H2B (H2BE76-to-K) in several types of cancers revealed a new class of oncohistone. H2BE76K weakens the stability of histone octamers, alters gene expression, and promotes colony formation. However, the mechanism linking the H2BE76K mutation to cancer development remains largely unknown. In this study, we knock in the H2BE76K mutation in MDA-MB-231 breast cancer cells using CRISPR/Cas9 and show that the E76K mutant histone H2B preferentially localizes to genic regions. Interestingly, genes upregulated in the H2BE76K mutant cells are enriched for the E76K mutant H2B and are involved in cell adhesion and proliferation pathways. We focused on one H2BE76K target gene, ADAM19 (a disintegrin and metalloproteinase-domain-containing protein 19), a gene highly expressed in various human cancers including breast invasive carcinoma, and demonstrate that H2BE76K directly promotes ADAM19 transcription by facilitating efficient transcription along the gene body. ADAM19 depletion reduced the colony formation ability of the H2BE76K mutant cells, whereas wild-type MDA-MB-231 cells overexpressing ADAM19 mimics the colony formation phenotype of the H2BE76K mutant cells. Collectively, our data demonstrate the mechanism by which H2BE76K deregulates the expression of genes that control oncogenic properties through a combined effect of its specific genomic localization and nucleosome destabilization effect.


Subject(s)
ADAM Proteins/genetics , Breast Neoplasms/genetics , Histones/genetics , ADAM Proteins/metabolism , Breast Neoplasms/metabolism , Carcinogenesis/genetics , Cell Line, Tumor , Female , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Histones/metabolism , Humans , Mutation/genetics , Nucleosomes , Oncogenes/genetics , Polymorphism, Single Nucleotide/genetics
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(6): 675-680, 2022 Jun 15.
Article in Zh | MEDLINE | ID: mdl-35762435

ABSTRACT

OBJECTIVES: To study the metabolic mechanism of neonatal sepsis at different stages by analyzing the metabolic pathways involving the serum metabolites with significant differences in neonates with sepsis at different time points after admission. METHODS: A total of 20 neonates with sepsis who were hospitalized in the Department of Neonatology, Hunan Provincial People's Hospital, from January 1, 2019 to January 1, 2020 were enrolled as the sepsis group. Venous blood samples were collected on days 1, 4, and 7 after admission. Ten healthy neonates who underwent physical examination during the same period were enrolled as the control group. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used for the metabonomic analysis of serum samples to investigate the change in metabolomics in neonates with sepsis at different time points. RESULTS: On day 1 after admission, the differentially expressed serum metabolites between the sepsis and control groups were mainly involved in the biosynthesis of terpenoid skeleton. For the sepsis group, the differentially expressed serum metabolites between days 1 and 4 after admission were mainly involved in pyruvate metabolism, and those between days 4 and 7 after admission were mainly involved in the metabolism of cysteine and methionine. The differentially expressed serum metabolites between days 1 and 7 after admission were mainly involved in ascorbic acid metabolism. CONCLUSIONS: The metabolic mechanism of serum metabolites varies at different stages in neonates with sepsis and is mainly associated with terpenoid skeleton biosynthesis, pyruvate metabolism, cysteine/methionine metabolism, and ascorbic acid metabolism.


Subject(s)
Neonatal Sepsis , Sepsis , Ascorbic Acid , Cysteine , Humans , Infant, Newborn , Metabolomics , Methionine , Pyruvates
4.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(7): 711-715, 2020 Jul.
Article in Zh | MEDLINE | ID: mdl-32669166

ABSTRACT

OBJECTIVE: To study the value of fractional anisotropy (FA) of regions of interest (ROI) on magnetic resonance diffusion tensor imaging (DTI) in bilirubin-induced neurological dysfunction in neonates. METHODS: A total of 91 neonates with hyperbilirubinemia who were hospitalized from January 2017 to January 2018 were enrolled. According to the peak level of total serum bilirubin, they were divided into three groups: mild/moderate increase (n=45), severe increase (n=35), and extremely severe increase (n=11). According to the presence or absence of abnormal neurological manifestations, they were divided into two groups: neurological dysfunction (n=20) and non-neurological dysfunction (n=71). Ten healthy full-term infants were enrolled as the control group. Head DTI was performed for all neonates to measure the FA values of the bilateral globus pallidus, the anterior limb of the internal capsule, the posterior limb of the internal capsule, and the cerebellar dentate nucleus. RESULTS: The extremely severe increase group had significantly lower FA values of the globus pallidus than the control, mild/moderate increase, and severe increase groups (P<0.05). The severe increase group had significantly lower FA values of the globus pallidus than the control group (P<0.05). The extremely severe increase group had significantly lower FA values of the posterior limb of the internal capsule than the control, mild/moderate increase, and severe increase groups (P<0.05). The neurological dysfunction group had significantly lower FA values of the globus pallidus and the posterior limb of the internal capsule than the non-neurological dysfunction group (P<0.05). CONCLUSIONS: Serum bilirubin level combined with the changes in the DTI FA values of the globus pallidus and the posterior limb of the internal capsule can be used to predict the injury of cerebral nuclei and white matter fibers.


Subject(s)
Diffusion Tensor Imaging , White Matter , Anisotropy , Bilirubin , Brain , Diffusion Magnetic Resonance Imaging , Humans , Infant, Newborn , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
5.
J Neurochem ; 148(4): 550-560, 2019 02.
Article in English | MEDLINE | ID: mdl-30451284

ABSTRACT

Protein Phosphatase Mg2+ /Mn2+ -Dependent 1K (PPM1K),also named as PP2Cm or branched-chain α-ketoacid dehydrogenase complex phosphatase, is a member of the metal-dependent phosphatase family and an important metabolic regulator. Single nucleotide polymorphisms (SNPs) in PPM1K contributing to protein functional defects have been found to be associated with numerous human diseases, such as cardiovascular disease, maple syrup urine disease, type 2 diabetes, and neurological disease. PPM1K N94K is an identified missense mutant produced by one of the SNPs in the human PPM1K coding sequence. However, the effects of the N94K mutant on its activity and structural property have not been defined. Here, we performed a detailed enzymological study using steady-state kinetics in the presence of pNPP or phospho-peptide substrates and crystallographic analyses of the wild-type and N94K PPM1K. The PPM1K-N94K significantly impaired its Mg2+ -dependent catalytic activity and structural analysis demonstrated that the N94K mutation induced a conformational change in the key residue in coordinating the Mg2+ in the active site. Specifically, three Mg2+ were located in the active site of the PPM1K N94K instead of two Mg2+ in the PPM1K wild type. Therefore, our results provide a structure basis for the metal ion-dependent PPM1K-N94K phosphatase activity.


Subject(s)
Protein Phosphatase 2C/chemistry , Protein Phosphatase 2C/genetics , Biocatalysis , Humans , Mutation , Structure-Activity Relationship
6.
Circ Res ; 121(6): 617-627, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28743805

ABSTRACT

RATIONALE: Cardiac fibrosis is a common feature in left ventricular remodeling that leads to heart failure, regardless of the cause. EphrinB2 (erythropoietin-producing hepatoma interactor B2), a pivotal bidirectional signaling molecule ubiquitously expressed in mammals, is crucial in angiogenesis during development and disease progression. Recently, EphrinB2 was reported to protect kidneys from injury-induced fibrogenesis. However, its role in cardiac fibrosis remains to be clarified. OBJECTIVE: We sought to determine the role of EphrinB2 in cardiac fibrosis and the underlying mechanisms during the pathological remodeling process. METHODS AND RESULTS: EphrinB2 was highly expressed in the myocardium of patients with advanced heart failure, as well as in mouse models of myocardial infarction and cardiac hypertrophy induced by angiotensin II infusion, which was accompanied by myofibroblast activation and collagen fiber deposition. In contrast, intramyocardial injection of lentiviruses carrying EphrinB2-shRNA ameliorated cardiac fibrosis and improved cardiac function in mouse model of myocardial infarction. Furthermore, in vitro studies in cultured cardiac fibroblasts demonstrated that EphrinB2 promoted the differentiation of cardiac fibroblasts into myofibroblasts in normoxic and hypoxic conditions. Mechanistically, the profibrotic effect of EphrinB2 on cardiac fibroblast was determined via activating the Stat3 (signal transducer and activator of transcription 3) and TGF-ß (transforming growth factor-ß)/Smad3 (mothers against decapentaplegic homolog 3) signaling. We further determined that EphrinB2 modulated the interaction between Stat3 and Smad3 and identified that the MAD homology 2 domain of Smad3 and the coil-coil domain and DNA-binding domain of Stat3 mediated the interaction. CONCLUSIONS: This study uncovered a previously unrecognized profibrotic role of EphrinB2 in cardiac fibrosis, which is achieved through the interaction of Stat3 with TGF-ß/Smad3 signaling, implying a promising therapeutic target in fibrotic diseases and heart failure.


Subject(s)
Ephrin-B2/metabolism , Myocardium/pathology , STAT3 Transcription Factor/metabolism , Signal Transduction , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Animals , Cells, Cultured , Ephrin-B2/genetics , Fibrosis , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Myofibroblasts/cytology , Myofibroblasts/metabolism , Oxygen/metabolism
7.
Biochim Biophys Acta ; 1863(11): 2784-2794, 2016 11.
Article in English | MEDLINE | ID: mdl-27566322

ABSTRACT

Interleukin-17A, a pro-inflammatory cytokine, has a direct proapoptotic effect on cardiomyocytes. However, the specific mechanism has not been clarified. In the present study, an in-vitro model of cardiomyocyte apoptosis induced by IL-17A stimulation was employed and the roles of iNOS and Stat3 involved were investigated. Our data showed that the neonatal mouse cardiomyocytes express IL-17 receptors: IL-17RA and IL-17RC, but did not express IL-17A. Exogenous IL-17A significantly induces iNOS expression and hence the cardiomyocyte apoptosis. Moreover, IL-17A-induced cardiomyocyte apoptosis can be achieved directly via iNOS activation. We further showed that exogenous IL-17A simultaneously triggers Stat3 activation, which in turn inhibits IL-17A-induced iNOS expression in cardiomyocytes. And both ChIP and dual-luciferase results confirmed that Stat3 directly inhibits transcriptional activities of iNOS via binding to its specific promoter region. Consistent with these data, silencing of Stat3 in fact can aggravate IL-17A-triggered cardiomyocyte apoptosis. Finally, using an in vivo myocardial ischemia/reperfusion injury model, we verified that Stat3 inhibition increased iNOS expression and exacerbated cardiomyocyte apoptosis. Thus, our data strongly support the notion that Stat3 plays a compensatory anti-apoptotic role in IL-17A/iNOS-mediated cardiomyocyte apoptosis via inhibiting iNOS transcription, providing a novel molecular mechanism of apoptosis regulation and complicated interactions between IL-17A/iNOS and IL-17A/Stat3 signalings.


Subject(s)
Apoptosis , Interleukin-17/metabolism , Myocardial Infarction/enzymology , Myocardial Reperfusion Injury/enzymology , Myocytes, Cardiac/enzymology , Nitric Oxide Synthase Type II/metabolism , STAT3 Transcription Factor/metabolism , Animals , Apoptosis/drug effects , Binding Sites , Cells, Cultured , Disease Models, Animal , Interleukin-17/pharmacology , Male , Mice, Inbred C57BL , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/drug effects , Nitric Oxide Synthase Type II/genetics , Phosphorylation , Promoter Regions, Genetic , Receptors, Interleukin-17/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , Signal Transduction , Time Factors , Transfection , Tyrphostins/pharmacology
9.
Angiogenesis ; 19(3): 297-309, 2016 07.
Article in English | MEDLINE | ID: mdl-27216867

ABSTRACT

Ischemic cardiovascular disease remains one of the leading causes of morbidity and mortality in the world. Proangiogenic therapy appears to be a promising and feasible strategy for the patients with ischemic cardiovascular disease, but the results of preclinical and clinical trials are limited due to the complicated mechanisms of angiogenesis. Facilitating the formation of functional vessels is important in rescuing the ischemic cardiomyocytes. EphrinB2/EphB4, a novel pathway in angiogenesis, plays a critical role in both microvascular growth and neovascular maturation. Hence, investigating the mechanisms of EphrinB2/EphB4 pathway in angiogenesis may contribute to the development of novel therapeutics for ischemic cardiovascular disease. Previous reviews mainly focused on the role of EphrinB2/EphB4 pathway in embryo vascular development, but their role in postnatal angiogenesis in ischemic heart disease has not been fully illustrated. Here, we summarized the current knowledge of EphrinB2/EphB4 in angiogenesis and their interaction with other angiogenic pathways in ischemic cardiovascular disease.


Subject(s)
Ephrin-B2/physiology , Myocardial Ischemia/drug therapy , Myocardial Ischemia/physiopathology , Neovascularization, Physiologic , Receptor, EphB4/physiology , Animals , Ephrin-B2/chemistry , Humans , Intracellular Signaling Peptides and Proteins/physiology , Ligands , Membrane Proteins/physiology , Neovascularization, Physiologic/drug effects , Receptor, EphB4/chemistry , Receptors, Notch/physiology , Signal Transduction , Vascular Endothelial Growth Factor A/physiology
10.
Arch Toxicol ; 90(5): 1193-209, 2016 May.
Article in English | MEDLINE | ID: mdl-26082307

ABSTRACT

Previous studies have already demonstrated that mitochondria play a key role in Pb-induced apoptosis in primary cultures of rat proximal tubular (rPT) cells. To further clarify the underlying mechanism of Pb-induced mitochondrial apoptosis, this study was designed to investigate the role of mitochondrial permeability transition (MPT) and its regulatory components in Pb-induced apoptosis in rPT cells. Mitochondrial permeability transition pore (MPTP) opening together with disruption of mitochondrial ultrastructure, translocation of cytochrome c from mitochondria to cytoplasm and subsequent caspase-3 activation were observed in this study, suggesting that MPT is involved in Pb-induced apoptosis in rPT cells. Simultaneously, Pb-induced caspase-3 activation and apoptosis can be significantly inhibited by three MPTP inhibitors (CsA, DIDS, BA), which target different regulatory components of MPTP (Cyp-D, VDAC, ANT), respectively, demonstrating that Cyp-D, VDAC and ANT participate in MPTP regulation during lead exposure. Moreover, decreased ATP levels and increased ADP/ATP ratio induced by lead treatment can be significantly reversed by BA, indicating that Pb-mediated ANT dysfunction resulted in ATP depletion. In addition, up-regulation of VDAC-1, ANT-1 together with down-regulation of Cyp-D, VDAC-2 and ANT-2 at both the levels of transcription and translation were revealed in rPT cells under lead exposure conditions. In conclusion, Pb-mediated mitochondrial apoptosis in rPT cells is dependent on MPTP opening. Different expression levels in each isoform of three regulatory components contribute to alteration in their functions, which may promote the MPTP opening.


Subject(s)
Apoptosis/drug effects , Kidney Tubules, Proximal/drug effects , Mitochondria/drug effects , Mitochondrial Membrane Transport Proteins/drug effects , Organometallic Compounds/toxicity , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Caspase 3/metabolism , Cells, Cultured , Cytochromes c/metabolism , Dose-Response Relationship, Drug , Enzyme Activation , Gene Expression Regulation , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/ultrastructure , Male , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Organometallic Compounds/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects
11.
Heart Fail Rev ; 20(1): 25-38, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24756455

ABSTRACT

Myocardial remodeling following myocardial infarction (MI) is emerging as key causes of chronic infarct mortality. Interleukin-6 is a classic pro-inflammatory cytokine needed to mount an effective immune response. It seems that interleukin-6 acts as an important role in the dynamic and superbly orchestrated process of innate immunity after MI. Interleukin-6 timely suppresses of innate immune signals to prevent the catastrophic consequences of uncontrolled inflammation on cardiac geometry and function, and thus tunes myocardial remodeling. A comprehensive understanding of biological processes of interleukin-6 in innate immunity leading to inflammatory response and disease-related ventricular remodeling is helpful to find the solution of chronic heart failure. To accomplish this, we reviewed the articles of interleukin-6 regard to inflammation, innate immunity, and cardiac remodeling. This review focuses on the role of interleukin-6 that dominates cell-mediated immunity, especially on neutrophils, monocytes, macrophages, and fibroblasts. In addition, we will also briefly discuss other inflammatory cytokines involved in this process within the paper.


Subject(s)
Heart Failure/physiopathology , Interleukin-6/immunology , Myocardial Infarction/physiopathology , Myocardium/immunology , Ventricular Remodeling/physiology , Animals , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Fibroblasts/immunology , Humans , Immunity, Cellular , Immunity, Innate , Inflammation/immunology , Macrophages/immunology , Mice , Mice, Knockout , Monocytes/immunology , Myocardial Infarction/immunology , Neutrophils/immunology
12.
Emerg Infect Dis ; 20(9): 1433-42, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25144604

ABSTRACT

Yunnan Province in China borders 3 countries (Vietnam, Laos, and Myanmar) in Southeast Asia. In the 1980s, a large-scale rabies epidemic occurred in this province, which subsided by the late 1990s. However, 3 human cases of rabies in 2000 indicated reemergence of the disease in 1 county. In 2012, rabies was detected in 77 counties; 663 persons died of rabies during this new epidemic. Fifty two rabies virus strains obtained during 2008-2012 were identified and analyzed phylogenetically by sequencing the nucleoprotein gene. Of the 4 clades identified, clades YN-A and YN-C were closely related to strains from neighboring provinces, and clade YN-B was closely related to strains from Southeast Asia, but formed a distinct branch. Rabies virus diversity might be attributed to dog movements among counties, provinces, and neighboring countries. These findings suggest that Yunnan Province is a focal point for spread of rabies between Southeast Asia and China.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Rabies virus/genetics , Rabies/epidemiology , Animals , Antigens, Viral/immunology , Asia, Southeastern/epidemiology , China/epidemiology , Dog Diseases/virology , Dogs , Female , Genes, Viral , Genetic Variation , Geography, Medical , Humans , Male , Molecular Sequence Data , Phylogeny , Rabies/virology , Rabies virus/classification , Rabies virus/immunology , Seasons , Sentinel Surveillance , Sequence Analysis, DNA , Spatial Analysis
13.
Int Immunopharmacol ; 133: 112081, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38652963

ABSTRACT

Acute pancreatitis (AP) is a prevalent gastrointestinal disorder. The immune response plays a crucial role in AP progression. However, the impact of immune regulatory checkpoint PD-L1 on severe acute pancreatitis (SAP) remains uncertain. Hence, this study aimed to examine the influence of PD-L1 on SAP. We assessed PD-L1 expression in neutrophils and monocytes obtained from SAP patients. We induced SAP in C57BL/6J mice, PD-L1 gene-deficient mice, and PD-L1 humanized mice using intraperitoneal injections of cerulein plus lipopolysaccharide. Prior to the initial cerulein injection, a PD-L1 inhibitor was administered. Pancreatic tissues were collected for morphological and immunohistochemical evaluation, and serum levels of amylase, lipase, and cytokines were measured. Flow cytometry analysis was performed using peripheral blood cells. The expression of PD-L1 in neutrophils and monocytes was significantly higher in SAP patients compared to healthy individuals. Likewise, the expression of PD-L1 in inflammatory cells in the peripheral blood of SAP-induced C57BL/6J mice was notably higher than in the control group. In mice with PD-L1 deficiency, SAP model exhibited lower pancreatic pathology scores, amylase, lipase, and cytokine levels compared to wild-type mice. PD-L1 deletion resulted in reduced neutrophil apoptosis, leading to an earlier peak in neutrophil apoptosis. Furthermore, it decreased early monocyte apoptosis and diminished the peak of T lymphocyte apoptosis. Within the SAP model, administration of a PD-L1 inhibitor reduced pancreatic pathology scores, amylase, lipase, and cytokine levels in both C57BL/6J mice and PD-L1 humanized mice. These findings suggest that inhibiting PD-L1 expression can alleviate the severity of SAP.


Subject(s)
Apoptosis , B7-H1 Antigen , Monocytes , Neutrophils , Pancreas , Pancreatitis , Animals , Female , Humans , Male , Mice , Middle Aged , Amylases/blood , Apoptosis/drug effects , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Ceruletide , Cytokines/metabolism , Disease Models, Animal , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Lipase/blood , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Monocytes/drug effects , Neutrophils/immunology , Neutrophils/drug effects , Pancreas/drug effects , Pancreas/immunology , Pancreas/pathology , Pancreatitis/immunology , Pancreatitis/chemically induced , Pancreatitis/drug therapy , Pancreatitis/pathology
14.
J Steroid Biochem Mol Biol ; 236: 106425, 2024 02.
Article in English | MEDLINE | ID: mdl-37984747

ABSTRACT

Sphingosine-1-phosphate (S1P) is biologically active lipid, leading to neuroinflammation and macrophage invasion in central nervous system, plays an important role in the development of multiple sclerosis (MS) model in experimental allergic encephalomyelitis (EAE) rats. Vitamin D is observed to be a key factor in regulating cell S1P levels. We detected vitamin D can alleviate the symptoms of EAE rats, but the exact mechanism is unclear. In PC12 cells, vitamin D can reverse S1P-induced cell death, but the signaling pathway unclear. This study was aimed to investigate S1P regulation mechanism or signaling pathway mediated by vitamin D in EAE and PC12 model. In our experiments, S1P and Sphingosine kinase type 1 (SphK1) mRNA and protein expression in EAE rats group, control group, vitamin D feeding group were detected by HPLC, ELISA, RT-PCR and western blot. PC12 cell death was detected by Propidium (PI) staining. VDR plasmid overexpression and RNA interference, immunofluorescence, real-time cell analysis, protein immunoblotting was used to detect SphK1 transcriptional regulation, cell-substrate attachment quality, the signaling pathway of cell apoptosis and inflammation related gene expression (Bax/Bcl-2, Casepase-3, Il-6, TGF-ß, TNF-α). Our study showed vitamin D can reverse the elevation of S1P level in EAE rats, reduce the severity and shorten the course of EAE. 1,25-(OH) 2D3 coupled with vitamin D receptor (VDR) inhibited SphK1 transcription. 1,25-(OH)2D3 significantly reduced PC12 cell death rate induced by S1P, in addition improved the cell substrate attachment quality. 1,25-(OH) 2D3 can block S1P-induced p-ERK activation and PI3K /Akt signaling pathway reduced Il-6, TGF-ß, TNF-α cytokine release and Bax/Bcl-2, Casepase-3 apoptosis protein expression. On the other hand, immunofluorescence staining showed 1,25-(OH) 2D3 can increase the expression of neuronal perinuclear protein MAP2 in PC12 cells probably protect nerve cells further. In summary, the ameliorative effect of vitamin D was derived from its ability to reduce S1P levels, provides an idea for vitamin D as a combination therapy for disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Phosphotransferases (Alcohol Group Acceptor) , Rats , Animals , Vitamin D/pharmacology , Tumor Necrosis Factor-alpha/genetics , Interleukin-6 , bcl-2-Associated X Protein , Vitamins , Lysophospholipids/metabolism , Sphingosine/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Transforming Growth Factor beta
15.
J Virol ; 85(19): 9847-53, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21697481

ABSTRACT

Japanese encephalitis virus (JEV), a mosquito-borne zoonotic pathogen, is one of the major causes of viral encephalitis worldwide. Previous phylogenetic studies based on the envelope protein indicated that there are four genotypes, and surveillance data suggest that genotype I is gradually replacing genotype III as the dominant strain. Here we report an evolutionary analysis based on 98 full-length genome sequences of JEV, including 67 new samples isolated from humans, pigs, mosquitoes, midges. and bats in affected areas. To investigate the relationships between the genotypes and the significance of genotype I in recent epidemics, we estimated evolutionary rates, ages of common ancestors, and population demographics. Our results indicate that the genotypes diverged in the order IV, III, II, and I and that the genetic diversity of genotype III has decreased rapidly while that of genotype I has increased gradually, consistent with its emergence as the dominant genotype.


Subject(s)
Encephalitis Virus, Japanese/classification , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/virology , Genome, Viral , Animals , Asia/epidemiology , Cluster Analysis , Encephalitis Virus, Japanese/isolation & purification , Genotype , Humans , Molecular Sequence Data , Phylogeny , RNA, Viral/genetics , Sequence Analysis, DNA
16.
World J Gastroenterol ; 28(15): 1588-1600, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35582133

ABSTRACT

BACKGROUND: The severity of acute pancreatitis in pregnancy (APIP) is correlated with higher risks of maternal and fetal death. AIM: To develop a nomogram that could predict moderately severe and severe acute pancreatitis in pregnancy (MSIP). METHODS: Patients with APIP admitted to West China Hospital between January 2012 and December 2018 were included in this study. They were divided into mild acute pancreatitis in pregnancy (MAIP) and MSIP. Characteristic parameters and laboratory results were collected. The training set and test set were randomly divided at a ratio of 7:3. Least absolute shrinkage and selection operator regression was used to select potential prognostic factors. A nomogram was developed by logistic regression. A random forest model was used to validate the stability of the prediction factors. Receiver operating characteristic curves and calibration curves were used to evaluate the model's predictive performance. RESULTS: A total of 190 patients were included in this study. A total of 134 patients (70.5%) and 56 patients (29.5%) were classified as having MAIP and MSIP, respectively. Four independent predictors (lactate dehydrogenase, triglyceride, cholesterol, and albumin levels) were identified for MSIP. A nomogram prediction model based on these factors was established. The model had areas under the curve of 0.865 and 0.853 in the training and validation sets, respectively. The calibration curves showed that the nomogram has a good consistency. CONCLUSION: A nomogram including lactate dehydrogenase, triglyceride, cholesterol, and albumin levels as independent predictors was built with good performance for MSIP prediction.


Subject(s)
Pancreatitis , Acute Disease , Albumins , Cholesterol , Female , Humans , L-Lactate Dehydrogenase , Nomograms , Pancreatitis/diagnosis , Pregnancy , Triglycerides
17.
J Bone Metab ; 29(1): 51-57, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35325983

ABSTRACT

BACKGROUND: Spine-hip discordance (SHD) increases fracture risk. However, its prevalence and clinical implications have not been investigated in patients with hip fractures. This study determined the prevalence and association of SHD with mortality and investigated the cause of SHD in patients with hip fractures. METHODS: This study included patients admitted for fragility hip fractures between 2011 and 2020. All patients underwent dual energy X-ray absorptiometry and anteroposterior and lateral views of the lumbosacral spine during admission. Data on demographics, diagnosis, American Society of Anesthesiologists score, and mortality were collected. A T-score difference of more than 1.5 between L1-4 and the femur neck was considered discordant, and 3 groups (lumbar low [LL] discordance, no discordance [ND], and femur neck low [FL] discordance) were compared. In the discordance group, lumbar radiographs were reviewed to determine the cause of discordance. RESULTS: Among 1,220 eligible patients, 130 were excluded due to patient refusal or bilateral hip implantation; therefore, this study included 1,090 patients (271 male and 819 female). The prevalence of LL, ND, and FL was 4.4%, 66.4% and 29.2% in men and 3.9%, 76.1%, and 20.0% women. Mortality was not associated with discordance. The most common causes of discordance were physiological in the LL group and pathological in the FL group for both sexes. CONCLUSIONS: Patients with hip fractures showed lower rates of ND and higher rates of FL compared to the general population. True discordance should be carefully judged for pathological and artifact reasons. The clinical implications of SHD require further investigation.

18.
Ann Transl Med ; 10(22): 1214, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36544673

ABSTRACT

Background: With uncontrolled inflammatory progression, acute pancreatitis (AP) can progress to severe acute pancreatitis (SAP). Inflammation and parenchymal cell death are key pathologic responses of AP. Toll-like receptor 4 (TLR4) plays a pro-inflammatory role in AP. Myeloid differentiation primary response protein 88 (MyD88) is the most essential utilized adaptor of TLR4, but its role in AP remains unclear. We investigated the potential role of MyD88 in the pathogenesis of AP. Methods: An AP model was induced by administering either cerulein or L-arginine to wild-type or MyD88-deficient mice. Additionally, receptor-interacting protein kinase 1 (RIP1) inhibitor necrostatin-1 (Nec-1) was administered to the MyD88-/- mice. The severity of AP was determined by measuring serum amylase and lipase activities, quantifying pancreatic myeloperoxidase (MPO) activity, and histological examination. The effects of MyD88 deletion on cell death and the inflammatory response were determined by measuring apoptosis, necrosis, and inflammatory cytokines. Western blot was used to assess the necrotic mediators, RIP1 and RIP3. Results: The deletion of MyD88 resulted in more severe acute experimental pancreatitis as assessed by increased amylase and lipase activities, increased pancreatic MPO activity, a reduced anti-inflammatory response, reduced apoptosis, and increased necrosis. Additionally, Nec-1 treatment significantly reduced necrosis in the MyD88-/- mice. Conclusions: The deletion of MyD88 inhibited the TLR4/MyD88-dependent pathway mediated protective immune defense response and enhanced TLR4/MyD88-independent TRIF pathway-mediated pancreatic necrosis, which in turn aggravated the severity of AP. The critical role of MyD88 in immune defense response and cell death indicates that MyD88 represents a potential therapeutic target in the management of AP.

19.
World J Gastrointest Surg ; 13(10): 1258-1266, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34754393

ABSTRACT

BACKGROUND: Deep vein thrombosis (DVT) may cause pulmonary embolus, leading to late deaths. The systemic inflammatory and hypercoagulable state of moderate and severe acute pancreatitis (non-mild acute pancreatitis, NMAP) patients may contribute to the development of venous thromboembolism. Accurate prediction of DVT is conducive to clinical decisions. AIM: To develop and validate a potential new prediction nomogram model for the occurrence of DVT in NMAP. METHODS: NMAP patient admission between 2013.1.1 and 2018.12.31 at the West China Hospital of Sichuan University was collected. A total of 220 patients formed the training set for nomogram development, and a validation set was constructed using bootstrapping with 100 resamplings. Univariate and multivariate logistic regression analyses were used to estimate independent risk factors associated with DVT. The independent risk factors were included in the nomogram. The accuracy and utility of the nomogram were evaluated by calibration curve and decision curve analysis, respectively. RESULTS: A total of 220 NMAP patients over 60 years old were enrolled for this analysis. DVT was detected in 80 (36.4%) patients. The final nomogram included age, sex, surgery times, D-dimer, neutrophils, any organ failure, blood culture, and classification. This model achieved good concordance indexes of 0.827 (95%CI: 0.769-0.885) and 0.803 (95%CI: 0.743-0.860) in the training and validation sets, respectively. CONCLUSION: We developed and validated a prediction nomogram model for DVT in older patients with NMAP. This may help guide doctors in making sound decisions regarding the administration of DVT prophylaxis.

20.
Ann Transl Med ; 9(2): 178, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33569480

ABSTRACT

Bosworth fracture-dislocation of ankle is a rare and irreducible type of ankle injury, with a high incidence of complication. This type of fracture was defined originally as entrapment of the proximal fragment of the fibula behind the posterior tubercle of the distal tibia. Recently, many variants of this type of fracture dislocation have been reported, but all of those reports included the syndesmosis ligament injury of ankle. Here, we report a case of a particularly rare variant of Bosworth fracture-dislocation without syndesmosis ligament injury of ankle. A 48-year-old male presented with a Bosworth fracture dislocation with entrapment of proximal fragment behind the tibia. After temporary treatment in emergency department was applied, emergency open reduction and internal fixation with a plate and screws was performed due to irreducibility of the fracture fragment. The fractured lateral malleolus was entrapped behind the tibia and rupture of the interosseous ligament was found intraoperatively. The anterior inferior tibiofibular ligament, a part of syndesmosis ligament of ankle, was grossly intact and no abnormal findings was seen by fluoroscopy with external rotational stress. Moreover, the deltoid ligament was found to be normal in ultrasonography. There were no complications after surgery and the patient showed full functional recovery at 2 years follow up. These fractures will frequently be irreducible and should be considered for open reduction and internal fixation with the careful evaluation of injury mechanisms with syndesmotic stability.

SELECTION OF CITATIONS
SEARCH DETAIL