Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
J Hazard Mater ; 470: 134139, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38555674

ABSTRACT

In this study, the porous carbon material (FeN-BC) with ultra-high catalytic activity was obtained from waste biomass through Fe-N co-doping. The prominent degradation rate (> 96.8%) of naproxen (NAP) was achieved over a wide pH range (pH 3.0-9.0) in FeN-BC/PAA system. Unlike previously reported iron-based peracetic acid (PAA) systems with •OH or RO• as the dominated reactive species, the degradation of contaminants was attributed to singlet oxygen (1O2) produced by organic radicals (RO•) decomposition, which was proved to be thermodynamically feasible and favorable by theoretical calculations. Combining the theoretical calculations, characteristic and experimental analysis, the synergistic effects of Fe and N were proposed and summarized as follows: i) promoted the formation of extensive defects and Fe0 species that facilitated electron transfer between FeN-BC and PAA and continuous Fe(II) generation; ii) modified the specific surface area (SSA) and the isoelectric point of FeN-BC in favor of PAA adsorption on the catalyst surface. This study provides a strategy for waste biomass reuse to construct a heterogeneous catalyst/PAA system for efficient water purification and reveals the synergistic effects of typical metal-heteroatom for PAA activation.


Subject(s)
Biomass , Charcoal , Iron , Peracetic Acid , Water Pollutants, Chemical , Water Purification , Peracetic Acid/chemistry , Charcoal/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Nitrogen/chemistry , Naproxen/chemistry , Catalysis , Decontamination/methods , Adsorption
2.
Water Res ; 232: 119666, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36731206

ABSTRACT

As an oxidant, peracetic acid (PAA) is gradually applied in advanced oxidation processes (AOPs) for pollutants degradation due to its high oxidation and low toxicity. In this study, the prepared Co2Fe1-LDH showed excellent PAA activation ability for efficient degradation of various pharmaceuticals with a removal efficiency ranging from 82.3% to 100%. Taking sulfamethoxazole (SMX) as a model pharmaceutical, it's found that organic radical (R-O•) with high concentration of 5.27 × 10-13 M is the dominant ROS responsible for contaminants degradation. Further analysis demonstrated that bimetallic synergistic effect between Co and Fe can improve electron transfer ability of Co2Fe1-LDH, resulting in the accelerated conversion of Co from +3 to +2 valence state with a high reaction rate (4.3 × 101-1.483 × 102 M-1 s-1) in this system. Density functional theory (DFT) reveals that C1, C3, C5 and N11 with higher ƒ0 and ƒ-values concentrated on aniline group of SMX are the main attack sites, which is consistent with the results of degradation products. Besides, Co2Fe1-LDH/PAA system can effectively reduce biological toxicity after reaction, due to lower biotoxicity of degradation products and the carbon sources provided by PAA. In application, Co2Fe1-LDH/PAA system was capable of resisting the influence of water matrix and effectively removing pollutants in actual hospital wastewater. Importantly, this study comprehensively evaluated the ability of Co2Fe1-LDH/PAA system to remove organics and improve the biodegradability of actual hospital wastewater, providing guidance for application of PAA activation system.


Subject(s)
Peracetic Acid , Water Pollutants, Chemical , Wastewater , Hydrogen Peroxide , Sulfamethoxazole , Oxidation-Reduction , Pharmaceutical Preparations
3.
Water Res ; 246: 120695, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37812978

ABSTRACT

Peracetic acid (PAA) is regarded as an environmentally friendly oxidant because of its low formation of toxic byproducts. However, this study revealed the potential risk of generating disinfection byproducts (DBPs) when treating iodine-containing wastewater with PAA. The transformation efficiency of bisphenol A (BPA), a commonly detected phenolic contaminant and a surrogate for phenolic moieties in dissolved organic matter, by PAA increased rapidly in the presence of I-, which was primarily attributed to the formation of active iodine (HOI/I2) in the system. Kinetic model simulations demonstrated that the second-order rate constant between PAA and HOI was 54.0 M-1 s-1 at pH 7.0, which was lower than the generation rate of HOI via the reaction between PAA and I-. Therefore, HOI can combine with BPA to produce iodine disinfection byproducts (I-DBPs). The transformation of BPA and the generation of I-DBPs in the I-/PAA system were highly pH-dependent. Specifically, acidic conditions were more favorable for BPA degradation because of the higher reaction rates of BPA and HOI. More iodinated aromatic products were detected after 5 min of the reaction under acidic and neutral conditions, resulting in higher toxicity towards E. coli. After 12 h of the reaction, more adsorbable organic iodine (AOI) was generated at alkaline conditions because HOI was not able to efficiency transform to IO3-. The presence of H2O2 in the PAA solution played a role in the reaction with HOI, particularly under alkaline conditions. This study significantly advances the understanding of the role of I- in BPA oxidation by PAA and provides a warning to further evaluate the potential environmental risk during the treatment of iodine-bearing wastewater with PAA.


Subject(s)
Iodine , Water Pollutants, Chemical , Water Purification , Peracetic Acid , Disinfection/methods , Iodides , Hydrogen Peroxide , Wastewater , Escherichia coli , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis , Water Purification/methods
4.
Water Res ; 217: 118402, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35417819

ABSTRACT

As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly catalysts over a wide pH range is potentially useful for simultaneous sterilization and pharmaceutical degradation in wastewater, such as hospital wastewater. In this study, peracetic acid (PAA) was successfully activated by low-cost and environmental-friendly FeS (25 mg/L) for efficient oxidative removal of three pharmaceuticals over a wide pH range (3.0∼9.0) as indicated by 80∼100% removal rate within 5 min. As expected, Fe(II) rather than sulfur species was the primary reactive site for PAA activation, while unlike the homogeneous Fe2+/PAA system with organic radicals (R-O·) and ·OH as the dominant reactive oxidized species (ROS), ·OH is the key reactive species in the FeS/PAA system. Interestingly and surprisingly, in-depth investigation revealed the dual role of sulfur species in regulating the reactive oxidized species: (1) S(-II) and its conversion product H2S (aq) played a significant role in Fe(II) regeneration with a result of accelerated PAA activation; (2) however, the R-O· generated in the initial seconds of the FeS/PAA process was supposed to be quickly consumed by sulfur species, resulting in ·OH as the dominant ROS over the whole process. The selective reaction of sulfur species with R-O· instead of ·OH was supported by the obviously lower Gibbs free energy of CH3COO· and sulfur species than ·OH, suggesting the preference of CH3COO· to react with sulfur species with electron transfer. After treatment with the FeS/PAA system, the products obtained from the three pharmaceuticals were detoxified and even facilitated the growth of E. coli probably due to the supply of numerous carbon sources by activated PAA. This study significantly advances the understanding of the reaction between PAA and sulfur-containing catalysts and suggests the practical application potential of the FeS/PAA process combined with biotreatment processes.


Subject(s)
Peracetic Acid , Water Pollutants, Chemical , Escherichia coli , Ferrous Compounds , Hydrogen Peroxide , Oxidation-Reduction , Pharmaceutical Preparations , Reactive Oxygen Species , Sulfur , Wastewater , Water Pollutants, Chemical/analysis
5.
Water Res ; 222: 118887, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35907302

ABSTRACT

In this study, mechanically sulfidated microscale zero valent iron (S-ZVI) was found to effectively activate the peracetic acid (PAA) with a result of almost complete degradation of six micropollutants within 10 min under neutral conditions, and > 95% sulfamethoxazole (SMX) removal after six cycles. Reactive oxidized species (ROS) including HO•, carbon-centered radicals, and Fe(IV) were generated in the S-ZVI/PAA system, while HO• was the main contributor towards micropollutants degradation. This study clearly revealed that enhancement of the electron donating ability of ZVI by the formed conductive iron sulfides was crucial for promoted Fe(II) generation and subsequent PAA activation over several cycles, rather than the ability of sulfides to reduce Fe(III) for Fe(II) regeneration as reported previously. Interestingly, it's discovered that co-existence of Fe(III) would dramatically improve the contaminants removal efficiency of the S-ZVI/PAA system; transform the surfaced Fe(II) dominated ROS generation process to aqueous Fe(II) one; enhance the tolerance of the proposed system to water matrix. The promoting effect of predosed Fe(III) on PAA activation by S-ZVI should be mainly associated with: the greater ability of Fe(III) than H2O to accept electron from Fe0 for obtaining more active sites; slower Fe0 consumption and solid sulfur species release for elevated electron utilization efficiency and PAA activation. Considering the convenient and cost-effective access of Fe(III), the decrease of acute toxicity of treated SMX, excellent stability and good removal of various micropollutants fully demonstrate the superiority of S-ZVI/PAA system for practical application.


Subject(s)
Iron , Water Pollutants, Chemical , Ferrous Compounds , Iron/chemistry , Peracetic Acid , Reactive Oxygen Species , Sulfamethoxazole , Sulfides
SELECTION OF CITATIONS
SEARCH DETAIL