Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Drug Metab Dispos ; 50(6): 858-866, 2022 06.
Article in English | MEDLINE | ID: mdl-35149542

ABSTRACT

Characterization of the pharmacokinetics and biodistribution of therapeutic proteins (TPs) is a hot topic within the pharmaceutical industry, particularly with an ever-increasing catalog of novel modality TPs. Here, we review the current practices, and provide a summary of extensive cross-company discussions as well as a survey completed by International Consortium for Innovation and Quality members on this theme. A wide variety of in vitro, in vivo and in silico techniques are currently used to assess pharmacokinetics and biodistribution of TPs, and we discuss the relevance of these from an industry perspective, focusing on pharmacokinetic/pharmacodynamic understanding at the preclinical stage of development, and translation to human. We consider that the 'traditional in vivo biodistribution study' is becoming insufficient as a standalone tool, and thorough characterization of the interaction of the TP with its target(s), target biology, and off-target interactions at a microscopic scale are key to understand the overall biodistribution on a full-body scale. Our summary of the current challenges and our recommendations to address these issues could provide insight into the implementation of best practices in this area of drug development, and continued cross-company collaboration will be of tremendous value. SIGNIFICANCE STATEMENT: The Innovation and Quality Consortium Translational and ADME Sciences Leadership Group working group for the absorption, distribution, metabolism, and excretion of therapeutic proteins evaluates the current practices and challenges in characterizing the pharmacokinetics and biodistribution of therapeutic proteins during drug development, and proposes recommendations to address these issues. Incorporating the in vitro, in vivo and in silico approaches discussed herein may provide a pragmatic framework to increase early understanding of pharmacokinetic/pharmacodynamic relationships, and aid translational modeling for first-in-human dose predictions.


Subject(s)
Drug Industry , Pharmacokinetics , Drug Industry/methods , Humans , Pharmaceutical Preparations , Tissue Distribution
2.
Drug Metab Dispos ; 50(6): 837-845, 2022 06.
Article in English | MEDLINE | ID: mdl-35149541

ABSTRACT

Therapeutic proteins (TPs) comprise a variety of modalities, including antibody-based drugs, coagulation factors, recombinant cytokines, enzymes, growth factors, and hormones. TPs usually cannot traverse cellular barriers and exert their pharmacological activity by interacting with targets on the exterior membrane of cells or with soluble ligands in the tissue interstitial fluid/blood. Due to their large size, lack of cellular permeability, variation in metabolic fate, and distinct physicochemical characteristics, TPs are subject to different absorption, distribution, metabolism, and excretion (ADME) processes as compared with small molecules. Limited regulatory guidance makes it challenging to determine the most relevant ADME data required for regulatory submissions. The TP ADME working group was sponsored by the Translational and ADME Sciences Leadership Group within the Innovation and Quality (IQ) consortium with objectives to: (1) better understand the current practices of ADME data generated for TPs across IQ member companies, (2) learn about their regulatory strategies and interaction experiences, and (3) provide recommendations on best practices for conducting ADME studies for TPs. To understand current ADME practices and regulatory strategies, an industry-wide survey was conducted within IQ member companies. In addition, ADME data submitted to the U.S. Food and Drug Administration was also collated by reviewing regulatory submission packages of TPs approved between 2011 and 2020. This article summarizes the key learnings from the survey and an overview of ADME data presented in biologics license applications along with future perspectives and recommendations for conducting ADME studies for internal decision-making as well as regulatory submissions for TPs. SIGNIFICANCE STATEMENT: This article provides comprehensive assessment of the current practices of absorption, distribution, metabolism, and excretion (ADME) data generated for therapeutic proteins (TPs) across the Innovation and Quality participating companies and the utility of the data in discovery, development, and regulatory submissions. The TP ADME working group also recommends the best practices for condu-cting ADME studies for internal decision-making and regulatory submissions.


Subject(s)
Drug Industry , Pharmaceutical Preparations/metabolism , United States , United States Food and Drug Administration
3.
Br J Clin Pharmacol ; 86(12): 2507-2518, 2020 12.
Article in English | MEDLINE | ID: mdl-32415720

ABSTRACT

AIMS: To assess safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD) and immunogenicity of CNTO 7160, an anti-interleukin-33 receptor (IL-33R) monoclonal antibody, in healthy subjects and patients with asthma or atopic dermatitis (AD). METHODS: In Part 1 of this Phase I, randomized, double-blind, placebo-controlled study, healthy subjects (n = 68) received single ascending intravenous (IV) CNTO 7160 dose (0.001 to 10 mg/kg) or placebo. In Part 2, patients with mild asthma (n = 24) or mild AD (n = 15) received 3 biweekly IV CNTO 7160 doses (3 or 10 mg/kg) or placebo. RESULTS: CNTO 7160 was generally well tolerated, with 1 serious adverse event of severe cellulitis reported (AD, CNTO 7160, 3 mg/kg). CNTO 7160 exhibited nonlinear PK (0.01-10 mg/kg). Mean clearance decreased with increasing dose (2.43 to 18.03 mL/d/kg). CNTO 7160 PK was similar between healthy subjects and patients with asthma or AD (3 or 10 mg/kg). Free sIL-33R suppression was rapid and dose dependent. Ex vivo inhibition of p38 phosphorylation of basophils was dose-dependent (1-10 mg/kg) and sustained inhibition (≥75%) was observed at higher doses (3 or 10 mg/kg). PK/PD modelling and simulation suggests that 1 mg/kg IV every 2 weeks provides adequate systemic drug exposure for sustained inhibition of p38 phosphorylation of basophils. Despite confirmation of target engagement, no apparent CNTO 7160 clinical activity was observed in patients (asthma or AD). CONCLUSION: This first-in-human study provides PK, PD and safety data, supporting further clinical investigation of CNTO 7160 in patients with asthma and AD.


Subject(s)
Antibodies, Monoclonal , Asthma , Dermatitis, Atopic , Interleukin-1 Receptor-Like 1 Protein , Antibodies, Monoclonal/therapeutic use , Asthma/drug therapy , Dermatitis, Atopic/drug therapy , Dose-Response Relationship, Drug , Double-Blind Method , Healthy Volunteers , Humans
4.
Eur J Clin Pharmacol ; 72(11): 1303-1310, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27515978

ABSTRACT

PURPOSE: The purpose of this study is to evaluate the pharmacokinetics, immunogenicity, safety, and tolerability of guselkumab, a human monoclonal antibody with high affinity and specificity for binding to interleukin-23. METHODS: In this first-in-human, phase 1, randomized study, a single intravenous (IV; 0.03-10 mg/kg) or subcutaneous (SC; 10-300 mg) dose of guselkumab was administered to 47 healthy subjects, and a single SC dose (placebo, 10, 30, 100, 300 mg) was administered to 24 patients with moderate-to-severe psoriasis. RESULTS: Mean maximum observed serum concentration and area under the zero-to-infinity serum concentration-time curve of guselkumab increased in an approximately dose-proportional manner over the dose range of 0.03-10 mg/kg following a single IV administration or 10-300 mg following a single SC administration. Mean clearance and volume of distribution ranged from 3.62-6.03 mL/day/kg and 99.38-123.22 mL/kg, respectively. Mean half-life ranged from 12 to 19 days in healthy subjects and patients with psoriasis. Among guselkumab-treated subjects/patients, 1/30 (3.3 %) healthy subjects in the IV group, 0/6 healthy subjects in the SC group, and 1/20 (5.0 %) patients with psoriasis tested positive for antibodies to guselkumab. No clinically significant adverse events were identified in this study. CONCLUSION: Guselkumab pharmacokinetic profiles were generally comparable between healthy subjects and patients with psoriasis. Guselkumab, administered as an IV infusion or SC injection, was well tolerated in healthy subjects and patients with psoriasis.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Dermatologic Agents/pharmacokinetics , Adolescent , Adult , Aged , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/blood , Antibodies, Monoclonal, Humanized , Area Under Curve , Dermatologic Agents/administration & dosage , Dermatologic Agents/adverse effects , Dermatologic Agents/blood , Double-Blind Method , Female , Half-Life , Healthy Volunteers , Humans , Infusions, Intravenous , Injections, Subcutaneous , Interleukin-23/antagonists & inhibitors , Interleukin-23/immunology , Male , Middle Aged , Psoriasis/blood , Psoriasis/drug therapy , Psoriasis/metabolism , Young Adult
5.
Clin Pharmacol Ther ; 115(6): 1212-1232, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38450707

ABSTRACT

Adeno-associated virus (AAV) vector-based gene therapy is an innovative modality being increasingly investigated to treat diseases by modifying or replacing defective genes or expressing therapeutic entities. With its unique anatomic and physiological characteristics, the eye constitutes a very attractive target for gene therapy. Specifically, the ocular space is easily accessible and is generally considered "immune-privileged" with a low risk of systemic side effects following local drug administration. As retina cells have limited cellular turnover, a one-time gene delivery has the potential to provide long-term transgene expression. Despite the initial success with voretigene neparvovec (Luxturna), the first approved retina gene therapy, there are still challenges to be overcome for successful clinical development of these products and scientific questions to be answered. The current review paper aims to integrate published experience learned thus far for AAV-based retina gene therapy related to preclinical to clinical translation; first-in-human dose selection; relevant bioanalytical assays and strategies; clinical development considerations including trial design, biodistribution and vector shedding, immunogenicity, transgene expression, and pediatric populations; opportunities for model-informed drug development; and regulatory perspectives. The information presented herein is intended to serve as a guide to inform the clinical development strategy for retina gene therapy with a focus on clinical pharmacology.


Subject(s)
Dependovirus , Genetic Therapy , Genetic Vectors , Retina , Retinal Diseases , Humans , Dependovirus/genetics , Genetic Therapy/methods , Animals , Retina/metabolism , Retinal Diseases/therapy , Retinal Diseases/genetics , Gene Transfer Techniques
6.
Clin Pharmacol Ther ; 115(2): 188-200, 2024 02.
Article in English | MEDLINE | ID: mdl-37983584

ABSTRACT

CAR-T therapies have shown remarkable efficacy against hematological malignancies in the clinic over the last decade and new studies indicate that progress is being made to use these novel therapies to target solid tumors as well as treat autoimmune disease. Innovation in the field, including TCR-T, allogeneic or "off the shelf" CAR-T, and autoantigen/armored CAR-Ts are likely to increase the efficacy and applications of these therapies. The unique aspects of these cell-based therapeutics; patient-derived cells, intracellular expression, in vivo expansion, and phenotypic changes provide unique bioanalytical challenges to develop pharmacokinetic and immunogenicity assessments. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) Translational and ADME Sciences Leadership Group (TALG) has brought together a group of industry experts to discuss and consider these challenges. In this white paper, we present the IQ consortium perspective on the best practices and considerations for bioanalytical and immunogenicity aspects toward the optimal development of CAR-T and TCR-T cell therapies.


Subject(s)
Hematologic Neoplasms , Neoplasms , Receptors, Chimeric Antigen , Humans , T-Lymphocytes , Neoplasms/metabolism , Immunotherapy, Adoptive
7.
Mol Ther Methods Clin Dev ; 32(1): 101217, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38496304

ABSTRACT

Recombinant adeno-associated virus (AAV) vectors are the leading delivery vehicle used for in vivo gene therapies. Anti-AAV antibodies (AAV Abs) can interact with the viral capsid component of an AAV-based gene therapy (GT). Therefore, patients with preexisting AAV Abs (seropositive patients) are often excluded from GT trials to prevent treatment of patients who are unlikely to benefit1 or may have a higher risk for adverse events outweighing treatment benefits. On the contrary, unnecessary exclusion of patients with high unmet medical need should be avoided. Instead, a risk-benefit assessment that weighs the potential risks due to seropositivity vs. severity of disease and available treatment options, should drive the decision if patient selection is required. Assays for patient selection must be validated according to their intended use following national regulations/standards for diagnostic assays in appropriate laboratories. In this review, we summarize the current process of patient selection, including assay cutoff criteria and related assay validation approaches. We further provide considerations on regulatory requirements for the development of in vitro diagnostic tests supporting market authorization of a corresponding GT.

8.
AAPS J ; 25(6): 93, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770755

ABSTRACT

Cell and gene therapies have demonstrated impressive therapeutic efficacy in various human diseases. Nevertheless, cellular immune response directed against these therapeutic agents is an obstacle for achieving long-lasting clinical efficacy. Therefore, it is crucial to develop robust assays to accurately monitor cellular immunogenicity towards these therapies. Enzyme-linked immunospot (ELISpot) assay is one of the primarily used methods for measuring cellular immune response in clinical programs, which requires isolation of the peripheral blood mononuclear cells (PBMCs). The quality of this clinical material is one of the most critical factors that impact the robust assessment of cellular immune responses. The optimal blood sample processing conditions, however, remain poorly understood. In this study, we examined the impact of blood sample processing time on the performance characteristics of ELISpot to measure antigen-specific cellular responses. Blood samples that were processed after overnight delay resulted in a loss of ELISpot signals. We subsequently optimized several parameters of sample processing, and successfully recovered ELISpot signals for the blood samples that are processed within 32 h. Furthermore, several mitigation strategies were employed that would potentially address the impact of granulocyte contamination on detection of antigen-specific cellular responses. Our investigation provides an extension of sample processing window for clinical studies and is significant for resolving the logistical challenge of whole blood sample shipment for timely PBMC preparation in cell/gene therapy clinical studies.


Subject(s)
Interferon-gamma , Leukocytes, Mononuclear , Humans , Enzyme-Linked Immunospot Assay/methods , Immunity, Cellular
9.
Clin Pharmacol Ther ; 114(3): 530-557, 2023 09.
Article in English | MEDLINE | ID: mdl-37393588

ABSTRACT

With the promise of a potentially "single dose curative" paradigm, CAR-T cell therapies have brought a paradigm shift in the treatment and management of hematological malignancies. Both CAR-T and TCR-T cell therapies have also made great progress toward the successful treatment of solid tumor indications. The field is rapidly evolving with recent advancements including the clinical development of "off-the-shelf" allogeneic CAR-T therapies that can overcome the long and difficult "vein-to-vein" wait time seen with autologous CAR-T therapies. There are unique clinical pharmacology, pharmacometric, bioanalytical, and immunogenicity considerations and challenges in the development of these CAR-T and TCR-T cell therapies. Hence, to help accelerate the development of these life-saving therapies for the patients with cancer, experts in this field came together under the umbrella of International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) to form a joint working group between the Clinical Pharmacology Leadership Group (CPLG) and the Translational and ADME Sciences Leadership Group (TALG). In this white paper, we present the IQ consortium perspective on the best practices and considerations for clinical pharmacology and pharmacometric aspects toward the optimal development of CAR-T and TCR-T cell therapies.


Subject(s)
Neoplasms , Pharmacology, Clinical , Receptors, Chimeric Antigen , Humans , Receptors, Antigen, T-Cell , T-Lymphocytes , Neoplasms/therapy , Immunotherapy, Adoptive/adverse effects
10.
Clin Pharmacol Drug Dev ; 12(6): 611-624, 2023 06.
Article in English | MEDLINE | ID: mdl-37125450

ABSTRACT

JNJ-64264681 is an irreversible covalent inhibitor of Bruton's tyrosine kinase. This phase 1, first-in-human, 2-part (single-ascending dose [SAD]; multiple-ascending dose [MAD]) study evaluated the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD; Bruton's tyrosine kinase occupancy [BTKO]) of JNJ-64264681 oral solution in healthy participants. For SAD (N = 78), 6 increasing doses of JNJ-64264681 (4-400 mg) or placebo were evaluated in fasted males. The effects of sex, food, and a capsule formulation were evaluated in separate cohorts. For MAD (N = 27), sequential cohorts of male and female participants received 36/100/200 mg JNJ-64264681 once daily for 10 days. JNJ-64264681 exposure (peak concentration; area under the concentration-time curve) was less than dose proportional from 4 mg to 36 mg. Dose-normalized area under the concentration-time curves following the 36 mg and 100 mg doses were generally similar. The mean terminal half-life was 1.6-13.2 hours. With multiple doses, steady state was achieved by day 2. A semimechanistic PK/PD model was developed using the first 5 SAD cohorts' data to predict %BTKO in MAD cohorts. PK/PD model guided dose-escalation, and all participants in the 200/400 mg single-dose cohorts achieved ≥90% BTKO at 4 hours after dosing (peak) with prolonged occupancy. As BTKO data became available from MAD cohorts, it was found that observed BTKO data were consistent with model predictions. JNJ-64264681 showed no safety signals of concern. Overall, safety, tolerability, PK, BTKO, and PK/PD modeling guided the rationale for dose selection for the subsequent first-in-patient lymphoma studies.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Female , Humans , Male , Area Under Curve , Dose-Response Relationship, Drug , Double-Blind Method , Half-Life , /pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL