Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Infection ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196517

ABSTRACT

OBJECTIVES: We aimed to investigate the impact of enterococci on initial antibiotic treatment (IAT) failure and prolonged hospitalization in complicated urinary tract infection (cUTI) cases, and to identify risk factors for enterococcal cUTI. METHODS: Adult cUTI patients were analyzed to compare the differences between the Enterococcus and non-Enterococcus groups. Univariate and multivariate analyses were employed to identify independent risk factors. RESULTS: This study included 419 patients, with the Enterococcus group showing significantly higher IAT failure rates and an extended average length of stay by 4.4 days compared to the non-Enterococcus group. Multivariate analysis identified enterococci, hospital-acquired UTIs (HA-UTI), indwelling catheters, and bed rest (bedridden) as independent risk factors for IAT failure. Enterococci were notably linked to prolonged hospitalization, other independent risk factors included IAT failure, prior antimicrobial use, age-adjusted Charlson comorbidity index (ACCI) ≥ 4, hypoalbuminemia, and bed rest. Urological cancer, HA-UTI, indwelling catheters, urinary retention, and urologic surgery were risk factors for enterococcal cUTI. CONCLUSION: We provide the first evidence that enterococci independently increase the risk for IAT failure and prolonged hospitalization in adults with cUTIs, highlighting the significance of timely identification to optimize measures including antibiotic regimens. Risk factors for enterococcal cUTI have also been identified to aid clinicians in managing this condition.

2.
Pharmacoepidemiol Drug Saf ; 33(6): e5793, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783553

ABSTRACT

PURPOSE: To evaluate the impact of rescheduling hydrocodone combination products (HCPs) from schedule III of the Controlled Substances Act to the more restrictive schedule II on unintentional pediatric exposures (≤5 years old). METHODS: Using U.S. data on outpatient retail pharmacy dispensing, emergency department (ED) visits, and poison center (PC) exposure cases, we assessed trends in prescriptions dispensed and unintentional pediatric exposure cases involving hydrocodone (rescheduled from III to II) compared to oxycodone (schedule II) and codeine (schedule III for combination products) using descriptive and interrupted time-series (ITS) analyses during the 16 quarters before and after the October 2014 rescheduling of HCPs. RESULTS: Dispensing of hydrocodone products was declining before rescheduling but declined more steeply post-rescheduling. In ITS analyses, both hydrocodone and oxycodone had significant slope decreases in PC case rates in the post versus pre-period that was larger for hydrocodone, while codeine had a small but significant slope increase in PC case rates. An estimated 4202 ED visits for pediatric hydrocodone exposures occurred in the pre-period and 2090 visits occurred in the post-period, a significant decrease of 50.3%. Oxycodone exposures showed no significant decrease. CONCLUSIONS: Pediatric hydrocodone unintentional exposure ED visits and PC cases decreased after HCP rescheduling more than would be expected had the pre-rescheduling trend continued; the acceleration in the decrease in hydrocodone PC cases was partially offset by a slowing in the decrease in codeine-involved cases. The trend changes were likely due to multiple factors, including changes in dispensing that followed the rescheduling. Unintentional pediatric medication exposures and poisonings remain a public health concern requiring ongoing, multifaceted mitigation efforts.


Subject(s)
Analgesics, Opioid , Codeine , Drug and Narcotic Control , Emergency Service, Hospital , Hydrocodone , Oxycodone , Poison Control Centers , Humans , Analgesics, Opioid/adverse effects , Child, Preschool , Oxycodone/adverse effects , Poison Control Centers/statistics & numerical data , United States/epidemiology , Emergency Service, Hospital/statistics & numerical data , Drug and Narcotic Control/legislation & jurisprudence , Infant , Interrupted Time Series Analysis , Child , Drug Combinations
3.
BMC Vet Res ; 20(1): 10, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183097

ABSTRACT

Marek's disease virus (MDV) strain GX0101 was the first reported field strain of recombinant gallid herpesvirus type 2 (GaHV-2). However, the splenic proteome of MDV-infected chickens remains unclear. In this study, a total of 28 1-day-old SPF chickens were intraperitoneally injected with chicken embryo fibroblast (CEF) containing 2000 PFU GX0101. Additionally, a control group, consisting of four one-day-old SPF chickens, received intraperitoneal equal doses of CEF. Blood and various tissue samples were collected at different intervals (7, 14, 21, 30, 45, 60, and 90 days post-infection; dpi) for histopathological, real-time PCR, and label-free quantitative analyses. The results showed that the serum expressions of MDV-related genes, meq and gB, peaked at 45 dpi. The heart, liver, and spleen were dissected at 30 and 45 dpi, and their hematoxylin-eosin staining indicated that virus infection compromised the normal organizational structure at 45 dpi. Particularly, the spleen structure was severely damaged, and the lymphocytes in the white medulla were significantly reduced. Furthermore, liquid chromatography-mass spectrometry (LC-MS) and label-free techniques were used to analyze the difference in splenic proteome profiles of the experimental and control groups at 30 and 45 dpi. Proteomic analysis identified 1660 and 1244 differentially expressed proteins (DEPs) at 30 and 40 dpi, respectively, compared with the uninfected spleen tissues. According to GO analysis, these DEPs were involved in processes such as organelle organization, cellular component biogenesis, cellular component assembly, anion binding, small molecule binding, metal ion binding, cation binding, cytosol, nuclear part, etc. Additionally, KEGG analysis indicated that the following pathways were linked to MDV-induced inflammation, apoptosis, and tumor: Wnt, Hippo, AMPK, cAMP, Notch, TGF-ß, PI3K-Akt, Rap1, Ras, Calcium, NF-κB, PPAR, cGMP-PKG, Apoptosis, VEGF, mTOR, FoxO, TNF, JAK-STAT, MAPK, Prion disease, T cell receptor, and B cell receptor. We finally screened 674 DEPs that were linked to MDV infection in spleen tissue. This study improves our understanding of the MDV response mechanism in the spleen.


Subject(s)
Marek Disease , Spleen , Animals , Chick Embryo , Proteome , Phosphatidylinositol 3-Kinases , Proteomics , Chickens
4.
Lab Invest ; 103(3): 100035, 2023 03.
Article in English | MEDLINE | ID: mdl-36925203

ABSTRACT

For decades, numerous experimental animal models have been developed to examine the pathophysiologic mechanisms and potential treatments for abdominal aortic aneurysms (AAAs) in diverse species with varying chemical or surgical approaches. This study aimed to create an AAA mouse model by the periarterial incubation with papain, which can mimic human AAA with advantages such as simplicity, convenience, and high efficiency. Eighty C57BL/6J male mice were randomly assigned to 1 of the 4 groups: papain (1.0 or 2.0 mg), porcine pancreatic elastase, and phosphate-buffered solution. The aortic segment was wrapped for 20 minutes, and the diameter was measured using ultrasound preoperatively and postoperative days 7 and 14. Then, the mice were killed for histomorphometric and immunohistochemical analyses. According to ultrasound measurements and histomorphometric analyses, on postoperative day 7, 65% of mice in the 1.0-mg papain group and 60% of mice in the 2.0-mg papain group developed AAA. In both papain groups, 100% of mice developed AAA, and 65% of mice in the porcine pancreatic elastase group developed AAA on postoperative day 14. Furthermore, hematoxylin/eosin, elastin van Gieson, and Masson staining of tissues from the papain group revealed thickened media and intimal hyperplasia, collagen sediments, and elastin destruction, indicating that AAA histochemical alteration was similar to that of humans. In addition, the immunohistochemical analysis was conducted to detect infiltrated inflammatory cells, such as macrophages and leukocytes, in the aortic wall and hyperplasic adventitia. The expression of matrix metalloproteinase 2 and 9 was significantly upregulated in papain and human AAA tissues. Periarterial incubation with 1.0 mg of papain for 20 minutes can successfully create an experimental AAA model in mice for 14 days, which can be used to explore the mechanism and treatment of human AAA.


Subject(s)
Aorta, Abdominal , Aortic Aneurysm, Abdominal , Male , Mice , Humans , Animals , Swine , Aorta, Abdominal/metabolism , Matrix Metalloproteinase 2/metabolism , Elastin/adverse effects , Elastin/metabolism , Papain/adverse effects , Papain/metabolism , Mice, Inbred C57BL , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/metabolism , Disease Models, Animal , Pancreatic Elastase/adverse effects , Pancreatic Elastase/metabolism
5.
Reprod Fertil Dev ; 33(14): 760-771, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34585659

ABSTRACT

Melatonin (MT) increases oocyte maturation by reducing reactive oxygen species level and enhancing oocyte antioxidant capacity. However, the mechanisms via which MT works are still poorly understood. In the present study, the effects of MT on the maturation rate and development ability of bovine oocytes were investigated. Then, the transcriptome of oocytes treated by MT was sequenced. Finally, the expression of gap junction protein alpha 4 (GJA4) protein and cAMP level were detected in bovine oocytes, and isoprenaline (enhancer of gap junctional intercellular communication (GJIC)) and heptanol (inhibitor of GJIC) were used to investigate the effect of MT on GJIC activity in bovine oocytes. Our results showed that MT significantly improved the maturation, developmental ability and mRNA expression of GJA4 of bovine oocytes. Meanwhile, MT significantly increased GJA4 protein level and cAMP level in bovine oocytes. In contrast to heptanol, both isoproterenol and MT significantly increased GJIC activity, nuclear maturation and the development ability of bovine oocytes. However, MT significantly restored the nuclear maturation and developmental ability of oocytes treated by heptanol. In conclusion, our results showed that MT improves the maturation and developmental ability of bovine oocytes by enhancing GJIC activity via up-regulating GJA4 protein expression in IVM progress.


Subject(s)
Cattle , Cell Communication/drug effects , Connexins/genetics , Gap Junctions/physiology , Melatonin/pharmacology , Oocytes/growth & development , Animals , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/drug effects , RNA, Messenger/analysis , Up-Regulation/drug effects
6.
Genomics ; 112(1): 379-387, 2020 01.
Article in English | MEDLINE | ID: mdl-30818062

ABSTRACT

Blood components are considered to reflect nutrient metabolism and immune activity in both humans and animals. In this study, we measured 12 blood components in Pekin ducks and performed genome-wide association analysis to identify the QTLs (quantitative trait locus) using a genotyping-by-sequencing strategy. A total of 54 QTLs were identified for blood components. One genome-wide significant QTL for alkaline phosphatase was identified within the intron-region of the OTOG gene (P = 1.31E-07). Moreover, 21 genome-wide significant SNPs for the level of serum cholinesterase were identified on six different scaffolds. In addition, for serum calcium, one genome-wide significant QTL was identified in the upstream region of gene RAB11B. These results provide new markers for functional studies in Pekin ducks, and several candidate genes were identified, which may provide additional insights into specific mechanisms for blood metabolism in ducks and their potential application for duck breeding programs.


Subject(s)
Ducks/blood , Ducks/genetics , Alkaline Phosphatase/blood , Animals , Biomarkers/blood , Calcium/blood , Cholinesterases/blood , Female , Genome-Wide Association Study , Inheritance Patterns , Male , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
7.
BMC Genomics ; 20(1): 1, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30606130

ABSTRACT

BACKGROUND: Pekin duck products have become popular in Asia over recent decades and account for an increasing market share. However, the genetic mechanisms affecting carcass growth in Pekin ducks remain unknown. This study aimed to identify quantitative trait loci affecting body size and carcass yields in Pekin ducks. RESULTS: We measured 18 carcass traits in 639 Pekin ducks and performed genotyping using genotyping-by-sequencing (GBS). Loci-based association analysis detected 37 significant loci for the 17 traits. Thirty-seven identified candidate genes were involved in many biological processes. One single nucleotide polymorphism (SNP) (Chr1_140105435 A > T) located in the intron of the ATPase phospholipid transporting 11A gene (ATP11A) attained genome-wide significance associated with five weight traits. Eight SNPs were significantly associated with three body size traits, including the candidate gene plexin domain containing 2 (PLXDC2) associated with breast width and tensin 3 (TNS3) associated with fossil bone length. Only two SNPs were significantly associated with foot weight and four SNPs were significantly associated with heart weight. In the gene-based analysis, three genes (LOC101791418, TUBGCP3 (encoding tubulin gamma complex-associated protein 3), and ATP11A) were associated with four traits (42-day body weight, eviscerated weight, half-eviscerated weight, and leg muscle weight percentage). However, no loci were significantly associated with leg muscle weight in this study. CONCLUSIONS: The novel results of this study improve our understanding of the genetic mechanisms regulating body growth in ducks and thus provide a genetic basis for breeding programs aimed at maximizing the economic potential of Pekin ducks.


Subject(s)
Body Size/genetics , Ducks/genetics , Genome-Wide Association Study , Quantitative Trait Loci/genetics , Animals , Body Weight/genetics , Breeding , Genotype , Meat , Phenotype , Polymorphism, Single Nucleotide/genetics
8.
BMC Genet ; 20(1): 53, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31269900

ABSTRACT

BACKGROUND: We previously conducted a genome-wide association study (GWAS) strategy for milk fatty acids in Chinese Holstein, and identified 83 genome-wide significant single nucleotide polymorphisms (SNPs) and 314 suggestive significant SNPs. Among them, two SNPs, BTB-01077939 and BTA-11275-no-rs associated with C10:0, C12:0, and C14 index (P = 0.000014 ~ 0.000024), were within and close to (0.85 Mb) protein kinase, cGMP-dependent, type І (PRKG1) gene on BTA26, respectively. PRKG1 gene plays a key role in lipolysis to release fatty acids and glycerol through the hydrolysis of triacyglycerol in adipocytes. We herein considered it as a promising candidate for milk fatty acids. The purpose of this study was to investigate whether PRKG1 had effects on milk fatty acids. RESULTS: By direct sequencing the PCR products of pooled DNA, we identified a total of six SNPs, including one in 5' flanking region, four in 3' untranslated region (UTR), and one in 3' flanking region. The single-locus association analysis was carried out, and showed that the six SNPs mainly had significant associations with C6:0, C8:0 and C17:1 (P < 0.0001 ~ 0.0035). In addition, we observed a haplotype block formed by g.6903810G > A and g.6904047G > T with Haploview 4.1, and it was strongly associated with C8:0, C10:0, C16:1, C17:1, C20:0 and C16 index (P = < 0.0001 ~ 0.0123). The SNP, g.8344262A > T, was predicted to alter the binding site (BS) of transcription factor (TF) GAGA box with Genomatix software, and the subsequent luciferase assay verified that it really changed the transcriptional activity of PRKG1 gene (P = 0.0009). CONCLUSION: In conclusion, to our best of knowledge, we are the first who identified the significant effects of PRKG1 on milk fatty acids in dairy cattle.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I/genetics , Fatty Acids/metabolism , Genetic Association Studies , Genome-Wide Association Study , Milk/metabolism , Alleles , Animals , Cattle , Female , Gene Expression , Genes, Reporter , Genetic Association Studies/methods , Genetic Linkage , Genotype , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide , Protein Binding , Transcription Factors/metabolism , Transcription, Genetic
9.
BMC Genet ; 20(1): 69, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31419940

ABSTRACT

BACKGROUND: Our initial genome-wide association study (GWAS) identified 20 promising candidate genes for milk fatty acid (FA) traits in a Chinese Holstein population, including PRLR, MOGAT1, MINPP1 and CHUK genes. In this study, we performed whether they had significant genetic effects on milk FA traits in Chinese Holstein. RESULTS: We re-sequenced the entire exons and 3000 bp of the 5' and 3' flanking regions, and identified 11 single nucleotide polymorphisms (SNPs), containing four in PRLR, two in MOGAT1, two in MINPP1, and three in CHUK. The SNP-based association analyses showed that all the 11 SNPs were significantly associated with at least one milk FA trait (P = 0.0456 ~ < 0.0001), and none of them had association with C11:0, C13:0, C15:0 and C16:0 (P > 0.05). By the linkage disequilibrium (LD) analyses, we found two, one, one, and one haplotype blocks in PRLR, MOGAT1, MINPP1, and CHUK, respectively, and each haplotype block was significantly associated with at least one milk FA trait (P = 0.0456 ~ < 0.0001). Further, g.38949011G > A in PRLR, and g.111599360A > G and g.111601747 T > A in MOGAT1 were predicted to alter the transcription factor binding sites (TFBSs). A missense mutation, g.39115344G > A, could change the PRLR protein structure. The g.20966385C > G of CHUK varied the binding sequences for microRNAs. Therefore, we deduced the five SNPs as the potential functional mutations. CONCLUSION: In summary, we first detected the genetic effects of PRLR, MOGAT1, MINPP1 and CHUK genes on milk FA traits, and researched the potential functional mutations. These data provided the basis for further investigation on function validation of the four genes in Chinese Holstein.


Subject(s)
Fatty Acids , Genetic Markers , Milk , Polymorphism, Single Nucleotide , Alleles , Animals , Cattle , Fatty Acids/metabolism , Haplotypes , Linkage Disequilibrium , Milk/metabolism
10.
Anim Genet ; 46(6): 636-45, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26545935

ABSTRACT

Breast muscle yield and feed conversion efficiency are the major breeding aims in duck breeding. Understanding the role of specific transcripts in the muscle and small intestine might lead to the elucidation of interrelated biological processes. In this study, we obtained jejunum and breast muscle samples from two strains of Peking ducks that were sorted by feed conversion ratio (FCR) and breast muscle percentage into two-tailed populations. Ten RNA-Seq libraries were developed from the pooled samples and sequenced using the Hiseq2000 platform. We created a reference duck transcript database using de novo assembly methods, which included 16 663 irredundant contigs with an N50 length of 1530 bp. This new duck reference cDNA dataset significantly improved the mapping rate for RNA-Seq data, from 50% to 70%. Mapping and annotation were followed by Gene Ontology analysis, which showed that numerous genes were differentially expressed between the low and high FCR groups. The differentially expressed genes in the jejunum were enriched in biological processes related to immune response and immune response activation, whereas those in the breast muscle were significantly enriched in biological processes related to muscle cell differentiation and organ development. We identified new candidate genes, that is, PCK1, for improving the FCR and breast muscle yield of ducks and obtained much better reference duck transcripts. This study suggested that de novo assembly is essential when applying transcriptome analysis to a species with an incomplete genome.


Subject(s)
Ducks/genetics , Jejunum/growth & development , Muscle, Skeletal/growth & development , Transcriptome , Animal Feed , Animals , Animals, Domestic/genetics , Animals, Domestic/growth & development , Databases, Genetic , Ducks/growth & development , Male , Meat
11.
Sci Rep ; 14(1): 24557, 2024 10 19.
Article in English | MEDLINE | ID: mdl-39427091

ABSTRACT

To understand the microbial diversity and community composition within the main constructive tree species, Picea crassifolia, Betula platyphylla, and Pinus tabuliformis, in Helan Mountain and their response to changes in soil physicochemical factors, a high throughput sequencing technology was used to analyze the bacterial and fungal diversity and community structure. RDA (Redundancy Analysis) and Pearson correlation analysis were used to explore the influence of soil physicochemical factors on microbial community construction, and co-occurrence network analysis was conducted on the microbial communities. The results showed that the fungal and bacterial diversity was highest in B. platyphylla, and lowest in P. crassifolia. Additionally, the fungal/bacterial richness was greatest in the rhizosphere soils of P. tabuliformis and B. platyphylla. RDA and Pearson correlation analysis revealed that NN (nitrate nitrogen) and AP (available phosphorus) were the main determining factors of the bacterial community, while NN and SOC (soil water content) were the main determining factors of the fungal community. Pearson correlation analysis between soil physicochemical factors and the alpha diversity of the microbial communities revealed a significant positive correlation between pH and the bacterial and fungal diversity, while SOC, TN (total nitrogen), AP, and AN (available nitrogen) were significantly negatively correlated with the bacterial and fungal diversity. Co-occurrence network analysis revealed that the soil bacterial communities exhibit richer network nodes, edges, greater diversity, and greater network connectivity. Indicating that bacterial communities exhibit more complex and stable interaction patterns in soil. This study reveals the complex interactive relationship between microbial communities and soil physicochemical factors in forest ecosystems. By analyzing the response of rhizosphere microbial communities of major tree species in Helan Mountain to nutrient dynamics and pH changes, we can deepen our understanding of the role of microorganisms in regulating ecosystem functions and provide theoretical basis for soil improvement and ecological restoration strategies.


Subject(s)
Bacteria , Fungi , Microbiota , Rhizosphere , Soil Microbiology , Trees , China , Trees/microbiology , Bacteria/classification , Bacteria/genetics , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Soil/chemistry , Pinus/microbiology , Biodiversity , Picea/microbiology , Nitrogen/analysis , Betula/microbiology
12.
Front Microbiol ; 15: 1442797, 2024.
Article in English | MEDLINE | ID: mdl-39355421

ABSTRACT

Introduction: Endoglucanase (EG) and cellobiohydrolase (CBH) which produced by microorganisms, have been widely used in industrial applications. Methods: In order to construct recombinant bacteria that produce high activity EG and CBH, in this study, eg (endoglucanase) and cbh (cellobiohydrolase) were cloned from the rumen microbial genome of yak and subsequently expressed independently and co-expressed within Lactococcus lactis NZ9000 (L. lactis NZ9000). Results: The recombinant strains L. lactis NZ9000/pMG36e-usp45-cbh (L. lactis-cbh), L. lactis NZ9000/pMG36e-usp45-eg (L. lactis-eg), and L. lactis NZ9000/pMG36e-usp45-eg-usp45-cbh (L. lactis-eg-cbh) were successfully constructed and demonstrated the ability to secrete EG, CBH, and EG-CBH. The sodium carboxymethyl cellulose activity of the recombinant enzyme EG was the highest, and the regenerated amorphous cellulose (RAC) was the specific substrate of the recombinant enzyme CBH, and EG-CBH. The optimum reaction temperature of the recombinant enzyme CBH was 60°C, while the recombinant enzymes EG and EG-CBH were tolerant to higher temperatures (80°C). The optimum reaction pH of EG, CBH, and EG-CBH was 6.0. Mn2+, Fe2+, Cu2+, and Co2+ could promote the activity of CBH. Similarly, Fe2+, Ba2+, and higher concentrations of Ca2+, Cu2+, and Co2+ could promote the activity of EG-CBH. The addition of engineered strains to whole-plant corn silage improved the nutritional quality of the feed, with the lowest pH, acid detergent fiber (ADF), and neutral detergent fiber (NDF) contents observed in silage from the L. lactis-eg group (p < 0.05), and the lowest ammonia nitrogen (NH3-N), and highest lactic acid (LA) and crude protein (CP) contents in silage from the L. lactis-eg + L. lactis-cbh group (p < 0.05), while the silage quality in the L. lactis-cbh group was not satisfactory. Discussion: Consequently, the recombinant strains L. lactis-cbh, L. lactis-eg, and L. lactis-eg-cbh were successfully constructed, which could successfully expressed EG, CBH, and EG-CBH. L. lactis-eg promoted silage fermentation by degrading cellulose to produce sugar, enabling the secretory expression of EG, CBH, and EG-CBH for potential industrial applications in cellulose degradation.

13.
Poult Sci ; 103(3): 103416, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301494

ABSTRACT

As the most prevalent pathogen of duck viral hepatitis (DVH), duck hepatitis A virus genotype 3 (DHAV-3) has caused huge economic losses to the duck industry in China. Herein, we obtained whole-transcriptome sequencing data of susceptible (S) and resistant (R) Pekin duckling samples at 0 h, 12 h, and 24 h after DHAV-3 infection. We found that DHAV-3 infection induces 5,396 differentially expressed genes (DEGs), 85 differentially expressed miRNAs (DEMs), and 727 differentially expressed lncRNAs (DELs) at 24 hpi in S vs. R ducks, those upregulated genes were enriched in inflammation and cell communications pathways and downregulated genes were related to metabolic processes. Upregulated genes showed high connectivity with the miR-33, miR-193, and miR-11591, and downregulated genes were mainly regulated by miR-2954, miR-125, and miR-146b. With the construction of lncRNA-miRNA-mRNA axis, we further identified a few aberrantly expressed lncRNAs (e.g., MSTRG.36194.1, MSTRG.50601.1, MSTRG.34328.7, and MSTRG.29445.1) that regulate expression of hub genes (e.g., THBD, CLIC2, IL8, ACOX2, GPHN, SMLR1, and HAO1) by sponging those highly connected miRNAs. Altogether, our findings defined a dual role of ncRNAs in immune and metabolic regulation during DHAV-3 infection, suggesting potential new targets for treating DHAV-3 infected ducks.


Subject(s)
Hepatitis Virus, Duck , Hepatitis, Viral, Animal , MicroRNAs , Picornaviridae Infections , RNA, Long Noncoding , Animals , Hepatitis Virus, Duck/physiology , Ducks/genetics , Transcriptome , RNA, Long Noncoding/genetics , Picornaviridae Infections/veterinary , Chickens/genetics , Genotype , MicroRNAs/genetics
14.
Microorganisms ; 11(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37374889

ABSTRACT

ß-glucosidase derived from microorganisms has wide industrial applications. In order to generate genetically engineered bacteria with high-efficiency ß-glucosidase, in this study two subunits (bglA and bglB) of ß-glucosidase obtained from the yak rumen were expressed as independent proteins and fused proteins in lactic acid bacteria (Lactobacillus lactis NZ9000). The engineered strains L. lactis NZ9000/pMG36e-usp45-bglA, L. lactis NZ9000/pMG36e-usp45-bglB, and L. lactis NZ9000/pMG36e-usp45-bglA-usp45-bglB were successfully constructed. These bacteria showed the secretory expression of BglA, BglB, and Bgl, respectively. The molecular weights of BglA, BglB, and Bgl were about 55 kDa, 55 kDa, and 75 kDa, respectively. The enzyme activity of Bgl was significantly higher (p < 0.05) than that of BglA and BglB for substrates such as regenerated amorphous cellulose (RAC), sodium carboxymethyl cellulose (CMC-Na), desiccated cotton, microcrystalline cellulose, filter paper, and 1% salicin. Moreover, 1% salicin appeared to be the most suitable substrate for these three recombinant proteins. The optimum reaction temperatures and pH values for these three recombinant enzymes were 50 °C and 7.0, respectively. In subsequent studies using 1% salicin as the substrate, the enzymatic activities of BglA, BglB, and Bgl were found to be 2.09 U/mL, 2.36 U/mL, and 9.4 U/mL, respectively. The enzyme kinetic parameters (Vmax, Km, Kcat, and Kcat/Km) of the three recombinant strains were analyzed using 1% salicin as the substrate at 50 °C and pH 7.0, respectively. Under conditions of increased K+ and Fe2+ concentrations, the Bgl enzyme activity was significantly higher (p < 0.05) than the BglA and BglB enzyme activity. However, under conditions of increased Zn2+, Hg2+, and Tween20 concentrations, the Bgl enzyme activity was significantly lower (p < 0.05) than the BglA and BglB enzyme activity. Overall, the engineered lactic acid bacteria strains generated in this study could efficiently hydrolyze cellulose, laying the foundation for the industrial application of ß-glucosidase.

15.
PLoS One ; 18(1): e0280905, 2023.
Article in English | MEDLINE | ID: mdl-36706149

ABSTRACT

Matrine, an alkaloid derived from herbal medicine, has a wide range of biological activities, including antibacterial. Matrine was toxic to multiple cells at high concentrations. Bovine mammary epithelial cells (MAC-T) could be used as model cells for cow breast. Matrine was a feasible option to replace antibiotics in the prevention or treatment of mastitis against the background of prohibiting antibiotics, but the safe concentration of matrine on MAC-T cells and the mechanism of action for matrine at different concentrations were still unclear. In this study, different concentrations of matrine (0.5, 1, 1.5, 2, 2.5 and 3 mg/mL) were used to treat MAC-T cells for various time periods (4, 8, 12, 16 and 24 h) and measure their lactic dehydrogenase (LDH). And then the optimal doses (2 mg/mL) were chosen to detect the apoptosis at various time periods by flow cytometry and transcriptome analysis was performed between the control and 2 mg/mL matrine-treated MAC-T cells for 8 hours. The results showed that matrine was not cytotoxic at 0.5 mg/mL, but it was cytotoxic at 1~3 mg/mL. In addition, matrine induced apoptosis in MAC-T cells at 2 mg/mL and the proportion of apoptosis cells increases with time by flow cytometry. RNA-seq analysis identified 1645 DEGs, 676 of which were expressed up-regulated and 969 were expressed down-regulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated the following pathways were linked to matrine-induced toxicity and apoptosis, including cytokine-cytokine receptor interaction pathway, viral protein interaction with cytokine and cytokine receptor, P53 and PPAR pathway. We found 7 DEGs associated with matrine toxicity and apoptosis. This study would provide a basis for the safety of matrine in the prevention or treatment of mastitis.


Subject(s)
Antineoplastic Agents , Transcriptome , Female , Animals , Cattle , Matrines , T-Lymphocytes , Apoptosis , Antineoplastic Agents/pharmacology , Cytokines/pharmacology , Quinolizines/pharmacology , Quinolizines/therapeutic use
16.
Microorganisms ; 11(9)2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37764119

ABSTRACT

The clustered regularly interspaced short palindromic repeat (CRISPR) is an adaptive immune system that defends most archaea and many bacteria from foreign DNA, such as phages, viruses, and plasmids. The link between the CRISPR-Cas system and the optimum growth temperature of thermophilic bacteria remains unclear. To investigate the relationship between the structural characteristics, diversity, and distribution properties of the CRISPR-Cas system and the optimum growth temperature in thermophilic bacteria, genomes of 61 species of thermophilic bacteria with complete genome sequences were downloaded from GenBank in this study. We used CRISPRFinder to extensively study CRISPR structures and CRISPR-associated genes (cas) from thermophilic bacteria. We statistically analyzed the association between the CRISPR-Cas system and the optimum growth temperature of thermophilic bacteria. The results revealed that 59 strains of 61 thermophilic bacteria had at least one CRISPR locus, accounting for 96.72% of the total. Additionally, a total of 362 CRISPR loci, 209 entirely distinct repetitive sequences, 131 cas genes, and 7744 spacer sequences were discovered. The average number of CRISPR loci and the average minimum free energy (MFE) of the RNA secondary structure of repeat sequences were positively correlated with temperature whereas the average length of CRISPR loci and the average number of spacers were negatively correlated. The temperature did not affect the average number of CRISPR loci, the average length of repeats, or the guanine-cytosine (GC) content of repeats. The average number of CRISPR loci, the average length of the repeats, and the GC content of the repeats did not reflect temperature dependence. This study may provide a new basis for the study of the thermophilic bacterial adaptation mechanisms of thermophilic bacteria.

17.
Commun Biol ; 6(1): 1233, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38057566

ABSTRACT

A set of high-quality pan-genomes would help identify important genes that are still hidden/incomplete in bird reference genomes. In an attempt to address these issues, we have assembled a de novo chromosome-level reference genome of the Silkie (Gallus gallus domesticus), which is an important avian model for unique traits, like fibromelanosis, with unclear genetic foundation. This Silkie genome includes the complete genomic sequences of well-known, but unresolved, evolutionarily, endocrinologically, and immunologically important genes, including leptin, ovocleidin-17, and tumor-necrosis factor-α. The gap-less and manually annotated MHC (major histocompatibility complex) region possesses 38 recently identified genes, with differentially regulated genes recovered in response to pathogen challenges. We also provide whole-genome methylation and genetic variation maps, and resolve a complex genetic region that may contribute to fibromelanosis in these animals. Finally, we experimentally show leptin binding to the identified leptin receptor in chicken, confirming an active leptin ligand-receptor system. The Silkie genome assembly not only provides a rich data resource for avian genome studies, but also lays a foundation for further functional validation of resolved genes.


Subject(s)
Chickens , Leptin , Animals , Chickens/genetics , Leptin/genetics , Genome , Genomics , Chromosomes
18.
Animals (Basel) ; 12(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36230445

ABSTRACT

Placentation and placental steroidogenesis are important for pregnancy and maternal−fetal health. As pregnancy progresses, the main site of progesterone (P4) synthesis changes from the corpus luteum to the placenta, in which placental trophoblasts are the main cell type for P4 synthesis. Therefore, this study investigated the effects of P4 on apoptosis and steroidogenesis in porcine placental trophoblasts and the underlying molecular mechanisms. Porcine placental trophoblasts were treated with different concentrations of P4 for 48 h in a serum-free medium in vitro. Cell number, steroidogenesis, and relevant gene and protein expression levels were detected. A high dose of P4 (10.0 µM) significantly increased P4 (p < 0.01), androstenedione (p < 0.05), testosterone (p < 0.05), and estradiol (p < 0.05) production in porcine placental trophoblasts compared with that in control cells, while a low dose of P4 (1 × 10−3 µΜ) had no marked impact on steroid production. The mRNA expression of apoptosis-related genes (CASP3, CASP8, and Bax) (p < 0.05) and steroidogenesis-related genes (CYP11A1, CYP19A1, and StAR) (p < 0.01) was upregulated, and the expression of HSD3B and HSD17B4 was inhibited (p < 0.05) in the porcine placental trophoblasts treated with high doses of P4. Low doses of P4 had a lighter effect on gene expression than high doses. The expression of apoptosis-related proteins CASP3 (p < 0.05), and Bax (p < 0.01) and steroidogenesis-related proteins CYP19A1 (p < 0.05) and StAR (p < 0.01) was raised, but the proliferation-related protein CCND2 (p < 0.01) was downregulated in the pTr cells treated with high dose of P4. In comparison, a low dose of P4 inhibited the expression of Bax, CYP11A1 (all p < 0.01), and CCND2 (p < 0.05), but the expression of CASP3 (p < 0.05) and StAR (p < 0.01) was upregulated. In summary, excessive P4 can induce the apoptosis of porcine placental trophoblasts and lead to abnormal steroidogenesis in the placenta and hormone imbalance.

19.
Genes (Basel) ; 13(5)2022 04 30.
Article in English | MEDLINE | ID: mdl-35627190

ABSTRACT

The quality and developmental capacity of oocytes derived from in vitro maturation (IVM) remain unsatisfactory, which greatly impairs the efficiency and application of embryo technologies. The present experiment was designed to investigate the effect of the supplementation of EGF, IGF-1, and Cx37 in an IVM medium on the maturation quality and development ability of bovine oocytes. The cytoplasmic maturation events of oocytes and the quality of in vitro fertilization (IVF) blastocysts were examined to investigate the relative mechanisms. Our results showed that the nuclear maturation and blastocyst development after the IVF of oocytes treated with 25 µg/mL Cx37 or the combination of 50 ng/mL EGF and 100 ng/mL IGF-1 were significantly increased compared to those of the control group (p < 0.05). Furthermore, the blastocyst rate, and blastocyst total cell number and survival rate after vitrification of the EGF+IGF-1+Cx37 group, were significantly higher than those of the control group (p < 0.05), but lower than those of the FSH+LH+EGF+IGF-1+Cx37 group (p < 0.05). The transzonal projection (TZP) intensity, glutathione (GSH) level, and mitochondrial function of the EGF+IGF-1+Cx37 group were significantly higher than that of the control group, and lower than those of the FSH+LH+EGF+IGF-1+Cx37 group, in contrast to the results of the reactive oxygen species (ROS) levels. In conclusion, our results showed that the supplementation of 50 ng/mL EGF, 100 ng/mL IGF-1, and 25 µg/mL Cx37 in the IVM of bovine oocytes significantly improved their quality and developmental ability by increasing the TZP, mitochondrial function, and GSH level.


Subject(s)
Epidermal Growth Factor , Vitrification , Animals , Blastocyst , Cattle , Connexins , Culture Media/pharmacology , Dietary Supplements , Epidermal Growth Factor/pharmacology , Fertilization in Vitro , Follicle Stimulating Hormone , Insulin-Like Growth Factor I/pharmacology , Oocytes , Gap Junction alpha-4 Protein
20.
Front Vet Sci ; 9: 818928, 2022.
Article in English | MEDLINE | ID: mdl-35812882

ABSTRACT

Staphylococcus aureus (S. aureus) is one of the main pathogens causing mastitis in dairy cows. The current work mainly focuses on the pathway of apoptosis induction in MAC-T cells caused by S. aureus infection or other factors. However, the physiological characteristics of S. aureus infected MAC-T cells and the resulting mRNA expression profile remain unknown particularly in the case of diverse drug resistant strains. Methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains were used to infect MAC-T cells to investigate this issue. The adhesion, invasion and apoptosis ability of MRSA-infected group and MSSA-infected group was assessed over time (2, 4, 6, 8, and 12 h). After 8 h, the RNA sequencing was conducted on the MRSA-infected and the MSSA-infected with uninfected MAC-T cells as controls. The results showed that the adhesion and invasion ability of MRSA-infected and MSSA-infected to MAC-T cells increased and then decreased with infection time, peaking at 8 h. The adhesion and invasion rates of the MSSA-infected were substantially lower than those of the MRSA-infected, and the invasion rate of the MSSA-infected group was nearly non-existent. Then the apoptosis rate of MAC-T cells increased as the infection time increased. The transcriptome analysis revealed 549 differentially expressed mRNAs and 390 differentially expressed mRNAs in MRSA-infected and MSSA-infected MAC-T cells, respectively, compared to the uninfected MAC-T cells. According to GO analysis, these differentially expressed genes were involved in immune response, inflammation, apoptosis, and other processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated the following pathways were linked to adhesion, invasion inflammation and apoptosis, including AMPK, FOXO, HIF-1, IL-17, JAK-STAT, MAPK, mTOR, NF-κB, p53, PI3K-Akt, TNF, Toll-like receptor, Rap1, RAS, prion disease, the bacterial invasion of epithelial cells pathway. We found 86 DEGs from 41 KEGG-enriched pathways associated with adhesion, invasion, apoptosis, and inflammation, all of which were implicated in MAC-T cells resistance to MRSA and MSSA infection. This study offers helpful data toward understanding the effect of different drug-resistant S. aureus on dairy cow mammary epithelial cells and aid in the prevention of mastitis in the dairy industry.

SELECTION OF CITATIONS
SEARCH DETAIL