Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Pest Manag Sci ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924623

ABSTRACT

BACKGROUND: Ostrinia furnacalis (ACB) and Ostrinia nubilalis (ECB) are devastating pests of the agricultural crop maize worldwide. However, little is known about their potential distribution and niche shifts during their global invasion. Since long-term selection to past climate variability has shaped their historical niche breadth, such niche shifts may provide an alternative basis for understanding their responses to present and future climate change. By integrating the niche unfilling, stability, and expansion situations into a single framework, our study quantifies the patterns of niche shift in the spatial distribution of these two pests during the different periods. RESULTS: Our results show that the overall suitable habitats of ACB and ECB in the future decrease but highly and extremely suitable habitat will become more widespread, suggesting these two insects may occur more frequently in specific regions. Compared with Southeast Asia and Australia, the ACB niche in China exhibited expansion rather than unfilling. For ECB, initial niches have a tendency to be retained in Eurasia despite there also being potential for expansion in North America. The niche equivalency and similarity test results further indicate that niche shifts were common for both ACB and ECB in different survival regions during their colonization of new habitat and their suitable habitat changes during the paleoclimate were associated with climatic changes. CONCLUSIONS: These findings improve our understanding of the ecological characteristics of ACB and ECB worldwide, and will be useful in the development of prevention and control strategies for two insect pests worldwide. © 2024 Society of Chemical Industry.

2.
Microsc Res Tech ; 86(4): 452-464, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36582180

ABSTRACT

The poplar clearwing moth, Paranthrene tabaniformis (Lepidoptera: Sesiidae) is a serious wood-boring pest of several trees. The ultramorphology of the antennae and proboscis sensilla of adult P. tabaniformis was examined using scanning electron microscope to determine their structures and sex-specific differences. The results showed that the antennae of both sexes are composed of three segments: scape, pedicel and flagellum. Female antennae are clavate while male antennae are pectinate. The number of flagellomeres for females was significantly greater than for males. Seven different types of sensilla were identified on antennae of both males and females: Böhm sensilla, sensilla squamiformia, sensilla trichodea (three subtypes), sensilla chaetica, sensilla coeloconica, and sensilla auricillica (two subtypes), and apical sensors. Three different types of sensilla were found on the proboscis of adult P. tabaniformis: sensilla styloconica, sensilla chaetica, and sensilla basiconica (three subtypes). The sexual dimorphism difference in the number, distributional pattern, the length and the basal width of various sensilla on the antennae and proboscis were determined. This study clarifies the types and sexual dimorphism of the antennal and proboscis sensilla of adult P. tabaniformis and provides useful theoretical foundations for studies on behavioral mechanisms and functions of sensilla of P. tabaniformis. RESEARCH HIGHLIGHTS: Various types of sensilla on the antennae and proboscis of adults Paranthrene tabaniformis were observed. The sexual dimorphism of various sensilla on the antennae and proboscis were determined.


Subject(s)
Moths , Sensilla , Animals , Female , Male , Arthropod Antennae/anatomy & histology , Microscopy, Electron, Scanning , Moths/anatomy & histology , Sensilla/anatomy & histology , Sex Characteristics
3.
Ecol Evol ; 12(11): e9504, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36407909

ABSTRACT

Tianshan Mountains provide a model for studying biological evolution and speciation. Here we assess the evolutionary history of Ostrinia furnacalis (ACB) and Ostrinia nubilalis (ECB), which are sympatric in the Yili River Valley in Xinjiang, China.Our study is based on the historical gene flow analyses of two species by using three mitochondrial DNA (mtDNA, COI, COII, Cytb) and four nuclear DNA (nuDNA, EF-1α, Wingless, RPS5, CAD) markers obtained from representatives of HC (Huocheng), YN (Yining), XY (Xinyuan), and MNS (Manasi).Our results reveal that there is an asymmetrical gene flow pattern between the four populations. The population migratory pathways between these different populations show inflow into HC and YN, outflow from XY, and that MNS maintained a flow balance. Bayesian divergence time dating based on the COI gene suggests that the genetic divergence between the two species in this area may have occurred in Holocene at 0.008 Mya. Neutrality tests (Tajima's D, Fu's F s), and mismatch distribution test results suggest that population expansion events may not have occurred in the recent past. The demographic history and gene flow pattern between ACB and ECB may follow the "mountain isolation" hypothesis. The ML and BI trees of the mtDNA haplotype dataset show that ECB haplotypes are grouped together in a distinct clade and are clearly separate from ACB haplotypes. However, the geographical pattern of haplotype distribution is less clear for both ACB and ECB, supporting that there has been frequent gene flow among the geographic populations in the Tianshan Mountains.These findings indicate that the Tianshan Mountains are less likely a barrier to gene flow of the two species.

4.
Article in English | MEDLINE | ID: mdl-35886188

ABSTRACT

To achieve the long-term goals outlined in the Paris Agreement that address climate change, many countries have committed to carbon neutrality targets. The study of the characteristics and emissions trends of these economies is essential for the realistic formulation of accurate corresponding carbon neutral policies. In this study, we investigate the convergence characteristics of per capita carbon emissions (PCCEs) in 121 countries with carbon neutrality targets from 1990 to 2019 using a nonlinear time-varying factor model-based club convergence analysis, followed by an ordered logit model to explore the mechanism of convergence club formation. The results reveal three relevant findings. (1) Three convergence clubs for the PCCEs of countries with proposed carbon neutrality targets were evident, and the PCCEs of different convergence clubs converged in multiple steady-state levels along differing transition paths. (2) After the Kyoto Protocol came into effect, some developed countries were moved to the club with lower emissions levels, whereas some developing countries displayed elevated emissions, converging with the higher-level club. (3) It was shown that countries with higher initial emissions, energy intensity, industrial structure, and economic development levels are more likely to converge with higher-PCCEs clubs, whereas countries with higher urbanization levels are more likely to converge in clubs with lower PCCEs.


Subject(s)
Carbon Dioxide , Carbon , Carbon Dioxide/analysis , Economic Development , Organizations , Urbanization
5.
Ecol Evol ; 12(3): e8678, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35309745

ABSTRACT

To investigate the species diversity of lepidopteran insects in Xinjiang wild fruit forests, establish insect community monitoring systems, and determine the local species pool, we test the applicability of DNA barcoding based on cytochrome c oxidase subunit I (COI) gene for accurate and rapid identification of insect species. From 2017 to 2019, a total of 212 samples with ambiguous morphological identification were selected for DNA barcoding analysis. Five sequence-based methods for species delimitation (ABGD, BINs, GMYC, jMOTU, and bPTP) were conducted for comparison to traditional morphology-based identification. In total, 2,422 samples were recorded, representing 143 species of 110 genera in 17 families in Lepidoptera. The diversity analysis showed that the richness indices for Noctuidae was the highest (54 species), and for Pterophoridae, Cossidae, Limacodidae, Lasiocampidae, Pieridae, and Lycaenidae were the lowest (all with 1 species). The Shannon-Wiener species diversity index (H') and Pielou's evenness (J') of lepidopteran insects first increased and then decreased across these 3 years, while the Simpson diversity index showed a trend of subtracted then added. For molecular-based identification, 67 lepidopteran species within 61 genera in 14 families were identified through DNA barcoding. Neighbor-joining (NJ) analysis showed that conspecific individuals were clustered together and formed monophyletic groups with a high support value, except for Lacanobia contigua (Denis & Schiffermüller, 1775) (Noctuidae: Hadeninae). Sixty-seven morphospecies were classified into various numbers of MOTUs based on ABGD, BINs, GMYC, jMOTU, and bPTP (70, 96, 2, 71, and 71, respectively). In Xinjiang wild fruit forests, the family with the largest number of species is Noctuidae, followed by Geometridae, Crambidae, and the remaining families. The highest Shannon diversity index is observed for the family Noctuidae. Our results indicate that the distance-based methods (ABGD and jMOTU) and character-based method (bPTP) outperform GMYC. BINs is inclined to overestimate species diversity compared to other methods.

6.
Insects ; 13(12)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36555035

ABSTRACT

Rapoport's rule proposes that a species' range size increases with the increase in a gradient (such as latitude, altitude or water depth). However, altitudinal distributions and Rapoport's rule have rarely been tested for Asian Lepidoptera. Pyraustinae and Spilomelinae (Lepidoptera: Crambidae) are extremely diverse in temperate Asia, including on Mount Taibai, which is considered a hotspot area for studying the vertical distribution patterns of insect species. Based on the investigation of altitudinal distribution data with identification by using both DNA barcoding and the morphological classification of Pyraustinae and Spilomelinae, this paper determines the altitudinal gradient pattern for these two subfamilies on the north slope of Mount Taibai, and provides a test of the universality of Rapoport's rule in Lepidoptera by using four methods, including Stevens' method, Pagel's method, Rohde's method, and the cross-species method. Our results show that the alpha diversity of Pyraustinae and Spilomelinae both decrease with rising altitude. By contrast, the species' ranges increase with rising altitude. Three of the four methods used to test Rapoport's rule yielded positive results, while Rohde's results show a unimodal distribution model and do not support Rapoport's rule. Our findings fill the research gap on the elevational diversity of Lepidoptera in temperate Asia.

7.
Ecol Evol ; 12(10): e9377, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36203634

ABSTRACT

Matsumurasca onukii (Matsuda, R. (1952). Oyo-Kontyu Tokyo, 8(1): 19-21), one of the dominant pests in major tea production areas in Asia, currently is known to occur in Japan, Vietnam, and China, and severely threatens tea production, quality, and international trade. To elucidate the population genetic structure of this species, 1633 single nucleotide polymorphisms (SNPs) and 18 microsatellite markers (SSRs) were used to genotype samples from 27 sites representing 18 geographical populations distributed throughout the known range of the species in East Asia. Analyses of both SNPs and SSRs showed that M. onukii populations in Yunnan exhibit high-genetic differentiation and structure compared with the other populations. The Kagoshima (JJ) and Shizuoka (JS) populations from Japan were separated from populations from China by SNPs, but clustered with populations from Jinhua (JH), Yingde (YD), Guilin (GL), Fuzhou (FZ), Hainan (HQ), Leshan (CT), Chongqing (CY), and Zunyi (ZY) tea plantations in China and the Vietnamese Vinh Phuc (VN) population based on the SSR data. In contrast, CT, CY, ZY, and Shaanxi (SX) populations clustered together based on SNPs, but were separated by SSRs. Both marker datasets identified significant geographic differentiation among the 18 populations. Various environmental and anthropogenic factors, including geographical barriers to migration, human transport of hosts (Camellia sinesis [L.] O. Kuntze) and adaptation of M. onukii to various local climatic zones possibly account for the rapid spread of this pest in Asia. The results demonstrate that SNPs from high-throughput genotyping data can be used to reveal subtle genetic substructure at broad scales in r-strategist insects.

8.
Mitochondrial DNA B Resour ; 6(8): 2316-2318, 2021.
Article in English | MEDLINE | ID: mdl-34291169

ABSTRACT

The complete mitochondrial genome of Ostrinia kasmirica (Moore, 1888) was sequenced in this study. The circular mitogenome is 15,214 bp in length, containing 37 typical encoded genes and a non-coding control region. The gene organization and nucleotide composition are similar to those of most other sequenced Ostrinia species. All protein-coding genes (PCGs) initiate with ATN and terminate with TAN, except cox1 starts with CGA and cox1, cox2, nad5 terminate with an incomplete codon T. The control region of 308 bp contains three conserved features including the motif 'TTAGA' preceded a poly-T stretch, a microsatellite-like (TA)n element, and a poly-A stretch upstream of trnM. Phylogenetic analysis based on mitogenome sequences revealed that the O. kasmirica (the second species group) was more closely related to the third species group of the genus and the first species group was not at the basal position of this genus as that Mutuura and Munroe indicated.

9.
Insects ; 11(4)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272743

ABSTRACT

To understand mitogenome characteristics and reveal phylogenetic relationships of the genus Ostrinia, including several notorious pests of great importance for crops, we sequenced the complete mitogenomes of four species: Ostrinia furnacalis (Guenée, 1854), Ostrinia nubilalis (Hübner, 1796), Ostrinia scapulalis (Walker, 1859) and Ostrinia zealis (Guenée, 1854). Results indicate that the four mitogenomes-O. furnacalis, O. nubilalis, O. scapulalis, and O. zealis-are 15,245, 15,248, 15,311, and 15,208 bp in size, respectively. All four mitogenomes are comprised of 37 encoded genes and a control region. All 13 protein-coding genes (PCGs) initiate with ATN and terminate with TAN, with the exception of cox1 that starts with CGA, and cox1, cox2, and nad5 that terminate with an incomplete codon T. All transfer RNA genes (tRNAs) present the typical clover-leaf secondary structure except for the trnS1 (AGN) gene. There are some conserved structural elements in the control region. Our analyses indicate that nad6 and atp6 exhibit higher evolution rates compared to other PCGs. Phylogenetic analyses based on mitogenomes using both maximum likelihood (ML) and Bayesian inference (BI) methods revealed the relationship (O. palustralis + (O. penitalis + (O. zealis + (O. furnacalis + (O. nubilalis + O. scapulalis))))) within Ostrinia.

10.
Dalton Trans ; 48(15): 4931-4940, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30912784

ABSTRACT

A tetradentate 8-hydroxyquinoline-based acyl hydrazone ligand (HL1 = 8-hydroxyquinoline-2-carboxaldehyde-(aminourea)hydrochloride) was elaborately used to construct a mononuclear dysprosium complex DyCl3HL1·CH3OH (1) with a nearly ideal pentagonal bipyramid coordination geometry (D5h) surrounding the Dy(iii) ion to achieve the significant performance of single-molecule magnets (SMMs). Meanwhile, the isolated high local symmetry center was successfully kept intact and further bridged to a series of double bipyramid systems by two phenolic oxygen atoms of the acyl hydrazone ligands (HL1 and HL2 = 8-hydroxyquinoline-2-carboxaldehyde-(benzoyl)hydrazine), with the formulae [Dy2Cl4(L1)2(CH3OH)2]·4C5H5N (2) and [Dy2Cl4(L2)2]·2CH3CN (3). In addition, the monodentate co-ligand anion was replaced by a larger sterically hindered ligand and a bidentate monovalent ß-diketonate anion to generate [Dy2(tfo)4(L2)2(EtOH)2] (4), [Dy2(tta)4(L2)2(EtOH)2]·2(EtOH) (5) and [Dy2(dbm)4(L2)2(EtOH)2] (6) (tfo = trifluoromethanesulfonic acid, dbm = dibenzoylmethane, tta = 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione) with eight-coordinate geometry. Strikingly, the dynamic magnetic measurements revealed that complexes 1-3 did not display the expected significant SMM performance albeit they had high local symmetry. In combination with ab initio calculation, the alignment of the coordination symmetric axis and the magnetic easy axis dominates the molecular magnetic anisotropy, and the magnetic easy axis could be modulated by the distribution of coordination atoms with different electrostatic properties.

11.
Mitochondrial DNA A DNA Mapp Seq Anal ; 29(7): 1121-1127, 2018 10.
Article in English | MEDLINE | ID: mdl-29280404

ABSTRACT

Integrative taxonomic study of three species of the genus Tylostega revealed that the genetic distances of the COI gene among the tested species was relatively large (3.27-7.60%). The Automatic Barcode Gap Discovery (ABGD) system performed better than the Barcode Index Number (BIN) in discriminating closely related species. This work provides a molecular baseline for future integrative taxonomic study of Crambidae.


Subject(s)
Lepidoptera/genetics , Phylogeny , Animals , DNA Barcoding, Taxonomic , Electron Transport Complex IV/genetics , Female , Genitalia, Male/anatomy & histology , Insect Proteins/genetics , Lepidoptera/anatomy & histology , Lepidoptera/classification , Male
12.
Zookeys ; (679): 65-76, 2017.
Article in English | MEDLINE | ID: mdl-28769709

ABSTRACT

Nagiella occultalis Misbah & Yang, sp. n. from China is described and illustrated. This new species is very similar to N. quadrimaculalis (Kollar, 1844) in general morphological characters of forewing and male genitalia. Molecular evidence shows that these two species diverge in COI barcode region by more than 3.2%. Sequence divergence among the two species is congruent with subtle morphological differences. Wing venation and male genitalia of the two species are compared and illustrated.

13.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(4): 2523-8, 2016 07.
Article in English | MEDLINE | ID: mdl-26017046

ABSTRACT

We investigated the effectiveness of the standard 648 bp mitochondrial COI barcode region in discriminating among Satyrine species from China. A total of 214 COI sequences were obtained from 90 species, including 34 species that have never been barcoded. Analyses of genetic divergence show that the mean interspecific genetic divergence is about 16-fold higher than within species, and little overlap occurs between them. Neighbour-joining (NJ) analyses showed that 48 of the 50 species with two or more individuals, including two cases with deep intraspecific divergence (>3%), are monophyletic. Furthermore, when our sequences are combined with the conspecific sequences sampled from distantly geographic regions, the "barcoding gap" still exists, and all related species are recovered to be monophyletic in NJ analysis. Our study demonstrates that COI barcoding is effective in discriminating among the satyrine species of China, and provides a reference library for their future molecular identification.


Subject(s)
Aspartate Aminotransferase, Mitochondrial/genetics , Butterflies/genetics , DNA Barcoding, Taxonomic/methods , DNA, Mitochondrial/genetics , Animals , Biodiversity , Butterflies/classification , China , Genetic Variation/genetics , Sequence Analysis, DNA
14.
PLoS One ; 11(10): e0161449, 2016.
Article in English | MEDLINE | ID: mdl-27736878

ABSTRACT

Although members of the crambid subfamily Pyraustinae are frequently important crop pests, their identification is often difficult because many species lack conspicuous diagnostic morphological characters. DNA barcoding employs sequence diversity in a short standardized gene region to facilitate specimen identifications and species discovery. This study provides a DNA barcode reference library for North American pyraustines based upon the analysis of 1589 sequences recovered from 137 nominal species, 87% of the fauna. Data from 125 species were barcode compliant (>500bp, <1% n), and 99 of these taxa formed a distinct cluster that was assigned to a single BIN. The other 26 species were assigned to 56 BINs, reflecting frequent cases of deep intraspecific sequence divergence and a few instances of barcode sharing, creating a total of 155 BINs. Two systems for OTU designation, ABGD and BIN, were examined to check the correspondence between current taxonomy and sequence clusters. The BIN system performed better than ABGD in delimiting closely related species, while OTU counts with ABGD were influenced by the value employed for relative gap width. Different species with low or no interspecific divergence may represent cases of unrecognized synonymy, whereas those with high intraspecific divergence require further taxonomic scrutiny as they may involve cryptic diversity. The barcode library developed in this study will also help to advance understanding of relationships among species of Pyraustinae.


Subject(s)
Lepidoptera/genetics , Animals , DNA Barcoding, Taxonomic , Gene Library , Genetic Variation , Lepidoptera/classification , North America , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL