Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Magn Reson Med ; 91(5): 1936-1950, 2024 May.
Article in English | MEDLINE | ID: mdl-38174593

ABSTRACT

PURPOSE: Widely used conventional 2D T2 * approaches that are based on breath-held, electrocardiogram (ECG)-gated, multi-gradient-echo sequences are prone to motion artifacts in the presence of incomplete breath holding or arrhythmias, which is common in cardiac patients. To address these limitations, a 3D, non-ECG-gated, free-breathing T2 * technique that enables rapid whole-heart coverage was developed and validated. METHODS: A continuous random Gaussian 3D k-space sampling was implemented using a low-rank tensor framework for motion-resolved 3D T2 * imaging. This approach was tested in healthy human volunteers and in swine before and after intravenous administration of ferumoxytol. RESULTS: Spatial-resolution matched T2 * images were acquired with 2-3-fold reduction in scan time using the proposed T2 * mapping approach relative to conventional T2 * mapping. Compared with the conventional approach, T2 * images acquired with the proposed method demonstrated reduced off-resonance and flow artifacts, leading to higher image quality and lower coefficient of variation in T2 *-weighted images of the myocardium of swine and humans. Mean myocardial T2 * values determined using the proposed and conventional approaches were highly correlated and showed minimal bias. CONCLUSION: The proposed non-ECG-gated, free-breathing, 3D T2 * imaging approach can be performed within 5 min or less. It can overcome critical image artifacts from undesirable cardiac and respiratory motion and bulk off-resonance shifts at the heart-lung interface. The proposed approach is expected to facilitate faster and improved cardiac T2 * mapping in those with limited breath-holding capacity or arrhythmias.


Subject(s)
Heart , Myocardium , Humans , Animals , Swine , Heart/diagnostic imaging , Respiration , Breath Holding , Magnetic Resonance Imaging, Cine/methods , Magnetic Resonance Imaging , Imaging, Three-Dimensional/methods
2.
J Cardiovasc Magn Reson ; 23(1): 104, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34587984

ABSTRACT

BACKGROUND: T2* cardiovascular magnetic resonance (CMR) is commonly used in the diagnosis of intramyocardial hemorrhage (IMH). For quantifying IMH with T2* CMR, despite the lack of consensus studies, two different methods [subject-specific T2* (ssT2*) and absolute T2* thresholding (aT2* < 20 ms)] are interchangeably used. We examined whether these approaches yield equivalent information. METHODS: ST elevation myocardial infarction (STEMI) patients (n = 70) were prospectively recruited for CMR at 4-7 days post revascularization and for 6-month follow up (n = 43). Canines studies were performed for validation purposes, where animals (n = 20) were subject to reperfused myocardial infarction (MI) and those surviving the MI (n = 16) underwent CMR at 7 days and 8 weeks and then euthanized. Both in patients and animals, T2* of IMH and volume of IMH were determined using ssT2* and aT2* < 20 ms. In animals, ex-vivo T2* CMR and mass spectrometry for iron concentration ([Fe]Hemo) were determined on excised myocardial sections. T2* values based on ssT2* and absolute T2* threshold approaches were independently regressed against [Fe]Hemo and compared. A range of T2* cut-offs were tested to determine the optimized conditions relative to ssT2*. RESULTS: While both approaches showed many similarities, there were also differences. Compared to ssT2*, aT2* < 20 ms showed lower T2* and volume of IMH in patients and animals independent of MI age (all p < 0.005). While T2* determined from both methods were highly correlated against [Fe]Hemo (R2 = 0.9 for both), the slope of the regression curve for ssT2* was significantly larger as compared to aT2* < 20 ms (0.46 vs. 0.32, p < 0.01). Further, slightly larger absolute T2* cut-offs (patients: 23 ms; animals: 25 ms) showed similar IMH characteristics compared to ssT2*. CONCLUSION: Current quantification methods have excellent capacity to identify IMH, albeit the T2*of IMH and volume of IMH based on aT2* < 20 ms are smaller compared to ssT2*. Thus the method used to quantify IMH from T2* CMR may influence the diagnosis for IMH.


Subject(s)
Magnetic Resonance Imaging, Cine , ST Elevation Myocardial Infarction , Animals , Dogs , Hemorrhage/diagnostic imaging , Hemorrhage/etiology , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Myocardium , Predictive Value of Tests , ST Elevation Myocardial Infarction/diagnostic imaging
3.
J Cardiovasc Magn Reson ; 23(1): 25, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33715636

ABSTRACT

BACKGROUND: Contrast-enhanced (CE) steady-state free precession (SSFP) CMR at 1.5T has been shown to be a valuable alternative to T2-based methods for the detection and quantifications of area-at-risk (AAR) in acute myocardial infarction (AMI) patients. However, CE-SSFP's capacity for assessment of AAR at 3T has not been investigated. We examined the clinical utility of CE-SSFP and T2-STIR for the retrospective assessment of AAR at 3T with single-photon-emission-computed tomography (SPECT) validation. MATERIALS AND METHODS: A total of 60 AMI patients (ST-elevation AMI, n = 44;  non-ST-elevation AMI, n = 16) were recruited into the CMR study between 3 and 7 days post revascularization. All patients underwent T2-STIR, CE-bSSFP and late-gadolinium-enhancement CMR. For validation, SPECT images were acquired in a subgroup of patients (n = 30). RESULTS: In 53 of 60 patients (88 %), T2-STIR was of diagnostic quality compared with 54 of 60 (90 %) with CE-SSFP. In a head-to-head per-slice comparison (n = 365), there was no difference in AAR quantified using T2-STIR and CE-SSFP (R2 = 0.92, p < 0.001; bias:-0.4 ± 0.8 cm2, p = 0.46). On a per-patient basis, there was good agreement between CE-SSFP (n = 29) and SPECT (R2 = 0.86, p < 0.001; bias: - 1.3 ± 7.8 %LV, p = 0.39) for AAR determination. T2-STIR also showed good agreement with SPECT for AAR measurement (R2 = 0.81, p < 0.001, bias: 0.5 ± 11.1 %LV, p = 0.81). There was also a strong agreement between CE-SSFP and T2-STIR with respect to the assessment of AAR on per-patient analysis (R2 = 0.84, p < 0.001, bias: - 2.1 ± 10.1 %LV, p = 0.31). CONCLUSIONS: At 3T, both CE-SSFP and T2-STIR can retrospectively quantify the at-risk myocardium with high accuracy.


Subject(s)
Magnetic Resonance Imaging, Cine , Myocardium/pathology , Non-ST Elevated Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/diagnostic imaging , Tomography, Emission-Computed, Single-Photon , Aged , Female , Humans , Male , Middle Aged , Non-ST Elevated Myocardial Infarction/pathology , Non-ST Elevated Myocardial Infarction/therapy , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/instrumentation , Predictive Value of Tests , Reproducibility of Results , Retrospective Studies , Risk Assessment , Risk Factors , ST Elevation Myocardial Infarction/pathology , ST Elevation Myocardial Infarction/therapy , Stents , Tissue Survival , Treatment Outcome
4.
J Cardiovasc Magn Reson ; 23(1): 88, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34261494

ABSTRACT

BACKGROUND: Intramyocardial hemorrhage (IMH) within myocardial infarction (MI) is associated with major adverse cardiovascular events. Bright-blood T2*-based cardiovascular magnetic resonance (CMR) has emerged as the reference standard for non-invasive IMH detection. Despite this, the dark-blood T2*-based CMR is becoming interchangeably used with bright-blood T2*-weighted CMR in both clinical and preclinical settings for IMH detection. To date however, the relative merits of dark-blood T2*-weighted with respect to bright-blood T2*-weighted CMR for IMH characterization has not been studied. We investigated the diagnostic capacity of dark-blood T2*-weighted CMR against bright-blood T2*-weighted CMR for IMH characterization in clinical and preclinical settings. MATERIALS AND METHODS: Hemorrhagic MI patients (n = 20) and canines (n = 11) were imaged in the acute and chronic phases at 1.5 and 3 T with dark- and bright-blood T2*-weighted CMR. Imaging characteristics (Relative signal-to-noise (SNR), Relative contrast-to-noise (CNR), IMH Extent) and diagnostic performance (sensitivity, specificity, accuracy, area-under-the-curve, and inter-observer variability) of dark-blood T2*-weighted CMR for IMH characterization were assessed relative to bright-blood T2*-weighted CMR. RESULTS: At both clinical and preclinical settings, compared to bright-blood T2*-weighted CMR, dark-blood T2*-weighted images had significantly lower SNR, CNR and reduced IMH extent (all p < 0.05). Dark-blood T2*-weighted CMR also demonstrated weaker sensitivity, specificity, accuracy, and inter-observer variability compared to bright-blood T2*-weighted CMR (all p < 0.05). These observations were consistent across infarct age and imaging field strengths. CONCLUSION: While IMH can be visible on dark-blood T2*-weighted CMR, the overall conspicuity of IMH is significantly reduced compared to that observed in bright-blood T2*-weighted images, across infarct age in clinical and preclinical settings at 1.5 and 3 T. Hence, bright-blood T2*-weighted CMR would be preferable for clinical use since dark-blood T2*-weighted CMR carries the potential to misclassify hemorrhagic MIs as non-hemorrhagic MIs.


Subject(s)
Hemorrhage , Myocardial Infarction , Animals , Dogs , Hemorrhage/diagnostic imaging , Hemorrhage/etiology , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Myocardial Infarction/diagnostic imaging , Myocardium , Predictive Value of Tests
5.
Radiology ; 295(1): 82-93, 2020 04.
Article in English | MEDLINE | ID: mdl-32096705

ABSTRACT

Background Despite advances, blood oxygen level-dependent (BOLD) cardiac MRI for myocardial perfusion is limited by inadequate spatial coverage, imaging speed, multiple breath holds, and imaging artifacts, particularly at 3.0 T. Purpose To develop and validate a robust, contrast agent-unenhanced, free-breathing three-dimensional (3D) cardiac MRI approach for reliably examining changes in myocardial perfusion between rest and adenosine stress. Materials and Methods A heart rate-independent, free-breathing 3D T2 mapping technique at 3.0 T that can be completed within the period of adenosine stress (≤4 minutes) was developed by using computer simulations, ex vivo heart preparations, and dogs. Studies in dogs were performed with and without coronary stenosis and validated with simultaneously acquired nitrogen 13 (13N) ammonia PET perfusion in a clinical PET/MRI system. The MRI approach was also prospectively evaluated in healthy human volunteers (from January 2017 to September 2017). Myocardial BOLD responses (MBRs) between normal and ischemic myocardium were compared with mixed model analysis. Results Dogs (n = 10; weight range, 20-25 kg; mongrel dogs) and healthy human volunteers (n = 10; age range, 22-53 years; seven men) were evaluated. In healthy dogs, T2 MRI at adenosine stress was greater than at rest (mean rest vs stress, 38.7 msec ± 2.5 [standard deviation] vs 45.4 msec ± 3.3, respectively; MBR, 1.19 ± 0.08; both, P < .001). At the same conditions, mean rest versus stress PET perfusion was 1.1 mL/mg/min ± 0.11 versus 2.3 mL/mg/min ± 0.82, respectively (P < .001); myocardial perfusion reserve (MPR) was 2.4 ± 0.82 (P < .001). The BOLD response and PET MPR were positively correlated (R = 0.67; P < .001). In dogs with coronary stenosis, perfusion anomalies were detected on the basis of MBR (normal vs ischemic, 1.09 ± 0.05 vs 1.00 ± 0.04, respectively; P < .001) and MPR (normal vs ischemic, 2.7 ± 0.08 vs 1.7 ± 1.1, respectively; P < .001). Human volunteers showed increased myocardial T2 at stress (rest vs stress, 44.5 msec ± 2.6 vs 49.0 msec ± 5.5, respectively; P = .004; MBR, 1.1 msec ± 8.08). Conclusion This three-dimensional cardiac blood oxygen level-dependent (BOLD) MRI approach overcame key limitations associated with conventional cardiac BOLD MRI by enabling whole-heart coverage within the standard duration of adenosine infusion, and increased the magnitude and reliability of BOLD contrast, which may be performed without requiring breath holds. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Almeida in this issue.


Subject(s)
Cardiac Imaging Techniques/methods , Heart Rate , Heart/diagnostic imaging , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Oxygen/blood , Positron-Emission Tomography , Adenosine , Adult , Ammonia , Animals , Contrast Media , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/physiopathology , Dogs , Exercise Test , Female , Humans , Male , Middle Aged , Myocardium , Nitrogen Radioisotopes , Positron-Emission Tomography/methods , Prospective Studies , Young Adult
7.
J Magn Reson Imaging ; 45(2): 542-555, 2017 02.
Article in English | MEDLINE | ID: mdl-27532501

ABSTRACT

PURPOSE: The presence of subendocardial dark-rim artifact (DRA) remains an ongoing challenge in first-pass perfusion (FPP) cardiac magnetic resonance imaging (MRI). We propose a free-breathing FPP imaging scheme with Cartesian sampling that is optimized to minimize the DRA and readily enables near-instantaneous image reconstruction. MATERIALS AND METHODS: The proposed FPP method suppresses Gibbs ringing effects-a major underlying factor for the DRA-by "shaping" the underlying point spread function through a two-step process: 1) an undersampled Cartesian sampling scheme that widens the k-space coverage compared to the conventional scheme; and 2) a modified parallel-imaging scheme that incorporates optimized apodization (k-space data filtering) to suppress Gibbs-ringing effects. Healthy volunteer studies (n = 10) were performed to compare the proposed method against the conventional Cartesian technique-both using a saturation-recovery gradient-echo sequence at 3T. Furthermore, FPP imaging studies using the proposed method were performed in infarcted canines (n = 3), and in two symptomatic patients with suspected coronary microvascular dysfunction for assessment of myocardial hypoperfusion. RESULTS: Width of the DRA and the number of DRA-affected myocardial segments were significantly reduced in the proposed method compared to the conventional approach (width: 1.3 vs. 2.9 mm, P < 0.001; number of segments: 2.6 vs. 8.7; P < 0.0001). The number of slices with severe DRA was markedly lower for the proposed method (by 10-fold). The reader-assigned image quality scores were similar (P = 0.2), although the quantified myocardial signal-to-noise ratio was lower for the proposed method (P < 0.05). Animal studies showed that the proposed method can detect subendocardial perfusion defects and patient results were consistent with the gold-standard invasive test. CONCLUSION: The proposed free-breathing Cartesian FPP imaging method significantly reduces the prevalence of severe DRAs compared to the conventional approach while maintaining similar resolution and image quality. LEVEL OF EVIDENCE: 2 J. Magn. Reson. Imaging 2017;45:542-555.


Subject(s)
Artifacts , Coronary Artery Disease/diagnostic imaging , Endocardium/diagnostic imaging , Image Enhancement/methods , Magnetic Resonance Angiography/methods , Myocardial Perfusion Imaging/methods , Signal Processing, Computer-Assisted , Algorithms , Animals , Dogs , Female , Image Interpretation, Computer-Assisted/methods , Male , Reproducibility of Results , Sample Size , Sensitivity and Specificity
9.
Magn Reson Med ; 75(1): 126-36, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25753385

ABSTRACT

PURPOSE: To develop and test a time-efficient, free-breathing, whole heart T2 mapping technique at 3.0T. METHODS: ECG-triggered three-dimensional (3D) images were acquired with different T2 preparations at 3.0T during free breathing. Respiratory motion was corrected with a navigator-guided motion correction framework at near perfect efficiency. Image intensities were fit to a monoexponential function to derive myocardial T2 maps. The proposed 3D, free breathing, motion-corrected (3D-FB-MoCo) approach was studied in ex vivo canine hearts and kidneys, healthy volunteers, and canine subjects with acute myocardial infarction (AMI). RESULTS: Ex vivo T2 values from proposed 3D T2 -prep gradient echo were not different from two-dimensional (2D) spin echo (P = 0.7) and T2 -prep balanced steady-state free precession (bSSFP) (P = 0.7). In healthy volunteers, compared with 3D-FB-MoCo and breath-held 2D T2 -prep bSSFP (2D-BH), non-motion-corrected (3D-FB-Non-MoCo) myocardial T2 was longer, had a larger coefficient of variation (COV), and had a lower image quality (IQ) score (T2 = 40.3 ms, COV = 38%, and IQ = 2.3; all P < 0.05). Conversely, the mean and COV and IQ of 3D-FB-MoCo (T2 = 37.7 ms, COV = 17%, and IQ = 3.5) and 2D-BH (T2 = 38.0 ms, COV = 15%, and IQ = 3.8) were not different (P = 0.99, P = 0.74, and P = 0.14, respectively). In AMI, T2 values and edema volumes from 3D-FB-MoCo and 2D-BH were closely correlated (R(2) = 0.88 and 0.96, respectively). CONCLUSION: The proposed whole heart T2 mapping approach can be performed within 5 min with similar accuracy to that of the 2D-BH T2 mapping approach.


Subject(s)
Artifacts , Cardiac-Gated Imaging Techniques/methods , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging, Cine/methods , Myocardium/pathology , Algorithms , Animals , Dogs , Humans , Image Interpretation, Computer-Assisted/methods , Motion , Myocardial Infarction/pathology , Respiratory Mechanics
11.
Radiology ; 272(2): 397-406, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24749715

ABSTRACT

PURPOSE: To examine whether controlled and tolerable levels of hypercapnia may be an alternative to adenosine, a routinely used coronary vasodilator, in healthy human subjects and animals. MATERIALS AND METHODS: Human studies were approved by the institutional review board and were HIPAA compliant. Eighteen subjects had end-tidal partial pressure of carbon dioxide (PetCO2) increased by 10 mm Hg, and myocardial perfusion was monitored with myocardial blood oxygen level-dependent (BOLD) magnetic resonance (MR) imaging. Animal studies were approved by the institutional animal care and use committee. Anesthetized canines with (n = 7) and without (n = 7) induced stenosis of the left anterior descending artery (LAD) underwent vasodilator challenges with hypercapnia and adenosine. LAD coronary blood flow velocity and free-breathing myocardial BOLD MR responses were measured at each intervention. Appropriate statistical tests were performed to evaluate measured quantitative changes in all parameters of interest in response to changes in partial pressure of carbon dioxide. RESULTS: Changes in myocardial BOLD MR signal were equivalent to reported changes with adenosine (11.2% ± 10.6 [hypercapnia, 10 mm Hg] vs 12% ± 12.3 [adenosine]; P = .75). In intact canines, there was a sigmoidal relationship between BOLD MR response and PetCO2 with most of the response occurring over a 10 mm Hg span. BOLD MR (17% ± 14 [hypercapnia] vs 14% ± 24 [adenosine]; P = .80) and coronary blood flow velocity (21% ± 16 [hypercapnia] vs 26% ± 27 [adenosine]; P > .99) responses were similar to that of adenosine infusion. BOLD MR signal changes in canines with LAD stenosis during hypercapnia and adenosine infusion were not different (1% ± 4 [hypercapnia] vs 6% ± 4 [adenosine]; P = .12). CONCLUSION: Free-breathing T2-prepared myocardial BOLD MR imaging showed that hypercapnia of 10 mm Hg may provide a cardiac hyperemic stimulus similar to adenosine.


Subject(s)
Coronary Circulation/physiology , Hypercapnia/physiopathology , Magnetic Resonance Imaging/methods , Adenosine/pharmacology , Animals , Dogs , Electrocardiography , Humans , Image Enhancement/methods , Oximetry , Reproducibility of Results , Vasodilator Agents/pharmacology
12.
Magn Reson Imaging ; 105: 125-132, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37993042

ABSTRACT

PURPOSE: Studies have shown that double-inversion-recovery (DIR) prepared dark-blood T2*-weighted images result in lower SNR, CNR and diagnostic accuracy for intramyocardial hemorrhage (IMH) detection compared to non-DIR-prepared (bright-blood) T2*-weighted images; however, the mechanism contributing to this observation has not been investigated and explained in detail. This work tests the hypothesis that the loss of SNR on dark-blood cardiac T2*-weighted images of IMH stems from spin-relaxation during the long RF pulses in double inversion preparation, as a result, compromising image contrast for intramyocardial hemorrhage detection. METHODS: Phantom and in-vivo animal studies were performed to test the hypothesis of the study. An agar phantom was imaged with multi-gradient-echo T2* imaging protocols with and without double-inversion-recovery (DIR) preparation. Image acquisitions were placed at different delay times (TD) after DIR preparation. SNR, T2* and Coefficient of Variation (COV) were measured and compared between DIR-prepared and non-DIR-prepared images. Canines with hemorrhagic myocardial infarctions were scanned at 3.0 T with DIR-prepared (dark-blood) and non-DIR-prepared (bright-blood) T2* imaging protocols. DIR-prepared T2* images were acquired with short, medium, and long delay times (TD). SNR, CNR, intramyocardial hemorrhage (IMH) extent, T2* and COV were measured and compared between DIR-prepared T2* images with short, medium, and long delay times (TD) to non-DIR-prepared bright-blood T2* images. RESULTS: Phantom studies confirmed the hypothesis that the SNR loss on DIR-prepared T2* images originated from signal loss during DIR preparation. SNR followed T1 recovery curve with increased delay times (TD) indicating that SNR can be recovered with longer time delay between DIR and image acquisition. Myocardial T2* values were not affected by DIR preparation but COV of T2* was elevated. Animal studies supported the hypothesis and showed that DIR-prepared T2* images with insufficient delay time (TD) had impaired sensitivity for IMH detection due to lower SNR and CNR, and higher COV. CONCLUSION: We conclude that lower SNR and CNR on DIR-prepared T2* images originate from signal loss during DIR preparation and insufficient recovery between DIR preparation and image acquisition. Although, the impaired sensitivity can be recovered by extending delay time (TD), it will extend the scan time. Bright-blood T2* imaging protocols should remain the optimal choice for assessment of intramyocardial hemorrhage. DIR-prepared dark-blood T2* imaging protocols should be performed with extra attention on image signal-to-noise ratio when used for intramyocardial hemorrhage detection.


Subject(s)
Magnetic Resonance Imaging , Myocardial Infarction , Animals , Dogs , Magnetic Resonance Imaging/methods , Heart , Myocardium , Myocardial Infarction/diagnostic imaging , Hemorrhage/diagnostic imaging
13.
Psychoradiology ; 4: kkae013, 2024.
Article in English | MEDLINE | ID: mdl-39258223

ABSTRACT

High magnetic field homogeneity is critical for magnetic resonance imaging (MRI), functional MRI, and magnetic resonance spectroscopy (MRS) applications. B0 inhomogeneity during MR scans is a long-standing problem resulting from magnet imperfections and site conditions, with the main issue being the inhomogeneity across the human body caused by differences in magnetic susceptibilities between tissues, resulting in signal loss, image distortion, and poor spectral resolution. Through a combination of passive and active shim techniques, as well as technological advances employing multi-coil techniques, optimal coil design, motion tracking, and real-time modifications, improved field homogeneity and image quality have been achieved in MRI/MRS. The integration of RF and shim coils brings a high shim efficiency due to the proximity of participants. This technique will potentially be applied to high-density RF coils with a high-density shim array for improved B0 homogeneity. Simultaneous shimming and image encoding can be achieved using multi-coil array, which also enables the development of novel encoding methods using advanced magnetic field control. Field monitoring enables the capture and real-time compensation for dynamic field perturbance beyond the static background inhomogeneity. These advancements have the potential to better use the scanner performance to enhance diagnostic capabilities and broaden applications of MRI/MRS in a variety of clinical and research settings. The purpose of this paper is to provide an overview of the latest advances in B0 magnetic field shimming and magnetic field control techniques as well as MR hardware, and to emphasize their significance and potential impact on improving the data quality of MRI/MRS.

14.
Radiol Cardiothorac Imaging ; 6(4): e230338, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39023374

ABSTRACT

Purpose To investigate whether infarct-to-remote myocardial contrast can be optimized by replacing generic fitting algorithms used to obtain native T1 maps with a data-driven machine learning pixel-wise approach in chronic reperfused infarct in a canine model. Materials and Methods A controlled large animal model (24 canines, equal male and female animals) of chronic myocardial infarction with histologic evidence of heterogeneous infarct tissue composition was studied. Unsupervised clustering techniques using self-organizing maps and t-distributed stochastic neighbor embedding were used to analyze and visualize native T1-weighted pixel-intensity patterns. Deep neural network models were trained to map pixel-intensity patterns from native T1-weighted image series to corresponding pixels on late gadolinium enhancement (LGE) images, yielding visually enhanced noncontrast maps, a process referred to as data-driven native mapping (DNM). Pearson correlation coefficients and Bland-Altman analyses were used to compare findings from the DNM approach against standard T1 maps. Results Native T1-weighted images exhibited distinct pixel-intensity patterns between infarcted and remote territories. Granular pattern visualization revealed higher infarct-to-remote cluster separability with LGE labeling as compared with native T1 maps. Apparent contrast-to-noise ratio from DNM (mean, 15.01 ± 2.88 [SD]) was significantly different from native T1 maps (5.64 ± 1.58; P < .001) but similar to LGE contrast-to-noise ratio (15.51 ± 2.43; P = .40). Infarcted areas based on LGE were more strongly correlated with DNM compared with native T1 maps (R2 = 0.71 for native T1 maps vs LGE; R2 = 0.85 for DNM vs LGE; P < .001). Conclusion Native T1-weighted pixels carry information that can be extracted with the proposed DNM approach to maximize image contrast between infarct and remote territories for enhanced visualization of chronic infarct territories. Keywords: Chronic Myocardial Infarction, Cardiac MRI, Data-Driven Native Contrast Mapping Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Contrast Media , Myocardial Infarction , Animals , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Female , Male , Dogs , Disease Models, Animal , Magnetic Resonance Imaging/methods , Chronic Disease , Reproducibility of Results , Algorithms
15.
Bioengineering (Basel) ; 11(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38534485

ABSTRACT

B0 field inhomogeneity is a long-lasting issue for Cardiac MRI (CMR) in high-field (3T and above) scanners. The inhomogeneous B0 fields can lead to corrupted image quality, prolonged scan time, and false diagnosis. B0 shimming is the most straightforward way to improve the B0 homogeneity. However, today's standard cardiac shimming protocol requires manual selection of a shim volume, which often falsely includes regions with large B0 deviation (e.g., liver, fat, and chest wall). The flawed shim field compromises the reliability of high-field CMR protocols, which significantly reduces the scan efficiency and hinders its wider clinical adoption. This study aims to develop a dual-channel deep learning model that can reliably contour the cardiac region for B0 shim without human interaction and under variable imaging protocols. By utilizing both the magnitude and phase information, the model achieved a high segmentation accuracy in the B0 field maps compared to the conventional single-channel methods (Dice score: 2D-mag = 0.866, 3D-mag = 0.907, and 3D-mag-phase = 0.938, all p < 0.05). Furthermore, it shows better generalizability against the common variations in MRI imaging parameters and enables significantly improved B0 shim compared to the standard method (SD(B0Shim): Proposed = 15 ± 11% vs. Standard = 6 ± 12%, p < 0.05). The proposed autonomous model can boost the reliability of cardiac shimming at 3T and serve as the foundation for more reliable and efficient high-field CMR imaging in clinical routines.

16.
Cancers (Basel) ; 16(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38539565

ABSTRACT

The spectral quality of magnetic resonance spectroscopic imaging (MRSI) can be affected by strong magnetic field inhomogeneities, posing a challenge for 3D-MRSI's widespread clinical use with standard scanner-equipped 2nd-order shim coils. To overcome this, we designed an empirical unified shim-RF head coil (32-ch RF receive and 51-ch shim) for 3D-MRSI improvement. We compared its shimming performance and 3D-MRSI brain coverages against the standard scanner shim (2nd-order spherical harmonic (SH) shim coils) and integrated parallel reception, excitation, and shimming (iPRES) 32-ch AC/DC head coil. We also simulated a theoretical 3rd-, 4th-, and 5th-order SH shim as a benchmark to assess the UNIfied shim-RF coil (UNIC) improvements. In this preliminary study, the whole-brain coverage was simulated by using B0 field maps of twenty-four healthy human subjects (n = 24). Our results demonstrated that UNIC substantially improves brain field homogeneity, reducing whole-brain frequency standard deviations by 27% compared to the standard 2nd-order scanner shim and 17% compared to the iPRES shim. Moreover, UNIC enhances whole-brain coverage of 3D-MRSI by up to 34% compared to the standard 2nd-order scanner shim and up to 13% compared to the iPRES shim. UNIC markedly increases coverage in the prefrontal cortex by 147% and 47% and in the medial temporal lobe and temporal pole by 29% and 13%, respectively, at voxel resolutions of 1.4 cc and 0.09 cc for 3D-MRSI. Furthermore, UNIC effectively reduces variations in shim quality and brain coverage among different subjects compared to scanner shim and iPRES shim. Anticipated advancements in higher-order shimming (beyond 6th order) are expected via optimized designs using dimensionality reduction methods.

17.
J Am Coll Cardiol ; 79(1): 35-48, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34991787

ABSTRACT

BACKGROUND: Reperfusion therapy for acute myocardial infarction (MI) is lifesaving. However, the benefit of reperfusion therapy can be paradoxically diminished by reperfusion injury, which can increase MI size. OBJECTIVES: Hemorrhage is known to occur in reperfused MIs, but whether hemorrhage plays a role in reperfusion-mediated MI expansion is not known. METHODS: We studied cardiac troponin kinetics (cTn) of ST-segment elevation MI patients (n = 70) classified by cardiovascular magnetic resonance to be hemorrhagic (70%) or nonhemorrhagic following primary percutaneous coronary intervention. To isolate the effects of hemorrhage from ischemic burden, we performed controlled canine studies (n = 25), and serially followed both cTn and MI size with time-lapse imaging. RESULTS: CTn was not different before reperfusion; however, an increase in cTn following primary percutaneous coronary intervention peaked earlier (12 hours vs 24 hours; P < 0.05) and was significantly higher in patients with hemorrhage (P < 0.01). In hemorrhagic animals, reperfusion led to rapid expansion of myocardial necrosis culminating in epicardial involvement, which was not present in nonhemorrhagic cases (P < 0.001). MI size and salvage were not different at 1 hour postreperfusion in animals with and without hemorrhage (P = 0.65). However, within 72 hours of reperfusion, a 4-fold greater loss in salvageable myocardium was evident in hemorrhagic MIs (P < 0.001). This paralleled observations in patients with larger MIs occurring in hemorrhagic cases (P < 0.01). CONCLUSIONS: Myocardial hemorrhage is a determinant of MI size. It drives MI expansion after reperfusion and compromises myocardial salvage. This introduces a clinical role of hemorrhage in acute care management, risk assessment, and future therapeutics.


Subject(s)
Hemorrhage/diagnostic imaging , Myocardial Reperfusion Injury/diagnostic imaging , ST Elevation Myocardial Infarction/diagnostic imaging , Animals , Disease Models, Animal , Dogs , Humans , Magnetic Resonance Imaging, Cine , Myocardium/pathology , Necrosis , Percutaneous Coronary Intervention , Positron-Emission Tomography , Prospective Studies , ST Elevation Myocardial Infarction/therapy , Salvage Therapy , Time-to-Treatment , Troponin/blood
18.
Nat Commun ; 13(1): 6394, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302906

ABSTRACT

Sudden blockage of arteries supplying the heart muscle contributes to millions of heart attacks (myocardial infarction, MI) around the world. Although re-opening these arteries (reperfusion) saves MI patients from immediate death, approximately 50% of these patients go on to develop chronic heart failure (CHF) and die within a 5-year period; however, why some patients accelerate towards CHF while others do not remains unclear. Here we show, using large animal models of reperfused MI, that intramyocardial hemorrhage - the most damaging form of reperfusion injury (evident in nearly 40% of reperfused ST-elevation MI patients) - drives delayed infarct healing and is centrally responsible for continuous fatty degeneration of the infarcted myocardium contributing to adverse remodeling of the heart. Specifically, we show that the fatty degeneration of the hemorrhagic MI zone stems from iron-induced macrophage activation, lipid peroxidation, foam cell formation, ceroid production, foam cell apoptosis and iron recycling. We also demonstrate that timely reduction of iron within the hemorrhagic MI zone reduces fatty infiltration and directs the heart towards favorable remodeling. Collectively, our findings elucidate why some, but not all, MIs are destined to CHF and help define a potential therapeutic strategy to mitigate post-MI CHF independent of MI size.


Subject(s)
Heart Failure , Myocardial Infarction , Animals , Myocardium , Myocardial Infarction/complications , Myocardial Infarction/therapy , Hemorrhage , Heart , Heart Failure/etiology , Iron , Ventricular Remodeling , Disease Models, Animal
19.
Nucleic Acids Res ; 37(10): e77, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19420057

ABSTRACT

We developed a simple, direct and cost-effective approach to search for the most likely target genes of a known microRNA (miRNA) in vitro. We term this method 'labeled miRNA pull-down (LAMP)' assay system. Briefly, the pre-miRNA is labeled with digoxigenin (DIG), mixed with cell extracts and immunoprecipitated by anti-DIG antiserum. When the DIG-labeled miRNA and bound mRNA complex are obtained, the total cDNAs are then subcloned and sequenced, or RT-PCR-amplified, to search for the putative target genes of a known miRNA. After successfully identifying the known target genes of Caenorhabditis elegans miRNAs lin-4 and let-7 and zebrafish let-7, we applied LAMP to find the unknown target gene of zebrafish miR-1, which resulted in the identification of hand2. We then confirmed hand2 as a novel target gene of miR-1 by whole-mount in situ hybridization and luciferase reporter gene assay. We further validated this target gene by microarray analysis, and the results showed that hand2 is the top-scoring among 302 predicted putative target genes. We concluded that LAMP is an experimental approach for high-throughput identification of the target gene of known miRNAs from both C. elegans and zebrafish, yielding fewer false positive results than those produced by using only the bioinformatics approach.


Subject(s)
Immunoprecipitation/methods , MicroRNAs/metabolism , RNA Interference , RNA, Messenger/metabolism , 3' Untranslated Regions/chemistry , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , COS Cells , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Chlorocebus aethiops , MicroRNAs/isolation & purification , Oligonucleotide Array Sequence Analysis , RNA Precursors/isolation & purification , RNA Precursors/metabolism , RNA, Messenger/chemistry , RNA, Messenger/isolation & purification , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
20.
Dev Biol ; 331(2): 152-66, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19409884

ABSTRACT

Transcription factor Six1a plays important roles in morphogenesis, organogenesis, and cell differentiation. However, the role of Six1a during zebrafish cranial muscle development is still unclear. Here, we demonstrated that Six1a was required for sternohyoideus, medial rectus, inferior rectus, and all pharyngeal arch muscle development. Although Six1a was also necessary for myod and myogenin expression in head muscles, it did not affect myf5 expression in cranial muscles that originate from head mesoderm. Overexpression of myod enabled embryos to rescue all the defects in cranial muscles induced by injection of six1a-morpholino (MO), suggesting that myod is directly downstream of six1a in controlling craniofacial myogenesis. However, overexpression of six1a was unable to rescue arch muscle defects in the tbx1- and myf5-morphants, suggesting that six1a is only involved in myogenic maintenance, not its initiation, during arch muscle myogenesis. Although the craniofacial muscle defects caused by pax3-MO phenocopied those induced by six1a-MO, injection of six1a, myod or myf5 mRNA did not rescue the cranial muscle defects in pax3 morphants, suggesting that six1a and pax3 do not function in the same regulatory network. Therefore, we proposed four putative regulatory pathways to understand how six1a distinctly interacts with either myf5 or myod during zebrafish craniofacial muscle development.


Subject(s)
Facial Muscles/embryology , Muscle Development/physiology , Transcription Factors/physiology , Zebrafish Proteins/physiology , Zebrafish/embryology , Animals , Embryo, Nonmammalian/metabolism , Facial Muscles/metabolism , Gene Expression Regulation, Developmental , MyoD Protein/physiology , Myogenin/physiology , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL